Mock mid-term exam MAT-INF 1100, Autmn 2003

This mock mid-term exam has the same format as the real mid-term exam, and consists of problems of the same type and level of difficulty. The first 15 problems count two points each while the last 5 count 4 points each. The maximum total is therefore 50 points. There are 5 alternative answers for each problem, but only one is correct. If your answer is wrong or you do not tick off one of the answers you get zero points for this problem. In other words, you will not be penalised with negative points for answering incorrectly.

Problem and answer sheets

1) The binary number 1010101 is the same as the decimal number67
$\square \quad 54$
$\square \quad 85$
2) Written in binary the number 183 becomes10110111
$\square \quad-1010101$
$\square \quad 11100$
$\square \quad 10110011$
$\square \quad 11001111$
3) The real number $1+\sqrt{2}$ is$1-\sqrt{2}$a rational numbera natural numbernot definedan irrational number
4) The real number $\frac{6}{7 \sqrt{7}-7}-\frac{1}{\sqrt{7}}$ is
\square an irrational numbera negative number
$\square \quad 7$
$\square \quad 0$
$\square \quad$ a rational number
5) The least upper bound of the set $\{x:|x-2|<2\}$ is
$\square \quad 0$
$\square \quad 2$
$\square \quad \sqrt{2}$
$\square \quad 4$
$\square \quad-2$
6) The least upper bound of the set $\left\{x: x^{2}+2<3 x\right\}$ is
$\square \quad 3$
$\square \quad 0$
$\square \quad 2$
$\square \quad \sqrt{3}$
$\square \quad 1$
7) Suppose that we multiply together the factors in the expression $(a+1)^{19}$, where a is different from 0 , what will the coefficient multiplying a^{17} be?
$\square \quad 17$
$\square \quad 136$
$\square \quad 153$
$\square \quad 171$
$\square \quad 19$
8) Which of the following expressions may give a large relative error for certain values of a and b when the computations are done with floatingpoint numbers?$a+b$$a / b$$a * b$$2 a / b$
$\square \quad \sqrt{a b}$
9) Which one of the following statements are true?
$\square \quad$ There is a real number that is greater than all natural numbers
\square Any real number can be approximated arbitrarily well by a rational number
\square Round-off errors can never become a problem on a calculator
\square There are only a finite number of irrational numbers
$\square \quad$ There are infinitely many 64-bit floating-point numbers
10) The function f is defined on the interval $[1,2]$, it is continuous, and satisfies the condition $f(1) \cdot f(2)<0$. After 9 iterations with the bisection method we will have an estimate for one of the zeros of f absolute error less than
$\square \quad-0.3$
$\square \quad 0.002$
$\square \quad 0.0001$
$\square \quad 10^{-5}$
$\square e^{-15}$
11) Which one of the following difference equations is linear?$x_{n}-\sin \left(x_{n-1}\right)+x_{n-2}=0$$e^{x_{n}}+x_{n-1}=0$$x_{n}+x_{n-1} x_{n-2}=0$$x_{n}+n x_{n-1}+x_{n-2}=0$$\sqrt{x_{n}}-x_{n-1}=0$
12) The solution of the difference equation

$$
x_{n+2}+x_{n+1}-2 x_{n}=0, \quad x_{0}=1, \quad x_{1}=1
$$

is given by
$\square \quad x_{n}=\left(3 \cdot 2^{n}-4^{n}\right) / 2$
$\square \quad x_{n}=0$
$\square \quad x_{n}=2^{n+1}-3^{n}$
$\square \quad x_{n}=4 n$
$\square \quad x_{n}=1$
13) A difference equation has characteristic equation with roots $r_{1}=1+i$ and $r_{2}=1-i$. The difference equation is then given by
$\square \quad x_{n+2}-2 x_{n+1}+2 x_{n}=0$$x_{n+2}-x_{n}=0$
\square
$x_{n+2}+x_{n+1}-x_{n}=0$
$\square \quad x_{n+2}-4 x_{n+1}+4 x_{n}=0$
$\square \quad x_{n+2}-8 x_{n+1}+x_{n}=0$
14) The solution of the difference equation

$$
x_{n+2}-6 x_{n+1}+9 x_{n}=0, \quad x_{0}=0, \quad x_{1}=3
$$

is given by$x_{n}=4^{n}-1$
$\square \quad x_{n}=n 3^{n}$
$\square \quad x_{n}=3\left(3^{n}-1\right) / 2$$\square \quad x_{n}=3 n$
$\square \quad x_{n}=7 n-4$
15) Numerical simulation of the difference equation $x_{n+2}-4 x_{n+1}+x_{n}=0$ with initial values $x_{0}=1$ and $x_{1}=4$ will result in
\square major problems with round-off errors
\square no problems with round-off errors
$\square \quad x_{n}=(n+1)^{2}$
$\square \quad$ a solution that is always 0
$\square \quad x_{2}=3$
16) We let P_{n} denote the statement that the formula

$$
1+2+\cdots+n=\frac{1}{8}(2 n+1)^{2}
$$

is true. To prove this by induction we may proceed as follows:

1. We easily see that P_{1} is true.
2. Suppose we have proved that P_{1}, \ldots, P_{k} is true, to complete the proof we must prove that then P_{k+1} is also true. Since P_{k} is true we have

$$
\begin{aligned}
1+2+\cdots+k+(k+1) & =\frac{1}{8}(2 k+1)^{2}+k+1=\frac{1}{2} k^{2}+\frac{3}{2} k+\frac{9}{8} \\
& =\frac{1}{8}\left(4 k^{2}+12 k+9\right) \\
& =\frac{1}{8}(2 k+3)^{2}=\frac{1}{8}(2(k+1)+1)^{2} .
\end{aligned}
$$

In other words, if P_{k} is true, then P_{k+1} must also be true.
Which one of the following statements are true?
$\square \quad$ The statement P_{n} is true, but part 2 of the proof is wrong
$\square \quad$ The statement P_{n} is wrong and part 1 of the proof is wrong
\square The statement P_{n} is wrong, and both part 1 and part 2 of the proof is wrong
\square Both the statement P_{n} and the proof are correct
\square The proof is correct, but it is not a proof by induction
17) The difference equation

$$
x_{n}=x_{n-1}+x_{n-2}^{2}, \quad \operatorname{der} x_{0}=0 \text { og } x_{1}=1
$$

is given. We believe that the following statement is true:
P_{n} : For all integers $n \geq 0$ it holds that $x_{3 n}$ is an even number while $x_{3 n+1}$ and $x_{3 n+2}$ are both odd numbers.

We try to prove this by induction:

1. For $n=0$ we have $x_{3 n}=x_{0}=0$ which is even, while $x_{3 n+1}=x_{1}=1$ which is odd. We also have $x_{3 n+2}=x_{2}=x_{1}+x_{0}^{2}=1$ which is even as well, so P_{n} is true for $n=0$.
2. Suppose that we have shown P_{n} to be true for $n=0, \ldots, k-1$; to complete the proof we have to show that then P_{k} is also true. We have $x_{3 k}=x_{3 k-1}+x_{3 k-2}^{2}$, and from the inductive hypothesis we know that $x_{3 k-2}$ and $x_{3 k-1}$ are both odd numbers. then $x_{3 k-2}^{2}$ is also odd, and since the sum of two odd numbers is even it is clear that $x_{3 k}$ is even. In the same way we have $x_{3 k+1}=x_{3 k}+x_{3 k-1}^{2}$. We now know that $x_{3 k}$ is an even number while $x_{3 k-1}^{2}$ is odd. But then $x_{3 k+1}$ is odd. Finally, we must check $x_{3 k+2}$. We have $x_{3 k+2}=x_{3 k+1}+x_{3 k}^{2}$, and from what we have just shown it is clear that $x_{3 k+1}$ is odd while $x_{3 k}$ is an even number. Then $x_{3 k}^{2}$ is also even so $x_{3 k+2}$ is the sum of an even and an odd number and therefore an odd number.

Which one of the following statements are true?
\square The statement P_{n} is true, but part 1 of the proof is wrong
\square The statement P_{n} is true, but part 2 of the proof is wrong
\square The statement P_{n} is wrong, but the proof is correct
$\square \quad$ Both the statement P_{n} and the proof are correct
\square The proof is correct, but it is not a proof by induction
18) The solution of the inhomogenous difference equation

$$
x_{n+2}-4 x_{n+1}+4 x_{n}=n
$$

where $x_{0}=1$ and $x_{1}=1$ is given by
$\square \quad x_{n}=2^{n}-n$
$\square \quad x_{n}=n$
$\square \quad x_{n}=\left(n^{2}+n\right) / 2$
$\square \quad x_{n}=n+2-2^{n}$
$\square \quad x_{n}=n 2^{n}-2 n+1$
19) The solution of the inhomogenous difference equation

$$
x_{n+2}+x_{n}=n^{2}
$$

where $x_{0}=1$ and $x_{1}=0$ is given by

\square	$x_{n}=n-1$
\square	$x_{n}=n^{2}-1$
\square	$x_{n}=\frac{1}{2} n(n-2)+\cos (n \pi / 2)+\frac{1}{2} \sin (n \pi / 2)$
\square	$x_{n}=n^{2}+\sin (n \pi / 2)+\cos (n \pi / 2)$
\square	$x_{n}=\cos (n \pi / 2)$

20) We use the bisection method on a function f defined on the interval $[0,1]$. The function is such that when we choose the next interval we alternatively choose the left and right subintervals. If we denote the seuence of midpoints by $\left(m_{i}\right)$ this means that we first have $m_{1}=1 / 2$, then we move to the left so that $m_{2}=1 / 4$, next time we move to the right with $m_{3}=3 / 8$, next time to the left with $m_{4}=5 / 16$, next time to the right and so on.

The midpoints can be characterised by the difference equation$m_{n}=m_{n-1} / 2, \quad m_{0}=1$$m_{n}=\frac{1}{2}\left(m_{n-1}+m_{n-3}\right), \quad m_{-1}=0, \quad m_{0}=1$$m_{n}=\frac{1}{2}\left(m_{n-1}+m_{n-2}\right), \quad m_{-1}=1, \quad m_{0}=0$$m_{n}=\frac{1}{2}\left(m_{n}+m_{n-1}\right), \quad m_{0}=1$$m_{n}=\frac{1}{2}\left(1+m_{n-1}\right), \quad m_{0}=1$

