
CHAPTER 4

Computers, Numbers and
Text

In this chapter we are going to study how numbers are represented in a com-
puter. We already know that at the most basic level, computers just handle se-
quences of 0s and 1s. We also know that numbers can be represented in different
numeral systems, in particular the binary (base-2) numeral system which is per-
fectly suited for computers. We first consider representation of integers which is
quite straightforward, and then representation of fractional numbers which is a
bit more challenging.

4.1 Representation of Integers

If computers are to perform calculations with integers, we must obviously have
a way to represent the numbers in terms of the computers’ electronic circuitry.
This presents us with one major challenge and a few minor ones. The big chal-
lenge is that integer numbers can become arbitrarily large in magnitude. This
means that there is no limit to the number of digits that may be needed to write
down integer numbers. On the other hand, the resources in terms of storage ca-
pacity and available computing time is always finite, so there will always be an
upper limit on the magnitude of numbers that can be handled by a given com-
puter. There are two standard ways to handle this problem.

The most common solution is to restrict the number of digits. If for sim-
plicity we assume that we can work in the decimal numeral system, we could
restrict the number of digits to 6. This means that the biggest number we can
handle would be 999999. The advantage of this limitation is that we could put
a lot of effort into making the computer’s operation on 6 digit decimal numbers

47



48 CHAPTER 4. COMPUTERS, NUMBERS AND TEXT

Traditional SI prefixes

Symbol Value Symbol Value Alternative Value

kB (kilobyte) 210 KB 103 kibibyte 210

MB (megabyte) 220 MB 106 mibibyte 220

GB (gigabyte) 230 GB 109 gibibyte 230

TB (terabyte) 240 TB 1012 tibibyte 240

PB (petabyte) 250 PB 1015 pibibyte 250

EB (exabyte) 260 EB 1018 exbibyte 260

ZB (zettabyte) 270 ZB 1021 zebibyte 270

YB (yottabyte) 280 YB 1024 yobibyte 280

Table 4.1. The Si-prefixes for large collections of bits and bytes.

extremely efficient. On the other hand the computer could not do much other
than report an error message and give up if the result should become larger than
999999.

The other solution would be to not impose a specific limit on the size of the
numbers, but rather attempt to handle as large numbers as possible. For any
given computer there is bound to be an upper limit, and if this is exceeded the
only response would be an error message. We will discuss both of these ap-
proaches to the challenge of big numbers below.

4.1.1 Bits, bytes and numbers

At the most basic level, the circuitry in a computer (usually referred to as the
hardware) can really only differentiate between two different states, namely ’0’
and ’1’ (or ’false’ and ’true’). This means that numbers must be represented in
terms of 0 and 1, in other words in the binary numeral system. From what we
learnt in the previous chapter, this is not a difficult task, but for reasons of effi-
ciency the electronics have been designed to handle groups of binary digits. The
smallest such group consists of 8 binary digits (bits) and is called a byte. Larger
groups of bits are usually groups of bytes. For manipulation of numbers, groups
of 4 and 8 bytes are usually used, and computers have special computational
units to handle groups of bits of these sizes.

Fact 4.1. A binary digit is called a bit and a group of 8 bits is called a byte.
Numbers are usually represented in terms of 4 bytes (32 bits) or 8 bytes (64
bits).



4.1. REPRESENTATION OF INTEGERS 49

The standard SI prefixes are used when large amounts of bits and bytes are
referred to, see Table 4.1. Note that traditionally the factor between each prefix
has been 1024 = 210 in the computer world, but use of the SI-units is now en-
couraged. However, memory size is always reported using the traditional binary
units and most operating systems also use these units to report hard disk sizes
and file sizes. So a file containing 3 913 880 bytes will typically be reported as
being 3.7 MB.

To illustrate the size of the numbers in Table 4.1 it is believed that the world’s
total storage in 2006 was 160 exabytes, and the projection is that this will grow
to nearly one zettabyte by 2010.

4.1.2 Fixed size integers

Since the hardware can handle groups of 4 or 8 bytes efficiently, the representa-
tion of integers are usually adapted to this format. If we use 4 bytes we have 32
binary digits at our disposal, but how should we use these bits? We would cer-
tainly like to be able to handle both negative and positive numbers, so we use
one bit to signify whether the number is positive or negative. We then have 31
bits left to represent the binary digits of the integer. This means that the largest
32-bit integer that can be handled is the number where all 31 digits are 1, i.e.,

1 ·230 +1 · · ·229 +·· ·+1 ·22 +1 ·21 +1 ·20 = 231 −1.

Based on this it may come as a little surprise that the most negative number that
can be represented is −231 and not −231 + 1. The reason is that with 32 bits at
our disposal we can represent a total of 232 numbers. Since we need 231 bit com-
binations for the positive numbers and 0, we have 232 −231 = 231 combinations
of digits left for the negative numbers. Similar limits can be derived for 64-bit
integers.

Fact 4.2. The smallest and largest numbers that can be represented by 32-bit
integers are

Imin32 =−231 =−2147483648, Imax32 = 231 −1 = 2147483647.

With 64-bit integers the corresponding numbers are

Imin64 =−263 =−9223372036854775808,

Imax64 = 263 −1 = 9223372036854775807.



50 CHAPTER 4. COMPUTERS, NUMBERS AND TEXT

What we have discussed so far is the typical hardware support for integer
numbers. When we program a computer we have to use a suitable program-
ming language, and different languages may provide different interfaces to the
hardware. There are a myriad of computer languages, and especially handling
of integers may differ quite a bit. We will briefly review integer handling in two
languages, Java and Python, as representatives of two different approaches.

4.1.3 Integers in Java

Java is a typed language which means that the type of all variables has to be
stated explicitly. If we wish to store 32-bit integers in the variable n, we use the
declaration int n and we say that n is an int variable. If we wish to use n as a
64-bit variable, we use the declaration long n and say that n is a long variable.
Integers appearing to the right of an assignment are considered to be of type
int, but you may specify that an integer is to be interpreted as a long integer by
appending an L. In other words, an expression like 2+3 will be computed as an
int whereas the expression 2L+3L will be computed as a long, using 64 bits.

Since Java has integer types of fixed size, something magic must happen
when the result of an integer computation becomes too large for the type. Sup-
pose for example that we run the code segment

int a;
a = 2147483647;
a = a + 1;

The staring value for a is the largest possible 32-bit integer, and when we add 1
we obtain a number that is too big for an int. This is referred to by saying that
an overflow occurs. So what happens when an integer overflows in Java? The
statements above will lead to a receiving the value -2147483648, and Java gives
no warning about this strange behaviour!. If you look carefully the result is −231,
i.e., the smallest possible int. Basically Java (and similar languages) consider
the 32-bit integers to lie in a ring where the integer succeeding 231 − 1 is −231

(overflow in long integers are handled similarly). Sometimes this may be what
you want, but most of the time this kind of behaviour is probably going to give
you a headache unless you remember this paragraph!

Note that Java also has 8 bit integers (byte) and 16 bit integers (short).
These behave completely analogously to int and long variables.

It is possible to work with integers that require more than 64 bits in Java,
but then you have to resort to an auxiliary class called BigInteger. In this class
integers are only limited by the total resources available on your computer, but
the cost of resorting to BigInteger is a big penalty in terms of computing time.



4.2. COMPUTERS AND REAL NUMBERS 51

4.1.4 Integers in Python

Python handles integers quite differently from Java. First of all you do not need
to declare the type of variables in Python. So if you write something like a=2+3
then Python will look at the right-hand side of the assignment, conclude that
this is an integer expression and store the result in an integer variable. An integer
variable in Python is called an int and on most computers this will be a 32-bit
integer. The good news is that Python handles overflow much more gracefully
than Java. If Python encounters an integer expression that is greater than 231−1
it will be converted to what is called a long integer variable in Python. Such
variables are only bounded by the available resources on the computer, just like
BigInteger in Java. You can force an integer expression that fits into an int
to be treated as a long integer by using the function long. For example, the
expression long(13) will give the result 13L, i.e., the number 13 represented as
a long integer. Similarly, the expression int(13L) will convert back to an int.

This means that overflow is very seldom a problem in Python, as virtually all
computers today should have sufficient resources to avoid overflow in ordinary
computations. But it may of course happen that you make a mistake that result
in a computation producing very large integers. You will notice this in that your
program takes a very long time and may seem to be stuck. This is because your
computation is consuming all resources in the computer so that everything else
comes to a standstill. You could wait until you get an error message, but this
make take a long time so it is usually better to just abort the computation.

Since long integers in Python can become very large, it may be tempting
to use them all the time and ignore the int integers. The problem with this is
that the long integers are implemented in extra program code (usually referred
to as software), just like the BigInteger type in Java, and this is comparatively
slow. In contrast, operations with int integers are explicitly supported by the
hardware and is very fast.

4.1.5 Division by zero

Other than overflow, the only potential problem with integer computation is di-
vision by zero. This is mathematically illegal and results in an error message and
the computations being halted (or an exception is raised) in all programming
languages.

4.2 Computers and real numbers

Computations with integers is not sufficient for many parts of mathematics; we
must also be able to compute with real numbers. And just like for integers, we
want fast computations so we can solve large and challenging problems. This



52 CHAPTER 4. COMPUTERS, NUMBERS AND TEXT

inevitably means that there will be limitations on the class of real numbers that
can be handled efficiently by computers.

To illustrate the challenge, consider the two real numbers

π= 3.141592653589793238462643383279502884197. . . ,

106π= 3.141592653589793238462643383279502884197. . .×106.

Both of these numbers are irrational and require infinitely many digits in any
numeral system with an integer base. With a fixed number of digits at our dis-
posal we can only store the most significant (the left-most) digits, which means
that we have to ignore infinitely many digits. But this is not enough to distin-
guish between the two numbers π and 106π, we also have to store information
about the size of the numbers.

The fact that many real numbers have infinitely many digits and we can only
store a finite number of these means that there is bound to be an error when real
numbers are represented on a computer. This is in marked contrast to integer
numbers where there is no error, just a limit on the size of numbers. The errors
are usually referred to as rounding errors or round-off errors. These errors are
also present on calculators and a simple situation where round-off error can be
observed is by computing

p
2, squaring the result and subtracting 2. On one

calculator the result is approximately 4.4×10−16, a clear manifestation of round-
off error.

Usually the round-off error is small and remains small throughout a compu-
tation. In some cases however, the error grows throughout a computation and
may become significant. In fact, there are situations where the round-off error in
a result is so large that all the displayed digits are wrong! Computations which
lead to large round-off errors are said to be badly conditioned while computa-
tions with small errors are said to be well conditioned.

Since some computations may lead to large errors it is clearly important to
know in advance if a computation may be problematic. Suppose for example
you are working on the development of a new aircraft and you are responsible
for simulations of the forces acting on the wings during flight. Before the first
flight of the aircraft you had better be certain that the round-off errors (and other
errors) are under control. Such error analysis is part of the field called Numerical
Analysis.

4.2.1 Representation of real numbers

To understand round-off errors and other characteristics of how computers han-
dle real numbers, we must understand how real numbers are represented. We



4.2. COMPUTERS AND REAL NUMBERS 53

are going to do this by first pretending that computers work in the decimal nu-
meral system. Afterwards we will translate our observations to the binary repre-
sentation that is used in practice.

Any real number can be expressed in the decimal system, but infinitely many
digits may be needed. To represent such numbers with finite resources we must
limit the number of digits. Suppose for example that we use four decimal dig-
its to represent real numbers. Then the best representations of the numbers π,
1/700 and 100003/17 would be

π≈ 3.142,

1

700
≈ 0.001429,

100003

17
≈ 5883.

If we consider the number 100000000/23 ≈ 4347826 we see that it is not repre-
sentable with just four digits. However, if we write the number as 0.4348×107 we
can represent the number if we also store the exponent 7. This is the background
for the following simple observation.

Observation 4.1 (Normal form of real number). Let a be a real number differ-
ent from zero. Then a can be written uniquely as

a = b ×10n (4.1)

where b is bounded by
1

10
≤ |b| < 1 (4.2)

and n is an integer. This is called the normal form of a, and the number b is
called the significand while n is called the exponent of a. The normal form of
0 is 0 = 0×100.

Note that the digits of a and b are the same; to arrive at the normal form in
(4.1) we simply multiply a by the power of 10 that brings b into the range given
by (4.2).



54 CHAPTER 4. COMPUTERS, NUMBERS AND TEXT

The normal form of π, 1/7, 100003/17 and 10000000/23 are

π≈ 0.3142×101,

1

7
≈ 0.1429×10−2,

100003

17
≈ 0.5883×104,

10000000

23
≈ 0.4348×107.

From this we see that if we reserve four digits for the significand and one digit for
the exponent, plus a sign for both, then we have a format that can accommodate
all these numbers. If we keep the significand fixed and vary the exponent, the
decimal point moves among the digits. For this reason this kind of format is
called floating point, and numbers represented in this way are called floating
point numbers.

It is always useful to be aware of the smallest and largest numbers that can
be represented in a format. With four digits for the significand and one digit for
the exponent plus signs, these numbers are

−0.9999×109,

0.1000×10−9,

−0.1000×10−9,

0.9999×109.

In practice, a computer uses a binary representation. Before we consider
details of how many bits to use etc., we must define a normal form for binary
numbers. This is a straightforward generalisation from the decimal case.

Observation 4.2 (Binary normal form of real number). Let a be a real number
different from zero. Then a can be written uniquely as

a = b ×2n

where b is bounded by
1

2
≤ |b| < 1

and n is an integer. This is called the binary normal form of a, and the number
b is called the significand while n is called the exponent of a. The normal form
of 0 is 0 = 0×20.

This is completely analogous to the decimal version in Observation 4.1 in
that all occurrences of 10 have been replaced by 2. Most of today’s computers



4.2. COMPUTERS AND REAL NUMBERS 55

use 32 or 64 bits to represent real numbers. The 32-bit format is useful for appli-
cations that do not demand very much accuracy, but 64 bits has become a stan-
dard for most scientific applications. Occasionally higher accuracy is required
in which case there are some formats with more bits or even a format with no
limitation other than the resources available in the computer.

To describe a floating point format, it is not sufficient to state how many bits
are used in total, we also have to know how many bits are used for the significand
and how many for the exponent. There are several possible ways to do this, but
there is an international standard for floating point computations that is used
by most computer manufacturers. This standard is referred to as the IEEE1 754
standard, and the main details of the 32-bit version is given below.

Fact 4.3 (IEEE 32-bit floating point format). With 32-bit floating point num-
bers 23 bits are allocated for the significand and 9 bits for the exponent, both
including signs. This means that numbers have about 6–9 significant decimal
digits. The smallest and largest negative numbers in this format are

F−
min32 ≈−3.4×1038, F−

max32 ≈−1.4×10−45.

The smallest and largest positive numbers are

F+
min32 ≈ 1.4×10−45, F+

max32 ≈ 3.4×1038.

This is just a summary of the most important characteristics of the 32-bit
IEEE-standard; there are a number of details that we do not want to delve into
here. However, it is worth pointing out that when any nonzero number a is ex-
pressed in binary normal form, the first bit of the significand will always be 1
(remember that we simply shift the binary point until the first bit is 1). Since
this bit is always 1, it does not need to be stored. This means that in reality we
have 24 bits (including sign) available for the significand. The only exception to
this rule is when the exponent has its smallest possible value. Then the first bit
is assumed to be 0 (these correspond to so-called denormalised numbers) and
this makes it possible to represent slightly smaller numbers than would other-
wise be possible. In fact the smallest positive 32-bit number with 1 as first bit is
approximately 1.2×10−38.

Not all bit combinations in the IEEE standard are used for ordinary numbers.
Three of the extra ’numbers’ are -Infinity, Infinity and NaN. The infinities

1IEEE is an abbreviation for Institute of Electrical and Electronics Engineers which is a profes-
sional technological association.



56 CHAPTER 4. COMPUTERS, NUMBERS AND TEXT

typically occur during overflow. For example, if you use 32-bit floating point and
perform the multiplication 1030∗1030, the result will be Infinity. The negative
infinity behaves in a similar way. The NaN is short for ’Not a Number’ and is the
result if you try to perform an illegal operation. A typical example is if you try to
compute

p−1 without using complex numbers, this will give NaN as the result.
And once you have obtained a NaN result it will pollute anything that it touches;
NaN combined with anything else will result in NaN.

With 64-bit numbers we have 32 extra bits at our disposal and the question is
how these should be used. The creators of the IEEE standard believed improved
accuracy to be more important than support for very large or very small num-
bers. They therefore increased the number of bits in the significand by 30 and
the number of bits in the exponent by 2.

Fact 4.4 (IEEE 64-bit floating point format). With 64-bit floating point num-
bers 53 bits are allocated for the significand and 11 bits for the exponent, both
including signs. This means that numbers have about 15–17 significant deci-
mal digits. The smallest and largest negative number in this format are

F−
min64 ≈−1.8×10308, F−

max64 ≈−5×10−324.

The smallest and largest positive numbers are

F+
min64 ≈ 5×10−324, F+

max64 ≈ 1.8×10308.

Other than the extra bits available, the 64-bit format behaves just like its 32-
bit little brother, with the leading 1 not being stored, the use of denormalised
numbers, -Infinity, Infinity and NaN.

4.2.2 Floating point numbers in Java

Java has two floating point types, float and double, which are direct imple-
mentations of the 32-bit and 64-bit IEEE formats described above. In Java the
result of 1.0/0.0 will be Infinity without a warning.

4.2.3 Floating point numbers in Python

In Python floating point numbers come into action as soon as you enter a num-
ber with a decimal point. Such numbers are represented in the 64-bit format
described above and most of the time the computations adhere to the IEEE stan-
dard. However, there are some exceptions. For example, the division 1.0/0.0
will give an error message and the symbol for ’Infinity’ is Inf.



4.3. REPRESENTATION OF LETTERS AND OTHER CHARACTERS 57

In standard Python, there is no support for 32-bit floating point numbers.
However, you gain access to this if you import the NumPy library.

4.3 Representation of letters and other characters

At the lowest level, computers can just handle 0s and 1s, and since any number
can be expressed uniquely in the binary number system it can also be repre-
sented in a computer (except for the fact that we may have to limit both the size
of the numbers and their number of digits). We all know that computers can
also handle text and in this section we are going to see the basic principles of
how this is done.

A text is just a sequence of individual characters like ’a’, ’B’, ’3’, ’.’, ’?’, i.e.,
upper- and lowercase letters, the digits 0–9 and various other symbols used for
punctuation and other purposes. So the basic challenge in handling text is how
to represent the individual characters. With numbers at our disposal, this is a
simple challenge to overcome. Internally in the computer a character is just
represented by a number and the correspondence between numbers and char-
acters is stored in a table. The letter ’a’ for example, usually has code 97. So
when the computer is told to print the character with code 97, it will call a pro-
gram that draws an ’a’2. Similarly, when the user presses the ’a’ on the keyboard,
it is immediately converted to code 97.

Fact 4.5 (Representation of characters). In computers, characters are repre-
sented in terms of integer codes and a table that maps the integer codes to
the different characters. During input each character is converted to the cor-
responding integer code, and during output the code is used to determine
which character to draw.

Although the two concepts are slightly different, we will use the terms ’char-
acter sets’ and ’character mappings’ as synonyms.

From Fact 4.5 we see that the character mapping is crucial in how text is han-
dled. Initially, the mappings were simple and computers could only handle the
most common characters used in English. Today there are extensive mappings
available that make the characters of most of the world’s languages, including
the ancient ones, accessible. Below we will briefly describe some of the most
common character sets.



58 CHAPTER 4. COMPUTERS, NUMBERS AND TEXT

4.3.1 The ASCII Table

In the infancy of the digital computer there was no universal standard for map-
ping characters to numbers. This made it difficult to transfer information from
one computer to another, and the need for a standard soon became apparent.
The first version of ASCII (American Standard Code for Information Interchange)
was published in 1963 and it was last updated in 1986. ASCII defines codes for
128 characters that are commonly used in English plus some more technical
characters. The fact that there are 128 = 27 characters in the ASCII table means
that 7 bits are needed to represent the codes. Today’s computers usually handle
one byte (eight bits) at a time so the ASCII character set is now normally just part
of a larger character set, see below.

Table 4.2 (towards the end of this chapter) shows the ASCII characters with
codes 32–127. We notice the upper case letters with codes 65–90, the lower case
letters with codes 97–122 and the digits 0–9 with codes 48–57. Otherwise there
are a number of punctuation characters and brackets as well as various other
characters that are used more or less often. Observe that there are no characters
from the many national alphabets that are used around the world. ASCII was
developed in the US and was primarily intended to be used for giving a textual
representation of computer programs which mainly use vocabulary from En-
glish. Since then computers have become universal tools that process all kinds
of information, including text in many different languages. As a result new char-
acter sets have been developed, but almost all of them contain ASCII as a subset.

Character codes are used for arranging words in alphabetical order. To com-
pare the two words ’high’ and ’all’ we just check the character codes. We see
that ’h’ has code 104 while ’a’ has code 97. So by ordering the letters according
to their character codes we obtain the normal alphabetical order. Note that the
codes of upper case letters are smaller than the codes of lower case letters. This
means that capitalised words and words in upper case precede words in lower
case in the standard ordering.

Table 4.3 shows the first 32 ASCII characters. These are quite different from
most of the others (with the exception of characters 32 and 127) and are called
control characters. They are not intended to be printed in ink on paper, but
rather indicate some kind of operation to be performed by the printing equip-
ment or a signal to be communicated to a sender or receiver of the text. Some of
the characters are hardly used any more, but others have retained their signif-
icance. Character 4 (ˆD) has the description ’End of Transmission’ and is often
used to signify the end of a file, at least under Unix-like operating systems. Be-
cause of this, many programs that operate on files, like for example text-editors,

2The shape of the different characters are usually defined as mathematical curves.



4.3. REPRESENTATION OF LETTERS AND OTHER CHARACTERS 59

will quit if you type ˆD (hold down the control-key while you press ’d’). Various
combinations of characters 10, 12 and 13 are used in different operating systems
for indicating a new line within a file. The meaning of character 13 (’Carriage
Return’) was originally to move back to the beginning of the current line and
character 10 (’Line Feed’) meant forward one line.

4.3.2 ISO latin character sets

As text processing by computer became important in the 1980s, extensions of
the ASCII character set that included various national characters used in Eu-
ropean languages were needed. The International Standards Organisation (ISO)
developed a number of such character sets, like ISO Latin 1 (’Western’), ISO Latin 2
(’Central European’) and ISO Latin 5 (’Turkish’), and so did several computer
manufacturers. Virtually all of these character sets retained ASCII in the first 128
positions, but increased the code from seven to eight bits to accomodate an-
other 128 characters. This meant that different parts of the Western world had
local character sets which could encode their national characters, but if a file
was interpreted with the wrong character set, some of the characters beyond
position 127 would come out wrong.

Table 4.4 shows characters 192–255 in the ISO Latin 1 character set. These in-
clude most latin letters with diacritics used in the Western European languages.
Positions 128–191 in the character set are occupied by some control characters
similar to those at the beginning of the ASCII table but also a number of other
useful characters.

4.3.3 Unicode

By the early 1990s there was a critical need for character sets that could han-
dle multilingual characters, like those from English and Chinese, in the same
document. A number of computer companies therefore set up an organisation
called Unicode. Unicode has since then organised the characters of most of the
world’s languages in a large table called the Unicode table, and new characters
are still being added. There are a total of about 100 000 characters in the ta-
ble which means that at least three bytes are needed for their representation.
The codes range from 0 to 1114111 (hexadecimal 10ffff16) which means that only
about 10 % of the table is filled. The characters are grouped together according
to language family or application area, and the empty spaces make it easy to add
new characters that may come into use. The first 256 characters of Unicode is
identical to the ISO Latin 1 character set, and in particular the first 128 charac-
ters correspond to the ASCII table. You can find all the Unicode characters at
http://www.unicode.org/charts/.

http://www.unicode.org/charts/


60 CHAPTER 4. COMPUTERS, NUMBERS AND TEXT

One could use the same strategy with Unicode as with ASCII and ISO Latin 1
and represent the characters via their integer codes (usually referred to as code
points) in the Unicode table. This would mean that each character would re-
quire three bytes of storage. The main disadvantage of this is that a program
for reading Unicode text would give completely wrong results if by mistake it
was used for reading ’old fashioned’ eight bit text, even if it just contained ASCII
characters. Unicode has therefore developed variable length encoding schemes
for encoding the characters.

4.3.4 UTF-8

A popular encoding of Unicode is UTF-83. UTF-8 has the advantage that ASCII
characters are encoded in one byte so there is complete backwards compatibility
with ASCII. All other characters require from two to four bytes.

To see how the code points are actually encoded in UTF-8, recall that the
ASCII characters have code points in the range 0–127 (decimal) which is 0016–
7 f16 in hexadecimal or 000000002–011111112 in binary. These characters are just
encoded in one byte in the obvious way and are characterised by the fact that the
most significant (the left-most) bit is 0. All other characters require more than
one byte, but the encoding is done in such a way that none of these bytes start
with 0. This is done by adding some set fixed bit combinations at the beginning
of each byte. Such codes are called prefix codes. The details are given in a fact
box.

Fact 4.6 (UTF-8 encoding of Unicode). A Unicode character with code point
c is encoded in UTF-8 according to the following four rules:

1. If c = (d6d5d4d3d2d1d0)2 is in the decimal range 0–127 (hexadecimal
0016–7f16), it is encoded in one byte as

0d6d5d4d3d2d1d0.

2. If c = (d10d9d8d7d6d5d4d3d2d1d0)2 is in the decimal range 128–2047
(hexadecimal 8016–7ff16) it is encoded as the two byte binary number

110d10d9d8d7d6 10d5d4d3d2d1d0.

3. If c = (d15d14d13d12d11d10d9d8d7d6d5d4d3d2d1d0)2 is in the decimal
range 2048–65535 (hexadecimal 80016–ffff16) it is encoded as the three
byte binary number

1110d15d14d13d12 10d11d10d9d8d7d6 10d5d4d3d2d1d0.

3UTF is an abbreviation of Unicode Transformation Format.



4.3. REPRESENTATION OF LETTERS AND OTHER CHARACTERS 61

4. If c = (d20d19d18d17d16d15d14d13d12d11d10d9d8d7d6d5d4d3d2d1d0)2 is
in the decimal range 65536–1114111 (hexadecimal 1000016–10ffff16) it
is encoded as the four byte binary number

11110d20d19d18 10d17d16d15d14d13d12

10d11d10d9d8d7d6 10d5d4d3d2d1d0.

This may seem complicated at first sight, but is in fact quite simple and el-
egant. Note any given byte in a UTF-8 encoded text must start with the binary
digits 0, 10, 110, 1110 or 11110. If the first bit in a byte is 0, the remaining bits
represent a seven bit ASCII character. If the first two bits are 10, the byte is the
second, third or fourth byte of a multi-byte code point, and we can find the first
byte by going back in the byte stream until we find a byte that does not start with
10. If the byte starts with 110 we know that it is the first byte of a two-byte code
point; if it starts with 1110 it is the first byte of a three-byte code point; and if it
starts with 11110 it is the first of a four-byte code point.

Observation 4.3. It is always possible to tell if a given byte within a text en-
coded in UTF-8 is the first, second, third or fourth byte in the encoding of a
code point.

The UTF-8 encoding is particularly popular in the Western world since all
the common characters of English can be represented by one byte, and almost
all the national European characters can be represented with two bytes.

4.3.5 UTF-16

Another common encoding is UTF-16. In this encoding most Unicode charac-
ters with two-byte code points are encoded directly by their code points. Since
the characters of major Asian languages like Chinese, Japanese and Korean are
encoded in this part of Unicode, UTF-16 is popular in this part of the world.
UTF-16 is also the native format for representation of text in the recent versions
of Microsoft Windows and Apple’s Mac OS X as well as in programming environ-
ments like Java, .Net and Qt.

UTF-16 uses a variable width encoding scheme similar to UTF-8, but the ba-
sic unit is two bytes rather than one. This means that all code points are encoded
in two or four bytes. In order to recognize whether two consecutive bytes in an
UTF-16 encoded text correspond to a two-byte code point or a four-byte code



62 CHAPTER 4. COMPUTERS, NUMBERS AND TEXT

point, the initial bit patterns of each pair of a four byte code has to be illegal
in a two-byte code. This is possible since there are big gaps in the Unicode ta-
ble. In fact certain Unicode code points are reserved for the specific purpose of
signifying the start of pairs of four-byte codes (so-called surrogate pairs).

Fact 4.7 (UTF-16 encoding of Unicode). A Unicode character with code point
c is encoded in UTF-16 according to two rules:

1. If c = (d15d14d13d12d11d10d9d8d7d6d5d4d3d2d1d0)2 is a code point in
the range 0–65535 (hexadecimal 000016–ffff16) it is encoded as the two
bytes

d15d14d13d12d11d10d9d8 d7d6d5d4d3d2d1d0.

2. If c = (d20d19d18d17d16d15d14d13d12d11d10d9d8d7d6d5d4d3d2d1d0)2

is a code point in the decimal range 65536–1114111 (hexadeci-
mal 1000016–10ffff16), compute the number c ′ = c − 65536 (subtract
1000016). This number can be represented by 20 bits,

c ′ = (d ′
19d ′

18d ′
17d ′

16d ′
15d ′

14d ′
13d ′

12d ′
11d ′

10d ′
9d ′

8d ′
7d ′

6d ′
5d ′

4d ′
3d ′

2d ′
1d ′

0)2.

The encoding of c is then given by the four bytes

110110d ′
19d ′

18 d ′
17d ′

16d ′
15d ′

14d ′
13d ′

12d ′
11d ′

10

110111d ′
9d ′

8 d ′
7d ′

6d ′
5d ′

4d ′
3d ′

2d ′
1d ′

0.

Superficially it may seem like UTF-16 does not have the prefix property, i.e.,
it may seem that a pair of bytes produced by rule 2 may occur as a pair generated
by rule 1 and vice versa. However, the existence of gaps in the Unicode table
means that this problem does not occur.

Observation 4.4. None of the pairs of bytes produced by rule 2 in Fact 4.7 will
ever match a pair of bytes produced by the first rule as there are no two-byte
code points that start with the bit sequences 110110 or 110111. It is therefore
always possible to determine whether a given pair of consecutive bytes in an
UTF-16 encoded text corresponds directly to a code point (rule 1), or is the
first or second pair of a four byte encoding.

The UTF-16 encoding has the advantage that all two-byte code points are
encoded directly by their code points. Since the characters that require more



4.3. REPRESENTATION OF LETTERS AND OTHER CHARACTERS 63

than two-byte code points are very rare, this means that virtually all characters
are encoded directly in two bytes.

UTF-16 has one technical complication. Different computer architectures
code pairs of bytes in different ways: Some will insist on sending the eight most
significant bits first, some will send the eight least significant bits first; this is
usually referred to as little endian and big endian. To account for this there are
in fact three different UTF-16 encoding schemes, UTF-16, UTF-16BE and UTF-
16LE. UTF-16BE uses strict big endian encoding while UTF-16LE uses strict lit-
tle endian encoding. UTF-16 does not use a specific endian convention. Instead
any file encoded with UTF-16 should indicate the endian by having as its first
two bytes what is called a Byte Order Mark (BOM). This should be the hexadec-
imal sequence feff16 for big-endian and fffe16 for little-endian. This character,
which has code point feff, is chosen because it should never legitimately appear
at the beginning of a text.

4.3.6 UTF-32

UTF-32 encode Unicode characters by encoding the code point directly in four
bytes or 32 bits. In other words it is a fixed length encoding. The disadvantage is
that this encoding is rather extravagant since many frequently occurring char-
acters in Western languages can be encoded with only one byte, and almost all
characters can be encoded with two bytes. For this reason UTF-32 is little used
in practice.

4.3.7 Text in Java

Characters in Java are represented with the char data type. The representation
is based on the UTF-16 encoding of Unicode so all the Unicode characters are
available. The fact that some characters require three bytes to represent their
code points is a complication, but this is handled nicely in the libraries for pro-
cessing text.

4.3.8 Text in Python

Python also has support for Unicode. You can use Unicode text in your source
file by including a line which indicates the specific encoding, for example as in

# coding=utf-8/

You can then use Unicode in your string constants which in this case will be en-
coded in UTF-8. All the standard string functions also work for Unicode strings,
but note that the default encoding is ASCII.



64 CHAPTER 4. COMPUTERS, NUMBERS AND TEXT

4.4 Representation of general information

So far we have seen how numbers and characters can be represented in terms
of bits and bytes. This is the basis for representing all kinds of different informa-
tion. Let us start with general text files.

4.4.1 Text

A text is simply a sequence of characters. We know that a character is repre-
sented by an integer code so a text file is a sequence of integer codes. If we use
the ISO Latin 1 encoding, a file with the text

Knut
Mørken

is represented by the hexadecimal codes (recall that each code is a byte)

4b 6e 75 74 0a 4d f8 72 6b 65 6e

The first four bytes you will find in Table 4.2 as the codes for ’K’, ’n’, ’u’ and ’t’
(remember that the codes of latin characters in ISO Latin 1 are the same as in
ASCII). The fifth character has decimal code 10 which you find in Table 4.3. This
is the Line feed character which causes a new line on my computer. The re-
maining codes can all be found in Table 4.2 except for the seventh which has
decimal code 248. This is located in the upper 128 ISO Latin 1 characters and
corresponds to the Norwegian letter ’ø’ as can be seen in Table 4.4.

If instead the text is represented in UTF-8, we obtain the bytes

4b 6e 75 74 0a 4d c3 b8 72 6b 65 6e

We see that these are the same as for ISO Latin 1 except that ’f8’ has become two
bytes ’c3 b8’ which is the two-byte code for ’ø’ in UTF-8.

In UTF-16 the text is represented by the codes

ff fe 4b 00 6e 00 75 00 74 00 0a 00 4d 00 f8 00 72 00 6b 00 65 00 6e 00

All the characters can be represented by two bytes and the leading byte is ’00’
since we only have ISO Latin 1 characters. It may seem a bit strange that the
zero byte comes after the nonzero byte, but this is because the computer uses
little endian representation. A program reading this file would detect this from
the first two bytes which is the byte-order mark referred to above.



4.4. REPRESENTATION OF GENERAL INFORMATION 65

4.4.2 Numbers

A number can be stored in a file by finding its binary representation and storing
the bits in the appropriate number of bytes. The number 13 = 11012 for exam-
ple could be stored as a 32 bit integer by storing the the bytes 00 00 00 0d (in
hexadecimal).4 But here there is a possibly confusing point: Why can we not
just store the number as a text? This is certainly possible and if we use UTF-8
we can store 13 as the two bytes 31 33 (in hexadecimal). This even takes up less
space than the four bytes required by the true integer format. For bigger num-
bers however the situation is the opposite: Even the largest 32-bit integer can
be represented by four bytes if we use integer format, but since it is a ten-digit
number we would need ten bytes to store it as a text.

In general it is advisable to store numbers in the appropriate number format
(integer or floating point) when we have a large collection of them. This will
usually require less space and we will not need to first read a text and then extract
the numbers from the text. The advantage of storing numbers as text is that the
file can then be viewed in a normal text editor which for example may be useful
for debugging.

4.4.3 General information

Bigger computer programs process information that consists of a mixture of
numbers and text. Consider for example digital music. For a given song we may
like to store its name, artist, lyrics and all the sound data. The first three items of
information is conveniently stored as text. As we shall see later, the sound data
is just a very long list of numbers. If the music is in CD-format, the numbers are
16-bit integers, i.e., integers in the interval[−215,215 −1] or [−32768,32767], and
there are 5.3 million numbers for each minute of music. These numbers can be
saved in text format which would require five bytes for most numbers. We can
reduce the storage requirement considerably by saving them in standard binary
integer format. This format only requires two bytes for each number so the size
of the file would be reduced by a factor of almost 2.5.

4.4.4 Computer programs

Since computers only can interpret sequences of 0s and 1s, computer programs
must also be represented in this form at the lowest level. All computers come
with an assembly or machine language which is the level just above the 0s and
1s. Programs written in higher level languages must be translated (compiled)
into assembly language before they can be executed. To do regular program-
ming in assembly language is rather tedious and prone to error as many details

4For technical reasons integers are in fact usually stored in so-called two’s complement.



66 CHAPTER 4. COMPUTERS, NUMBERS AND TEXT

that happen behind the scenes in high level languages must be programmed in
detail. Each command in the assembly language is represented by an appropri-
ate number of bytes, usually four or eight and therefore corresponds to a specific
sequence of 0s and 1s.

4.5 A fundamental principle of computing

In this chapter we have seen that by combining bits into bytes, both numbers,
text and more general information can be represented, manipulated and stored
in a computer. It is important to remember though, that however complex the
information, if it is to be processed by computer it must be encoded into a se-
quence of 0s and 1s. When we want the computer to do anything with the in-
formation it must interpret and assemble the bits in the correct way before it
can perform the desired operation. Suppose for example that as part of a pro-
gramming project you need to temporary store some information in a file, for
example a sound file in the simple format outlined in Subsection 4.4.3. When
you read the information back from the file it is your responsibility to interpret
the information in the correct way. In the sound example this means that you
must be able to extract the name of the song, the artist, the lyrics and the sound
data from the file. One way to do this is to use a special character, that is not
otherwise in use, to indicate the end of one field and the beginning of the next.
In the first three fields we can allow text of any length while in the last field only
16 bit integers are allowed. This is a simple example of a file format, i.e., a pre-
cise description of how information is stored. If your program is going to read
information from a file, you need to know the file format to read the information
correctly.

In many situations well established conventions will tell you the file format.
One type of convention is that filenames often end with a dot and three or more
characters that identify the file format. Some examples are .doc (Microsoft
Word), .html (web-documents), .mp3(mp3-music files), .jpg (photos in jpeg-
format). If you are going to write a program that will process one of these file
formats you have at least two options: You can find a description of the format
and write your own functions that read the information from the file, or you can
find a software library written by somebody else that has functions for reading
the appropriate file format and converting the information to text and numbers
that is returned to your program.

Program code is a different type of file format. A programming language
has a precise syntax, and specialised programs called compilers or interpreters
translate programs written according to this syntax into low level commands
that the computer can execute.



4.5. A FUNDAMENTAL PRINCIPLE OF COMPUTING 67

This discussion of file formats illustrates a fundamental principle in com-
puting: A computer must always be told exactly what to do, or equivalently, must
know how to interpret the 0s and 1s it encounters.

Fact 4.8 (A principle of computing). For a computer to function properly it
must always be known how it should interpret the 0s and 1s it encounters.

This principle is absolute, but there are of course many ways to instruct a
computer how information should be interpreted. A lot of the interpretation is
programmed into the computer via the operating system, programs that are in-
stalled on the computer contain code for encoding and decoding information
specific to each program, sometimes the user has to tell a given program how
to interpret information (for example tell a program the format of a file), some-
times a program can determine the format by looking for special bit sequences
(like the endian convention used in a UTF-16 encoded file). And if you write
programs yourself you must of course make sure that your program can process
the information from a user in an adequate way.

Exercises

4.1 Determine the UTF-8 encodings of the Unicode characters with the fol-
lowing code points:

a) 5a16.

b) f516.

c) 3f816.

d) 8f3716.

4.2 Determine the UTF-16 encodings of the Unicode characters in exercise 1.

4.3 In this exercise you may need to use the Unicode table which can be found
at www.unicode.org/charts/.

a) Suppose you save the characters ’æ’, ’ø’ and ’å’ in a file with UTF-8
encoding. How will these characters be displayed if you open the file
in an editor using the ISO Latin 1 encoding?

b) What will you see if you do the opposite?

c) Repeat (a) and (b), but use UTF-16 instead of UTF-8.

d) Repeat (a) and (b), but use UTF-16 instead of ISO Latin 1.

www.unicode.org/charts/


68 CHAPTER 4. COMPUTERS, NUMBERS AND TEXT

Dec Hex Char Dec Hex Char Dec Hex Char
32 20 SP 64 40 @ 96 60 ‘
33 21 ! 65 41 A 97 61 a
34 22 " 66 42 B 98 62 b
35 23 # 67 43 C 99 63 c
36 24 $ 68 44 D 100 64 d
37 25 % 69 45 E 101 65 e
38 26 & 70 46 F 102 66 f
39 27 ’ 71 47 G 103 67 g
40 28 ( 72 48 H 104 68 h
41 29 ) 73 49 I 105 69 i
42 2a * 74 4a J 106 6a j
43 2b + 75 4b K 107 6b k
44 2c , 76 4c L 108 6c l
45 2d - 77 4d M 109 6d m
46 2e . 78 4e N 110 6e n
47 2f / 79 4f O 111 6f o
48 30 0 80 50 P 112 70 p
49 31 1 81 51 Q 113 71 q
50 32 2 82 52 R 114 72 r
51 33 3 83 53 S 115 73 s
52 34 4 84 54 T 116 74 t
53 35 5 85 55 U 117 75 u
54 36 6 86 56 V 118 76 v
55 37 7 87 57 W 119 77 w
56 38 8 88 58 X 120 78 x
57 39 9 89 59 Y 121 79 y
58 3a : 90 5a Z 122 7a z
59 3b ; 91 5b [ 123 7b {
60 3c < 92 5c \ 124 7c |
61 3d = 93 5d ] 125 7d }
62 3e > 94 5e ˆ 126 7e ∼
63 3f ? 95 5f _ 127 7f BCD

Table 4.2. The ASCII characters with codes 32–127. The character with decimal code 32 is white space, and
the one with code 127 is ’delete’.



4.5. A FUNDAMENTAL PRINCIPLE OF COMPUTING 69

Dec Oct Abbr CS Description
0 00 NUL ˆ @ Null character
1 01 SOH ˆ A Start of Header
2 02 STX ˆ B Start of Text
3 03 ETX ˆ C End of Text
4 04 EOT ˆ D End of Transmission
5 05 ENQ ˆ E Enquiry
6 06 ACK ˆ F Acknowledgment
7 07 BEL ˆ G Bell
8 08 BS ˆ H Backspace
9 09 HT ˆ I Horizontal Tab

10 0a LF ˆ J Line feed
11 0b VT ˆ K Vertical Tab
12 0c FF ˆ L Form feed
13 0d CR ˆ M Carriage return
14 0e SO ˆ N Shift Out
15 0f SI ˆ O Shift In
16 10 DLE ˆ P Data Link Escape
17 11 DC1 ˆ Q XON
18 12 DC2 ˆ R Device Control 2
19 13 DC3 ˆ S XOFF
20 14 DC4 ˆ T Device Control 4
21 15 NAK ˆ U Negative Acknowledgement
22 16 SYN ˆ V Synchronous Idle
23 17 ETB ˆ W End of Trans. Block
24 18 CAN ˆ X Cancel
25 19 EM ˆ Y End of Medium
26 1a SUB ˆ Z Substitute
27 1b ESC ˆ [ Escape
28 1c FS ˆ \ File Separator
29 1d GS ˆ ] Group Separator
30 1e RS ˆ ˆ Record Separator
31 1f US ˆ _ Unit Separator

Table 4.3. The first 32 characters of the ASCII table. The first two columns show the code number in decimal
and octal, the third column gives a standard abbreviation for the character and the fourth column gives a
printable representation of the character. The last column gives a more verbose description of the character.



70 CHAPTER 4. COMPUTERS, NUMBERS AND TEXT

Dec Oct Char Dec Oct Char
192 c0 À 224 e0 à
193 c1 Á 225 e1 á
194 c2 Â 226 e2 â
195 c3 Ã 227 e3 ã
196 c4 Ä 228 e4 ä
197 c5 Å 229 e5 å
198 c6 Æ 230 e6 æ
199 c7 Ç 231 e7 ç
200 c8 È 232 e8 è
201 c9 É 233 e9 é
202 ca Ê 234 ea ê
203 cb Ë 235 eb ë
204 cc Ì 236 ec ì
205 cd Í 237 ed í
206 ce Î 238 ee î
207 cf Ï 239 ef ï
208 d0 Ð 240 f0 ð
209 d1 Ñ 241 f1 ñ
210 d2 Ò 242 f2 ò
211 d3 Ó 243 f3 ó
212 d4 Ô 244 f4 ô
213 d5 Õ 245 f5 õ
214 d6 Ö 246 f6 ö
215 d7 × 247 f7 ÷
216 d8 Ø 248 f8 ø
217 d9 Ù 249 f9 ù
218 da Ú 250 fa ú
219 db Û 251 fb û
220 dc Ü 252 fc ü
221 dd Ý 253 fd ý
222 de Þ 254 fe þ
223 df ß 255 ff ÿ

Table 4.4. The last 64 characters of the ISO Latin1 character set.


	Computers, Numbers and Text
	Representation of Integers
	Bits, bytes and numbers
	Fixed size integers
	Integers in Java
	Integers in Python
	Division by zero

	Computers and real numbers
	Representation of real numbers
	Floating point numbers in Java
	Floating point numbers in Python

	Representation of letters and other characters
	The ASCII Table
	ISO latin character sets
	Unicode
	UTF-8
	UTF-16
	UTF-32
	Text in Java
	Text in Python

	Representation of general information
	Text
	Numbers
	General information
	Computer programs

	A fundamental principle of computing


