September 8, 2005

MAT-INF 1100: Compulsory assignment 1
Deadline: September 23, 2005, 14:30

Information

The written answers are to be handed in at the office of the Maths Depart-
ment on the 6th floor (7. etasje in Norwegian) by 14:30 on Friday, Septem-
ber 23. For Javaprograms and output from programs, printouts should be
handed in, but for every problem you should also hand in a description with
comments on your results. This should be written by yourself (by hand or
computer).

Students who become ill or for other reasons wish to apply for postpone-
ment or exemption from this assignment should contact Elisabeth Seland
(room B726 in Niels Henrik Abels building, telephone 22 85 59 07, email:
elisabh@math.uio.no) in good time before the deadline.

Students are encouraged to work together on this assignment, and the
teaching assistants will answer general questions, but cannot provide com-
plete solutions. The final answers that you hand in must be produced by
yourself, and you must be able to explain the contents of your answers if you
are called in for an oral examination (may happen if there is suspicion of
copying).

Remember that both of the two compulsory assignments in MAT-INF
1100 must be passed before you are allowed to sit the final course exam.
To pass this first assignment you must make serious attempts at solving all
the problems, and the programs for at least two of the five problems should
produce the right answers.

Printout of program execution. One part of your answers should con-
sist of printouts of execution of your programs. Such printouts can be pro-
duced by the linux-command script. If for example you give the com-
mand script printout what you do thereafter will be recorded in the file
printout. You quit this mode by typing exit. For more info, give the
command man script.

Problems

Problem 1. In this problem we are going to see how overflow and the
value NaN behave in Java. In each subproblem you should describe the
behaviour of your program and whether this is reasonable.

a) Use variables of type long and multiply the two numbers 332 and
311, Check if the answer agrees with the correct value which is
313 = 328256967394537077627.

b) Using double-variables, multiply the two numbers 10'%° and 10~3%
(a number like 10*%° can be given as a double by 1.0e100) and
print the result. Is the answer correct?

¢) Multiply the answer in the previous subproblem by itself. What
is the result?

d) Divide 1 by the answer produced by the machine in (c¢) and print
the answer. Comments?

e) Multiply the answer from (c¢) by 0 and print the answer. Com-
ments?

f) Multiply the answer from (e) by itself, print the answer. Com-
ments.

g) Try to perform the two undefined divisions 1/0 and 1.0/0.0, store

the result in a long-variable and a double-variable respectively,
and print the result. Comment on the result.

Problem 2. A notation for products similar to that for sums is often used
in Mathematics. The expression Hlei is defined as

6
Hi:1-2-3-4-5-6.

=1

In other words, the symbol [] is completely analogous to >, except
that the plus signs are changed to multiplication signs, so that the
numbers in question are multiplied, and not added. Write a program
that prints out the results of the following products and comment on
the results.

a) Hzlil 2.
b) T1:253.
c) Hilgl it

a) TT% 1/
¢) TI% /(i — 1).

Problem 3. The binomial coefficients (7:) are defined as

@ B '(nn'—)' (1)

where n > 0 is an integer and ¢ is an integer in the interval 0 < ¢ <
n. The binomial coefficients turn up in a number of formulae and
must therefore often be computed on a computer. Since all binomial
coefficients are integers (this means that the division in (1) can never
give a remainder), it is reasonable to use integer variables in such
computations. For small values of n and 7 this works well, but for
larger values we quickly run into problems because the numerator and
denominator in (1) may become larger that the largest integer that
can be represented on the computer, even if the binomial coefficient
itself may be relatively small. By using floating point numbers we may
be able to handle larger numbers, but again we may encounter too big
numbers during the computations even if the final result is not so big.
In addition, floating point numbers introduce round-off errors.

An unfortunate thing about the formula (1) is that even if the bino-
mial coefficient is small, the numerator and denominator may both be
large. In general, this is bad for numerical computations and should
be avoided if possible. If we consider the formula (1) in some more
detail, we notice that many of the numbers cancel out,

Qi 1.2 (n—1i) 1 2 n—i

(n)_ 1-2---¢-(i+1)---n i+1 i+2 n
i) 1 ' '

Employing the product notation we can therefore write (’Z) as

(-1

j=1

a) Write a program for computing binomial coefficients based on

this formula, and test your method on the coefficients

<99498> = 416083629102505,

(100000

-0) = 8.14900007813826 - 1074,

<1500000> = 2.702882409454366 - 10°%°.

Why do you have to use floating point numbers and what results
do you get?

b) Is it possible to encounter too large numbers during those compu-
tations if the binomial coefficient to be computed is smaller than
the largest floating point number that can be represented in the
computer?

¢) In our derivation we cancelled i! against n! in (1), and thereby
obtained the alternative expression for (7:) Another method can
be derived by cancelling (n — i)! against n! instead. Derive this
alternative method in the same way as above, and discuss when
the two methods should be used (you don’t need to program the
other method; argue mathematically).

Problem 4. From the text in the lecture notes it is clear that a computer
will obtain the result 10 for the addition 10 + € if € is small enough.
Write a program that can help you determine the smallest integer n
such that 10 4+ 27" is computed as 10. Do this both for 32 and 64 bit
floating point numbers (float- and double-variables in Java). Are
the answers reasonable?

Problem 5. A fundamental property of real numbers is given by the as-
sociative law

(zy)z = x(y2), (2)

which states that it does not matter in which order multiplications are
performed. In this problem you are going to check whether floating
point numbers obey this law. To do this you are going to write a
program that runs through a loop 10000 times and each time draws
three random numbers of type double and then checks whether the law
holds (whether the two sides of (2) are equal) for these numbers. Count
how many times the law fails, and at the end, print the percentage of

times that it failed. Print also a set of three numbers for which the
law failed.

Hint: To draw random numbers you can write
import java.util.Random

at the beginning of the program file and declare a variable which you
may call random by

Random random = new Random();

If x is defined as a variable of type double, you can then draw a
random number by saying

x = random.nextDouble();

A complete program that prints one random number may look as fol-
lows:

import java.util.Random;
class testrandom {
public static void main (String [] args) {
double x;
Random random = new Random();

x = random.nextDouble();
System.out.println("Et tilfeldig tall: " + x);

Good luck!!

