Answers to some exercises

Chapter 1

Section 1.5

1
a)

$$
\begin{aligned}
& s 1:=0 ; s 2:=0 \\
& \text { for } k:=1,2, \ldots, n \\
& \quad \text { if } a_{k}>0 \\
& \quad s 1:=s 1+a_{k} ; \\
& \quad \text { else } \quad s 2:=s 2+a_{k} ; \\
& s 2:=-s 2 ;
\end{aligned}
$$

Note that we could also replace the statement in the else-branch by $s 2:=s 2-a_{k}$ and leave out the last statement.
b) We introduce two new variables pos and neg which count the number of positive and negative elements, respectively.

```
\(s 1:=0 ; p o s:=0 ;\)
\(s 2:=0 ;\) neg \(:=0\)
for \(k:=1,2, \ldots, n\)
        if \(a_{k}>0\)
            \(s 1:=s 1+a_{k} ;\)
            pos:=pos+1
        else
            \(s 2:=s 2+a_{k} ;\)
            \(n e g:=n e g+1\);
\(s 2:=-s 2 ;\)
```

2 We represent the three-digit numbers by their decimal numerals which are integers in the range $0-9$. The numerals of the number $x=431$ for example, is represented by $x_{1}=1$, $x_{2}=3$ and $x_{3}=4$. Adding two arbitrary such numbers x and y produces a sum z which can be computed by the algorithm
if $x_{1}+y_{1}<10$
$z_{1}:=x_{1}+y_{1} ;$
else
$x_{2}:=x_{2}+1 ;$

$$
\begin{aligned}
& z_{1}:=x_{1}+y_{1}-10 ; \\
& \text { if } x_{2}+y_{2}<10 \\
& z_{2}:=x_{2}+y_{2} ; \\
& \text { else } \\
& x_{3}::=x_{3}+1 ; \\
& z_{2}:=x_{2}+y_{2}-10 ; \\
& \text { if } x_{3}+y_{3}<10 \\
& z_{3}::=x_{3}+y_{3} ; \\
& \text { else } \\
& z_{4}::=1 ; \\
& z_{3}:=x_{3}+y_{3}-10 ;
\end{aligned}
$$

3 We use the same representation as in the solution for exercise 2 Multiplication of two three-digit numbers x and y can then be performed by the formulas


```
product3:= 100* 和*y1+1000*\mp@subsup{x}{3}{}*\mp@subsup{y}{2}{}+10000*\mp@subsup{x}{3}{}*\mp@subsup{y}{3}{};
product:= product1+ product2+ product3;
```


Chapter 2

Section 2.3
1 The truth table is

p	q	r	$p \oplus q$	$(p \oplus q) \oplus r$	$q \oplus r$	$p \oplus(q \oplus r)$
F	F	F	F	F	F	F
F	F	T	F	T	T	T
F	T	F	T	T	T	T
F	T	T	T	F	F	F
T	F	F	T	T	F	T
T	F	T	T	F	T	F
T	T	F	F	F	T	F
T	T	T	F	T	F	T

2 Solution by truth table for $\neg(p \wedge q)=\neg(p \vee q)$

p	q	$p \wedge q$	$\neg p$	$\neg q$	$\neg(p \wedge q)$	$(\neg p) \vee(\neg q)$
F	F	F	T	T	T	T
F	T	F	T	F	T	T
T	F	F	F	T	T	T
T	T	T	F	F	F	F

Solution by truth table for $\neg(p \vee q)=\neg(p \wedge q)$

p	q	$p \vee q$	$\neg p$	$\neg q$	$\neg(p \vee q)$	$(\neg p) \wedge(\neg q)$
F	F	F	T	T	T	T
F	T	T	T	F	F	F
T	F	T	F	T	F	F
T	T	T	F	F	F	F

3 No answer given.

4 No answer given.

Chapter 3

Section 3.2

1 a) 220
b) 32
c) 10001
d) 1022634
e) 123456
f) $7 e$

2 a) 131
b) 67
c) 252
$3 \quad$ a) 100100
b) 1000000
c) 11010111

4 a) $4 d$
b) c
c) $29 e 4$
d) 0.594
e) 0.052
f) $0 . f f 8$

5 a) 111100
b) 100000000
c) 111001010001
d) 0.000010101010
e) 0.000000000001
f) 0.111100000001

6 a) $7=10_{7}, 37=10_{37}$ and $4=10_{4}$
b) $\beta=13, \beta=100$

7 a) $400=100_{20}, 4=100_{2}$ and $278=100_{17}$
b) $\beta=5, \beta=29$

Section 3.3

1 a) 0.01
b) $0.102120102120102120 \ldots$
c) 0.01
d) $0.001111111 \ldots$
e) 0.7
f) $0.6060606 \ldots$
g) $0 . e$
h) 0.24
i) 0.343
$2 \pi_{9} \approx 3.129$
3 No answer given.
$4 c-1$
5 No answer given.
6 No answer given.

Section 3.4

$1 \quad$ a) 4_{7}
b) 13_{6}
c) 10001_{2}
d) 1100_{3}
e) 103_{5}
f) $4_{5}=4_{7}$

2 a) 3_{8}
b) 11_{2}
c) 174_{8}
d) 112_{3}
e) 24_{5}
f) -5_{7}

3 a) 1100_{2}
b) 10010_{2}
c) 1210_{3}
d) 141_{5}
e) 13620_{8}
f) 10220_{3}
g) 1111_{2}

Chapter 4

Section 4.2

1 Largest integer: $7 f f f f f f f_{16}$.
Smallest integer: 80000000_{16}.
2 See Internet
3 Answers to some of the questions:
a) 0.4752735×10^{7}
b) $0.602214179 \times 10^{24}$
c) 0.8617343×10^{-4}.
$40.10011100111101011010 \ldots \times 2^{4}$

Section 4.3

1 a) $01011010_{2}=5 a_{16}$
b) $1100001110110101_{2}=c 3 b 5_{16}$
c) $1100111110111000_{2}=c f b 8_{16}$
d) $111010001011110010110111_{2}=e 8 b c b 7_{16}$

2 a) $0000000001011010_{2}=005 a_{16}$
b) $0000000011110101_{2}=00 f 5_{16}$
c) $0000001111111000_{2}=03 f 8_{16}$
d) $1000111100110111_{2}=8 f 37_{16}$

3 a) $\ddot{i}_{i}^{1 / 2}: \tilde{A}_{i} \ddot{i}^{1 / 2}, \ddot{i}_{i}^{1 / 2}: \tilde{A}_{3} \ddot{i}_{i}^{1 / 2}: \tilde{A} ¥$
b) Nothing or error message; these codes are not valid UTF-8 codes
 for LE) by a trailing null character, this has no visible impact on the displayed text. The opposite again yields illegitimate UTF-16 encodings (too short).
d) The conversion from UTF-8 to UTF-16 yields the following Hangul symbols:

The conversion from UTF-16 to UTF-8 yields illegitimate codes, though there will be an allowed null character preceding (or following for LE) each prohibited letter.

4 No answer given.
5 No answer given.
6 No answer given.

7 No answer given.
8 No answer given.
9 No answer given.
10 No answer given.

Chapter 5

Section 5.2

1 No answer given.

2 No answer given.

3 No answer given.
$4 \quad$ a) 0.1647×10^{2}
b) 0.1228×10^{2}
c) 0.4100×10^{-1}
d) 0.6000×10^{-1}
e) -0.5000×10^{-2}

5 a) Normalised number in base β : A nonzero number a is written as

$$
a=\alpha \times \beta^{n}
$$

where $\beta^{-1} \leq|\alpha|<1$.
b) In any numeral system we have three cases to consider when defining rounding rules. Note also that it is sufficient to define rounding for two-digit fractional numbers.
In the octal numeral system the three rules are:

1. A number $\left(0 . d_{1} d_{2}\right)_{8}$ is rounded to $0 . d_{1}$ if the digit d_{2} is $0,1,2$ or 3 .
2. If $d_{1}<7$ and d_{2} is $4,5,6$, or 7 , then $\left(0 . d_{1} d_{2}\right)_{8}$ is rounded to $0 . \tilde{d}_{1}$ where $\tilde{d}_{1}=$ $d_{1}+1$.
3. A number $\left(0.7 d_{2}\right)_{8}$ is rounded to 1.0 if d_{2} is $4,5,6$, or 7 .
c) No answer given.

6 One possible program:
$n:=1$;
while $1.0+2^{-n}>1.0$
$n:=n+1 ;$
print n;

7 No answer given.

8 No answer given.

Section 5.3

1 Relative errors:
a) $r=0.0006$
b) $r \approx 0.0183$
c) $r \approx 2.7 \times 10^{-4}$
d) $r \approx 0.94$

2 No answer given.
3 No answer given.
4 No answer given.

Section 5.4

1 a) No answer given.
b) The fomula $\ln x^{2}-\ln \left(x^{2}+x\right)$ is problematic for large values of x since then the two logarithms will become almost equal and we get cancellation. Using properties of the logarithm, the expression can be rewritten as

$$
\ln x^{2}-\ln \left(x^{2}+x\right)=\ln \left(\frac{x^{2}}{x^{2}+x}\right)=\ln \left(\frac{x}{x+1}\right)
$$

which will not cause problems with cancellation.
c) No answer given.

2 No answers given
3 No answer given.
4 No answer given.
5 No answer given.

Chapter 6

Section 6.1

1 In simpler English the riddle says: Diophantus' youth lasted $1 / 6$ of his life. He had the first beard in the next $1 / 12$ of his life. At the end of the following 1/7 of his life Diophantus got married. Five years laater his son was born. His son lived exactly $1 / 2$ of Diophantus' life. Diophantus died 4 years after the death of his son. Solution: If d and s are the ages of Diophantus and his son when they died, then the epitaph corresponds to the two equations

$$
\begin{aligned}
d & =(1 / 6+1 / 12+1 / 7) d+5+s+4, \\
s & =1 / 2 d .
\end{aligned}
$$

If we solve these we obtain $s=42$ years and $d=84$ years.

Section 6.2

l a) $x_{2}=2, x_{3}=5, x_{4}=13, x_{5}=34$
b) $x_{2}=17, x_{3}=32, x_{4}=83, x_{5}=179$
c) $x_{2}=4, x_{3}=16, x_{4}=128, x_{5}=4096$
d) No answer given.

2 a) Linear.
b) Nonlinear.
c) Nonlinear.
d) Linear.

Section 6.4

1 a) $x_{n}=3^{n} \cdot \frac{5}{3}$
b) No answer given.
c) $x_{n}=(1-2 n)(-1)^{n}$
d) $x_{n}=\frac{3}{4} \cdot 3^{n}+\frac{5}{4}(8-1)^{n}$

2 No answer given.
3 No answers given.
4 No answers given.

Section 6.5

$1 \quad$ a) $x_{n}=3-3^{-n}$.
b) $x_{n}=1 / 7$.
c) $x_{n}=(2 / 3)^{n}$.

2 No answers given.
3 No answers given.
4 a) Solution determined by the initial conditions: $x_{n}=15^{-n}$.
b) No answer given.
c) $n \approx 24$.
d) No answer given.

5 a) Solution determined by the initial conditions: $x_{n}=2^{-n}$.
b) No answer given.
c) No answer given.

Figure 16. The Huffman tree for the text 'there are many people in the world'.

Chapter 7

Section 7.1

1 No answers given.

Section 7.2

1 Huffman coding of the text "There are many peopole in the world". (In this soultion we will treat the capital t in "There" as if it were not capitalized.)
a)

$$
\begin{aligned}
f(t) & =2, & f(a) & =2, & f(o) & =2, \\
f(h) & =2, & f(m) & =1, & f(l) & =2, \\
f(e) & =6, & f(n) & =2, & f(i) & =1, \\
f(r) & =3, & f(y) & =1, & f(w) & =1, \\
f(\sqcup) & =6, & f(p) & =2, & f(d) & =1 .
\end{aligned}
$$

b) An example of a Huffman tree for this text can be seen in figure 16
c) The Huffman coding for the text "there are many people in the world" is then:

```
0 1 0 0 0 1 0 1 1 1 0 0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 0 ~
                    0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 ~
                    10101100010111011100001000101 11 000
                                    0 0 1 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 0 1
```

The entropy is:

$$
\begin{equation*}
H=3.6325 \tag{.6}
\end{equation*}
$$

which means an optimal coding of the text would use 3.6325 bits per symbol. There are 34 symbols so the minimum coding would consist of 15 bytes and 4 bits. The Huffman coding above gave 15 bytes and 5 bits of information, so this coding is very good.

2 a) Use ternary trees instead of binary ones. (Each tree has either zero or three subtrees/children).
b) Use n -nary trees. (Each tree has either zero or n subtrees/children)

3 a)

$$
\begin{aligned}
& f(A)=4, \\
& f(B)=2, \\
& f(C)=2,
\end{aligned}
$$

One of the four possible Huffman codings are:

$$
010011010110
$$

The entropy is

$$
\begin{equation*}
H=1.5 \tag{.7}
\end{equation*}
$$

This gives an optimal coding with 12 bits for 8 symbols, which is just what the Huffman coding gave.
b) Dividing all the frequensies by 2 and interchanging A with C in the four trees in a) gives the four trees for this problem. The four sets of codes are the same (with A interchanged by C) and so is the entropy so the situation is still optimal.

4 Frequensies used are all 1.

Section 7.3

$1 \log _{2} x=\ln x / \ln 2$.
2 No answers given.
3 No answers given.

Section 7.4

1 a)

$$
\begin{array}{ll}
f(A)=9, & p(A)=0.1 \\
f(B)=1, & p(B)=0.9
\end{array}
$$

b) 5 bits
c) 01110

2
a) $H=2$
b) 2 bits per symbol
c) $2 \mathrm{~m}+1$ bits $\frac{2 m+1}{m} \approx 2$ bits per symbol
d)

001011010010
e)

0010110100101

3

BCBBCBBBCB

4

0101111000

5

$$
\begin{equation*}
f(x)=c+(y-a) \frac{d-c}{b-a} \tag{.8}
\end{equation*}
$$

Section 7.6

1 No answer given.

Chapter 8

Chapter 9

Section 9.1

1 No answer given.
2 a) $T_{2}(x ; 1)=1-3 x+3 x^{2}$.
b) $T_{2}(x ; 0)=12 x^{2}+3 x+1$.
c) $T_{2}(x ; 0)=1+x \ln 2+(\ln 2)^{2} x^{2} / 2$.

3 No answer given.
4 No answer given.

Section 9.2

1
a)

$$
p_{3}(x)=-\frac{(x-1)(x-3)(x-4)}{12}-\frac{x(x-1)(x-4)}{3}+\frac{x(x-1)(x-3)}{12} .
$$

b) No answer given.
c)

$$
p_{3}(x)=1-x+\frac{2}{3} x(x-1)-\frac{1}{3} x(x-1)(x-3) .
$$

Section 9.3

1 a) $f[0,1,2,3]=0$.
b) No answer given.

2 a) The Newton form is

$$
p_{2}(x)=2-x .
$$

b) No answer given.

3 a) Linear interpolant p_{1} :

$$
p_{1}(x)=y_{1}+\left(y_{2}-y_{1}\right)(x-1) .
$$

Error at x :

$$
f[1,2, x](x-1)(x-2)=\frac{f^{\prime \prime}(\xi)}{2}(x-1)(x-2)
$$

where ξ is a number in the smallest interval (a, b) that contains all of 1,2 , and x.
Error at $x=3 / 2$:

$$
\frac{f^{\prime \prime}\left(\xi_{1}\right)}{8}
$$

where ξ is a number in the interval $(1,2)$.
b) Cubic interpolant:

$$
p_{3}(x)=y_{0}+\left(y_{1}-y_{0}\right) x+\frac{y_{2}-2 y_{1}+y_{0}}{2} x(x-1)+\frac{y_{3}-3 y_{2}+3 y_{1}-y_{0}}{6} x(x-1)(x-2) .
$$

Error:

$$
f[0,1,2,3, x] x(x-1)(x-2)(x-3)=\frac{f^{(i v)}(\xi)}{4!} x(x-1)(x-2)(x-3)
$$

where ξ is now a number in the smallest open interval that contains all of $0,1,2,3$, and x. With $x=3 / 2$ this becomes

$$
\frac{3}{128} f^{(i v)}\left(\xi_{3}\right)
$$

where ξ_{3} is a number in the interval $(0,3)$.

Section 9.4

1 No answer given.

Chapter 10

Section 10.2

1 a) Approximation after 10 steps: 0.73876953125 .
b) To get 10 correct digits it is common to demand that the relative error is smaller than 5×10^{-11}, even though this does not always ensure that we have 10 correct digits. A challenge with the relative error is that it requires us to know the exact zero. In our case we have a very good approximation that we could use, but as we commented when we discussed properties of the relative error, it is sufficient to use a rough estimate, like 0.7 in this case. The required inequality is therefore

$$
\frac{1}{2^{N_{0.7}}} \leq 5 \times 10^{-11} .
$$

This inequality can be easily solved and leads to $N \geq 35$.
c) Actual error: 1.3×10^{-11}
d) No answer given.

2 No answers given.
3 No answers given.
4 No answers given.

Section 10.3

1 a) $f(x)=x^{2}-3$. One iteration gives the approximation 1.6666666666666667 which has two correct digits ($\sqrt{3} \approx 1.7320508075688772935$ with 20 correct digits). After 6 iterations we obtain the approximation 1.732050807568877 .
b) $f(x)=x^{12}-2$.
c) $f(x)=\ln x-1$.

2 No answer given.
3 No answers given.

Section 10.4

1 If you do the computations with 64-bit floating-point numbers, you have full machine accuracy after just 4 iterations. If you do 7 iterations you actually have about 164 correct digits.

2 a) Midpoint after 10 iterations: 3.1416015625.
b) Approximation after 4 iterations: 3.14159265358979 .
c) Approximation after 4 iterations: 3.14159265358979 .
d) No answer given.

3 No answer given.
4 a) No answer given.
b) $e_{n+1}=e_{n-1} e_{n} /\left(x_{n-1}+x_{n}\right)$, where $e_{n}=\sqrt{2}-x_{n}$.

5 a) No answer given
b) After 5 iterations we have the approximation 0.142857142857143 in which all the digits are correct (the fourth approximation has approximate error 6×10^{-10}).

6 a) No answer given
b) No answer given
c) An example where $x_{n}>c$ for $n>0$ is $f(x)=x^{2}-2$ with $c=\sqrt{2}$ (choose for example $x_{0}=1$). If we use the same equation, but choose $x_{0}=-1$, we converge to $-\sqrt{2}$ and have $x_{n}<c$ for large n (in fact $n>0$).
An example where the iterations jump around is in computing an approximation to a zero of $f(x)=\sin x$, for example with $x_{0}=4$ (convergence to $c=\pi$).

Chapter 11

Section 11.1

1 a) No answer given.
b) $h^{*} \approx 8.4 \times 10^{-9}$.

2 No answers given.

Section 11.2

$1 f^{\prime}(a) \approx p_{2}^{\prime}(a)=-(f(a+2 h)-4 f(a+h)+3 f(a)) /(2 h)$.

Section 11.3

1 a) No answer given.
b) $h^{*} \approx 5.9 \times 10^{-6}$.

2 a) No answer given.
b) With 6 digits:
$(f(a+h)-f(a)) / h=0.455902, \quad$ relative error: 0.0440981 .
$(f(a)-f(a-h)) / h=0.542432, \quad$ relative error: 0.0424323 . $(f(a+h)-f(a-h)) /(2 h)=0.499167, \quad$ relative error: 0.000832917 .
c) No answer given.
d) No answer given.
e) No answer given.
f) No answer given.

3 No answer given.
4 a) No answer given.
b) No answer given.
c) With 6 digits:
$(f(a+h)-f(a)) / h=0.975, \quad$ relative error: 0.025 .
$(f(a)-f(a-h)) / h=1.025, \quad$ relative error: 0.025 . $(f(a+h)-f(a-h)) /(2 h)=1, \quad$ relative error: 8.88178×10^{-16}.
$5 \quad$ a) Optimal $h: 2.9 \times 10^{-6}$.
b) Optimal h : 3.3×10^{-6}

Section 11.4

1 a) No answer given.
b) Opitmal h : 9.9×10^{-4}.

2 No answer given.

Section 11.5

1 a) No answer given.
b) Optimal $h: 2.24 \times 10^{-4}$.

2 No answer given.
3 a) $c_{1}=-1 /(2 h), c_{2}=1 /(2 h)$.
b) No answer given.
c) $c_{1}=-1 / h^{2}, c_{2}=2 / h^{2}, c_{3}=-1 / h^{2}$.
d) No answer given.

Chapter 12

Section 12.1

1
a) $\underline{I} \approx 1.63378, \bar{I} \approx 1.805628$.
b) $|I-\underline{I}| \approx 0.085, \frac{|I-I|}{|I|}=0.0491781$. $|I-\bar{I}| \approx 0.087, \frac{|I-\bar{I}|}{|I|}=0.051$.
c) No answer given.

Section 12.2

1 Approximation: 0.530624 (with 6 digits).
2 a) Approximation with 10 subintervals: 1.71757 (with 6 digits).
b) $h \leq 2.97 \times 10^{-5}$.

3 a) Approximation with 10 subintervals: 5.36648 (with 6 digits).
b) $h \leq 4.89 \times 10^{-5}$.

4 No answer given.

Section 12.3

1 Approximation: 0.519725 (with 6 digits).
2 a) Approximation with 10 subintervals: 1.71971 (with 6 digits).
b) $h \leq 1.48 \times 10^{-5}$.

3 No answer given.
4 No answer given.
5 No answer given.

Section 12.4

1 Approximation: 0.527217 (with 6 digits).
2 a) 115471 evaluations.
b) 57736 evaluations.
c) 192 evaluations.

3 a) Approximation with 10 subintervals: 1.718282782 (with 10 digits).
b) $h \leq 1.8 \times 10^{-2}$.

4 No answers given.
$5 w_{1}=w_{3}=(b-a) / 6, w_{2}=2(b-a) / 3$.

Chapter 13

Chapter 14

Section 14.1

1 a) Linear.
b) Nonlinear.
c) Nonlinear.
d) Nonlinear.
e) Linear.

Section 14.2

1 The general solution is $x(t)=1+C e^{\cos t}$.
2 a) $x(t)=1$ will cause problems.
b) The differential equation is not defined for $t=1$.
c) The equation is not defined when $x(t)$ is negative.
d) The equation does not hold if $x^{\prime}(t)=0$ or $x(t)=0$ for some t.
e) The equation is not defined for $|x(t)|>1$.
f) The equation is not defined for $|x(t)|>1$.

Section 14.3

1 a) $x(0.3) \approx 1.362$.
b) $x(0.3) \approx 0.297517$.
c) $x(0.3) \approx 1.01495$.
d) $x(1.3) \approx 1.27488$.
e) $x(0.3) \approx 0.297489$.

2 No answer given.
3 No answer given.
4 No answer given.

Section 14.4

1 If the step length is h, we obtain the approximation

$$
x(h) \approx x(0)+h f(t, x)=1+h \sin h .
$$

The error is given by

$$
R_{1}(h)=\frac{h^{2}}{2} x^{\prime \prime}(\xi)
$$

where $\xi \in(0, h)$. Since $x^{\prime}(t)=\sin x(t)$, we have

$$
x^{\prime \prime}(t)=x^{\prime}(t) \cos x(t)=\sin x(t) \cos x(t)=\frac{\sin (2 x(t))}{2}
$$

We therefore have $\left|x^{\prime \prime}(t)\right| \leq 1 / 2$, so

$$
\left|R_{1}(h)\right| \leq \frac{h^{2}}{4} .
$$

Section 14.5

1 a) $x^{\prime \prime}(0)=1, x^{\prime \prime \prime}(0)=1$.
b) $x^{\prime \prime}(0)=1, x^{\prime \prime \prime}(0)=0$.
c) $x^{\prime \prime}(1)=0, x^{\prime \prime \prime}(0)=0$.
d) $x^{\prime \prime}(1)=0, x^{\prime \prime \prime}(1)=0$.

Section 14.6

1 a) Euler: $x(1) \approx 5.01563$.
Quadratic Taylor: $x(t) \approx 5.05469$.
Quartic Taylor: $x(t) \approx 5.14583$.
b) Euler: $x(1) \approx 2.5$.

Quadratic Taylor: $x(t) \approx 3.28125$.
Quartic Taylor: $x(t) \approx 3.43469$.
c) Euler: $x(1) \approx 12.6366$.

Quadratic Taylor: $x(t) \approx 13.7823$.
Quartic Taylor: $x(t) \approx 13.7102$.
2
a) Euler: $x(0.5) \approx 1.5$.

Since we only take one step, Euler's method is just the approximation

$$
x(h) \approx x(0)+h x^{\prime}(0)
$$

where $h=0.5, x(0)=1$, and $x^{\prime}(t)=e^{-t^{2}}$. The error is therefore given by the remainder in Taylor's formula

$$
R_{1}(h)=\frac{h^{2}}{2} x^{\prime \prime}\left(\xi_{1}\right)
$$

where $\xi_{1} \in(0, h)$. Since the right-hand side

$$
g(t)=e^{-t^{2}}
$$

of the differential equation is independent of x, we simply have

$$
x^{\prime \prime}(t)=\frac{d}{d t}\left(x^{\prime}(t)\right)=\frac{d}{d t}(g(t))=\frac{d}{d t}\left(e^{-t^{2}}\right)=-2 t e^{-t^{2}}
$$

To bound the absolute error $\left|R_{1}(h)\right|$, we therefore need to bound the absolute value of this expression. A simple upper bound is obtained by using the estimates $|t| \leq 0.5$ and $e^{-t^{2}} \leq 1$,

$$
\left|R_{1}(0.5)\right| \leq \frac{0.5^{2}}{2} 0.5=\frac{1}{16}=0.0625 .
$$

The actual error turns out to be about 0.039.
b) Quadratic Taylor: $x(0.5) \approx 1.5$.

In this case we need to estimate $R_{2}(0.5)$, where

$$
R_{2}(h)=\frac{h^{3}}{6} x^{\prime \prime \prime}\left(\xi_{2}\right)
$$

and $\xi_{2} \in(0, h)$. We have $x^{\prime \prime \prime}(t)=g^{\prime \prime}(t)=2\left(2 t^{2}-1\right) e^{-t^{2}}$. The maximum of the first factor is 2 on the interval $[0,0.5]$ and the maximum of the second factor is 1 . We therefore have

$$
\left|R_{2}(0.5)\right| \leq 2 \frac{0.5^{3}}{6} \approx 0.042
$$

c) Cubic Taylor: $x(0.5) \approx 1.458333$.

In this case the remainder is

$$
R_{3}(h)=\frac{h^{4}}{24} x^{\prime \prime \prime \prime}\left(\xi_{3}\right),
$$

where $\xi_{3} \in(0, h)$ and $x^{\prime \prime \prime \prime}(t)=g^{\prime \prime \prime}(t)=4 t\left(3-2 t^{2}\right) e^{-t^{2}}$. The quick estimate is

$$
4 t \leq 2, \quad 3-2 t^{2} \leq 3, \quad e^{-t^{2}} \leq 1
$$

which leads to

$$
\left|R_{3}(0.5)\right| \leq \frac{0.5^{4}}{24} \times 3 \times 2=\frac{0.5^{4}}{4} \approx 0.016 .
$$

The true error is approximately 0.0029 .
We can improve the estimate slightly by finding the maximum of $g^{\prime \prime \prime}(t)$. On the interval $[0,0.5]$ this is an increasing function so its maximum is $g^{\prime \prime \prime}(0.5) \approx 3.89 \leq 4$. This leads to the slightly better estimate

$$
\left|R_{3}(0.5)\right| \leq \frac{0.5^{4}}{24} 4 \approx 0.010
$$

3 No answer given.
4 a) $x^{\prime \prime}(t)=2 t+3 x^{2} x^{\prime}-x^{\prime}$.
b) Quadratic Taylor with 1 step: $x(2) \approx 1$.

Quadratic Taylor with 2 steps: $x(2) \approx 4$.
Quadratic Taylor with 5 steps: $x(2) \approx 28651.2$.
c) Quadratic Taylor with 10 steps: $x(2) \approx 6 \times 10^{122}$.

Quadratic Taylor with 100 or 1000 steps leads to overflow.
5 a) No solution given.
b) $x^{\prime \prime \prime}(t)=2+6 x x^{\prime 2}+3 x^{2} x^{\prime \prime}-x^{\prime \prime}$.

One time step: $x(2) \approx 3.66667$.
Two time steps: $x(2) \approx 22.4696$.
c) No solution given.
d) 10 time steps: $x(2) \approx 1.5 \times 10^{938}$ (overflow with 64 bit numbers). 100 time steps: overflow. 1000 time steps: overflow.

Section 14.7

1 a) $x(1) \approx 2$.
b) $x(1) \approx 2.5$.
c) $x(1) \approx 2.5$.
d) $x(1) \approx 2.70833$.
e) $x(1) \approx 2.71735$.
f) No answer given.
g) No answer given.

2 a) Approximation at $t=2 \pi$:
Euler's method with 1 step: $x(2 \pi) \approx 11.0015$.
Euler's method with 2 steps: $x(2 \pi) \approx 4.71828$.
Euler's method with 5 steps: $x(2 \pi) \approx 0.276243$.
Euler's method with 10 steps: $x(2 \pi) \approx 2.14625$.
b) Approximation at $t=2 \pi$:

Euler's midpoint method with 1 step: $x(2 \pi) \approx 4.71828$.
Euler's midpoint method with 5 steps: $x(2 \pi) \approx 3.89923$.
c) No solution given.

3 No answer given.
4 No answer given.
5 No answer given.

Section 14.9

1 a) We set $x_{1}=y, x_{2}=y^{\prime}, x_{3}=x$, and $x_{4}=x^{\prime}$. This gives the system

$$
\begin{aligned}
x_{1}^{\prime} & =x_{2}, \\
x_{2}^{\prime} & =x_{1}^{2}-x_{3}+e^{t}, \\
x_{3}^{\prime} & =x_{4}, \\
x_{4}^{\prime} & =x_{1}-x_{3}^{2}-e^{t} .
\end{aligned}
$$

b) We set $x_{1}=x, x_{2}=x^{\prime}, x_{3}=y$, and $x_{4}=y^{\prime}$. This gives the system

$$
\begin{aligned}
x_{1}^{\prime} & =x_{2}, \\
x_{2}^{\prime} & =2 x_{3}-4 t^{2} x_{1}, \\
x_{3}^{\prime} & =x_{4}, \\
x_{4}^{\prime} & =-2 x_{1}-2 t x_{2} .
\end{aligned}
$$

c) No answer given.
d) No answer given.

2 No answer given.
3 a) With $x_{1}=x$ and $x_{2}=x^{\prime}$ we obtain

$$
\begin{aligned}
& x_{1}^{\prime}=x_{2}, \\
& x_{2}^{\prime}=\left(-3 x_{1}-t^{2} x_{2}\right) .
\end{aligned}
$$

b) With $x_{1}=x$ and $x_{2}=x^{\prime}$ we obtain

$$
\begin{aligned}
x_{1}^{\prime} & =x_{2}, \\
x_{2}^{\prime} & =\left(-k_{s} x_{1}-k_{d} x_{2}\right) / m .
\end{aligned}
$$

c) No answer given.
d) No answer given.

4 Euler with 2 steps:

$$
x(2) \approx 7, \quad x^{\prime}(2) \approx 6.53657, \quad y(2) \approx-1.33333, \quad y^{\prime}(2) \approx-8.3619 .
$$

Euler's midpoint method with 2 steps:

$$
x(2) \approx 7.06799, \quad x^{\prime}(2) \approx-1.0262, \quad y(2) \approx-8.32262, \quad y^{\prime}(2) \approx-15.2461 .
$$

5 No answer given.
6 No answer given.
7 No answer given.
8 No answer given.

