October 21, 2005

MAT-INF 1100: Compulsory Assignment 2

Deadline: November 4, 2005, 14:30

Information

The written answers are to be handed in at the office of the Maths Depart-
ment on the 6th floor (7. etasje in Norwegian) by 14:30 on Friday, November
4. For Javaprograms and output from programs, printouts should be han-
ded in, but for every problem you should also hand in a description with
comments on your results. This should be written by yourself (by hand
or computer). In your home directory there should be an unprotected and
executable version of your programs, and the address of your home directory
and the names of the programs should be included in your written answers.

Students who become ill or for other reasons wish to apply for postpo-
nement or exemption from this assignment should contact Elisabeth Seland
(room B726 in Niels Henrik Abels building, telephone 22 85 59 07, email:
elisabh@math.uio.no) in good time before the deadline.

Students are encouraged to work together on this assignment, and the
teaching assistants will answer general questions, but cannot provide com-
plete solutions. The final answers that you hand in must be produced by
yourself, and you must be able to explain the contents of your answers if you
are called in for an oral examination (may happen if there is suspicion of
copying).

Remember that both of the two compulsory assignments in MAT-INF
1100 must be passed before you are allowed to sit the final course exam. To
pass this assignment all the problems must be reasonably well answered .

Problem 1. Filtering of sound

In this problem you are to program some simple filter operations on sounds.
To aid you in the programming you may use the example program found
in the file Filters. java. This program will show you how to use the class



MatInf1100Sound (you will have copies of both programs if you have execu-
ted the wget-command on the home page of this assignment.) The program
Filters.java is very simple and should give you enough information to
solve the problems below.

The class MatInf1100Sound contains a good deal of code for manipula-
ting sound, but there is not much you need to know about this class. What
you do need to know is that the constructor of MatInf1100Sound has the
signature

MatInf1100Sound(short [] samples, double sampleRate)

In other words, it has two parameters samples (which contains the sam-
ple values of the sound), and sampleRate which contains the sample ra-
te. These two quantities are also available via the dot-notation, that is
if £ is an object of type MatInf1100Sound thenl f.samples will give the
samples of f and f.sampleRate will give you the sample rate of f. As
you will gather from Filters.java the class also contains the methods
getSoundFromFile (string) and getSampleSound() which you may find
useful for reading a sound from a file or generating the string sound. You
should be familiar with this from a problem earlier in the course.

Please note that the sound-format in the MatInf1100Sound-class uses
samples of type short (which is what is usually used on CDs), and not
floating point numbers in the interval [—1, 1] as assumed in chapter 4 of the
lecture notes. You therefore have to make sure that your data are converted
to short before playing the sound and that the noise you add is scaled
so that it has an effect. (The values of a short may vary in the interval
[—32768,32767].) Some sound-files that you may use for testing come with
the wget-command.

a) Write a filter that adds noise to a given sound as suggested on page 57 in
the lecture notes. Adjust the factor 0.2 so that the noise is distinctly
audible. For information about generating random numbers you may
want to take a look at the program testrandom. java which you can
download using the wget-command. Describe briefly the audible effect
that this filter has on the sound.

b) Write a low-pass filter that dampens the high frequencies as suggested
on page 58-59 in the lecture notes by replacing a sample by a weighted
average of the sample itself and its three neighbours on either side. As
coefficients you should use the numbers in row 6 of Pascal’s triangle



divided by the sum of the numbers, in other words a natural generali-
sation of the last two filters on page 59. Be careful near the ends of the
signal. Briefly describe the audible effect the filter has on the sound.

c) Write a high-pass filter that dampens the low frequencies as suggested
on page 60 in the lecture notes, but replace the filter by a filter of
the same length as in problem 1b). Use coefficients with same value
as in 1b), but let their sign alternate between positive and negative.
Describe briefly the audible effect the filter has on the sound.

d) (Not compulsory!) Write a program that plays the 8 tones of the A-major
scale. Use a sample rate of 8000, and let each tone last for 0.4s with a
pause of 0.1s between each tone.

Problem 2. Manual multiresolution analysis

In this problem we are going to manually perform a multiresolution analysis.
This will be useful background knowledge for the programming in problem 3.
A good start is to read Chapter 10 in the lecture notes.

a) We have a data set (z;,¢;)%_ given by
ri=1—4 fort=0,...,8

and
ci::r? fori=0,...,8.

In other words we have 9 points taken from the graph of the parabola
y = 22 on the interval [—4,4]. We use the notation of Section 10.2.1
in the lecture notes and let f(x) = Li(cy,...,cs) denote the piecewise
linear function that satisfies the conditions f(x;) = ¢; fori =0, ..., 8.

Use Lemma 10.2 and decompose f into an approximation g and an
error function e according to the formulas (10.1)—(10.4). Sketch the
three functions f, ¢ and e.

b) Set g1 = g and e; = e, and decompose g; in the same way as g1 = ga+e€2.
Then decompose g2 as go = g3 +e3. We then have f = g3 +eg+ea+eq.
Sketch the functions gs, e3 and es.

¢) For compression we set to zero all coefficients in the error function that
are smaller than a given tolerance €, as described in sections 10.4 and
10.5 in the notes. Try first with the tolerance ¢ = 0.1 and then with



the tolerance € = 1. In each case you will end up with slightly pertur-
bed error functions that we call ¢; for ¢ = 1, 2, 3. Compute the two
corresponding approximations to f given by f = g3 + €3+ ez + e,
sketch these and compare with f. How much compression did you get
in each of the two cases?

Problem 3. Sound compression

In this problem you are to program a version of lossy compression of a sound
signal as suggested in chapter 10 of the lecture notes. You should therefore
first read this chapter.

The problem consists of programming the decomposition as suggested
by the formulas (10.3) and (10.4) in chapter 10, and setting those of the
ws that have their absolute value smaller than a given tolerance (that you
choose yourself) to zero. You should also program the reconstruction given
by formulas (10.5) and (10.6).

Your programs should first be tested on the simple data set from problem
2. When this works you can try a test sound by decomposing the test sound
and saving the result to a file, using the program gzip for encoding the file
efficiently and comparing the size of the encoded file with the size of the
original test sound. You should also reconstruct the changed sound, play it,
and give a subjective opinion of the quality. You should have at least one such
test example where the size of the compressed file should be considerably
less than the size with the test sound, but at the same time it should not be
difficult to recognise the test sound from the compressed sound.

a) Program a simplified decomposition algorithm where you only decompo-
se once, such that f is split into f = g; + e;1. You should also program
the reconstruction algorithm by implementing the formulas (10.5) and
(10.6). It is probably wise to first program the case where the num-
ber of samples is an odd number, and then extend your program to
handle the case of even numbers afterwards. You may either read the
tolerance from the terminal or leave it as a constant in your program.

Test your decomposition and reconstruction routines on the parabola
data with the help of the program test_parabola. java, with the tole-
rance equal to 0, 3 and 16. Check that the results agree with what you
computed by hand in problem 2 and report your results. Then test your
routines with a sound, using the program CompressionTester.java
and give your opinion on the quality.



b) (Not compulsory.) Write a complete decomposition program which decom-
poses your signal k times (you must find a suitable value for k yourself)
and sets all w; which are less than the tolerance in absolute value to
zero. You should also program the corresponding reconstruction al-
gorithm. Remember that the straightforward implementation of the
algorithms in chapter 10 only work for very special lengths of the data
set. Section 10.3.5 discusses how to handle this.

Some tips

By making use of code that has already been written, your work with this
problem will be reduced to a fraction of what it would otherwise be. If
you have executed the wget-command shown on the home page of this as-
signment, you have obtained a collection of Java-programs. For solving this
problem you may find the files

AbstractCompressedSound. java
Compressed1100Sound. java
CompressionTester. java
MatInf1100Sound. java
forslaga. java

forslagb.java
test_parabola. java

useful. The file Compressed1100Sound. java contains a very coarse decom-
position method, but will work with CompressionTester.java. The files
forslaga.java and forslagb. java contain skeletons that may prove use-
ful for solving problems 3a and 3b.

For problem 3a, the class should contain a contructor that decomposes
a sound signal once, a reconstruction method and the four variables

short d[]; //Samplene til g

short w[]l; // Samplene til feilfunksjonene
double sampleRate;

short eps; //Toleranse

The constructor requires a parameter of type MatInf1100Sound and should
decompose the sound as suggested by the algorithm given by formulas (10.3)
and (10.4) in the lecture notes. The file forslaga.java contains more in-
formation.

To solve problem 3b, your class should contain a constructor that decom-
poses the signal several times, a method that reconstructs a signal, and the
four variables



short d[]; //Samplene til

short w[][]; // Feilfunksjonen(e)
double sampleRate;

short eps; //Toleranse

In other words, the only difference from problem 3a is that we now have
an array of samples of error functions. The file forslagb. java contains more
information.

It is simplest to just have one version of Compressed1100Sound. java in
the directory where you are working. It may therefore be easiest to have one
directory for each of the two problems.

For testing you may use the program CompressionTester.java. This
program will generate a short test sound (or read a sound from file) in
MatInf1100Sound-format and write this sound to the file original.obj. It
will then call the constructor in Compressed1100Sound and thereby perform
the decomposition algorithm written by you, write the decomposed sound
to the file Compressed1100Sound.obj, perform the reconstruction and play
the reconstructed signal. You should then use the program gzip and do
a lossless compression of the file that was generated, as described in the
instructions in the file CompressionTester. java.

Note that if you try to use a test sound that last more than a few
seconds you have to give Java more memory when you run the program.
Information on how this is done can be found at the beginning of the file
CompressionTester. java.

Thank you Pal!

Finally: Thank you to Pal Hermun Johansen (Ph.D-student in Mathematics)
who has written the code that you will be using here and that hopefully will
prove useful to you.

Good luck!!



