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Preface

These lecture notes form part of the syllabus for the first-semester course MAT-
INF1100 at the University of Oslo. The topics roughly cover two main areas: Nu-
merical algorithms, and what can be termed digital understanding. Together
with a thorough understanding of calculus and programming, this is knowledge
that students in the mathematical sciences should gain as early as possible in
their university career. As subjects such as physics, meteorology and statistics,
as well as many parts of mathematics, become increasingly dependent on com-
puter calculations, this training is essential.

Our aim is to train students who should not only be able o use a computer
for mathematical calculations; they should also have a basic understanding of
how the computational methods work. Such understanding is essential both in
order to judge the quality of computational results, and in order to develop new
computational methods when the need arises.

In these notes we cover the basic numerical algorithms such as interpola-
tion, numerical root finding, differentiation and integration, as well as numeri-
cal solution of ordinary differential equations. In the area of digital understand-
ing we discuss digital representation of numbers, text, sound and images. In
particular, the basics of lossless compression algorithms with Huffman coding
and arithmetic coding is included.

A basic assumption throughout the notes is that the reader either has at-
tended a basic calculus course in advance or is attending such a course while
studying this material. Basic familiarity with programming is also assumed.
However, I have tried to quote theorems and other results on which the pre-
sentation rests. Provided you have an interest and curiosity in mathematics, it
should therefore not be difficult to read most of the material with a good math-
ematics background from secondary school.

MAT-INF1100 is a central course in the project Computers in Science Edu-
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cation (CSE) at the University of Oslo. The aim of this project is to make sure
that students in the mathematical sciences get a unified introduction to com-
putational methods as part of their undergraduate studies. The basic founda-
tion is laid in the first semester with the calculus course, MAT1100, and the pro-
gramming course INF1100, together with MAT-INF1100. The maths courses that
follow continue in the same direction and discuss a number of numerical algo-
rithms in linear algebra and related areas, as well as applications such as image
compression and ranking of web pages.

Some fear that a thorough introduction of computational techniques in the
mathematics curriculum will reduce the students’ basic mathematical abilities.
This could easily be true if the use of computations only amounted to running
code written by others. However, deriving the central algorithms, programming
them, and studying their convergence properties, should lead to a level of math-
ematical understanding that should certainly match that of a more traditional
approach.

Many people have helped develop these notes which have matured over a
period of ten years. @yvind Ryan, Andreas Vavang Solbré, Solveig Bruvoll, and
Marit Sandstad have helped directly with recent versions, while Pal Hermunn
Johansen provided extensive programming help with an earlier version. For this
latest version, Andreas Vavang Solbra has provided important assistance and
feedback. Geir Pedersen was my co-lecturer for four years. He was an extremely
good discussion partner on all the facets of this material, and influenced the list
of contents in several ways. I work at the Centre of Mathematics for Applica-
tions (CMA) at the University of Oslo, and I am grateful to the director, Ragnar
Winther, for his enthusiastic support of the CSE project and my extensive under-
takings in teaching. Over many years, my closest colleagues Geir Dahl, Michael
Floater, and Tom Lyche have shaped my understanding of numerical analysis
and allowed me to spend considerably more time than usual on elementary
teaching. Another colleague, Sverre Holm, has been my source of information
on signal processing. To all of you: thank you!

My academic home, the Department of Informatics and its chairman Morten
Dehlen, has been very supportive of this work by giving me the freedom to ex-
tend the Department’s teaching duties, and by extensive support of the CSE-
project. It has been a pleasure to work with the Department of Mathematics
over the past eight years, and I have many times been amazed by how much
confidence they seem to have in me. I have learnt a lot, and have thoroughly en-
joyed teaching at the cross-section between mathematics and computing which
is my scientific home. I can only say thank you, and I feel at home in both de-
partments.

A course like MAT-INF1100 is completely dependent on support from other
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courses. Tom Lindstrom has done a tremendous job with the parallel calcu-
lus course MAT1100, and its sequel MAT1110 on multivariate analysis and lin-
ear algebra. Hans Petter Langtangen has done an equally impressive job with
INF1100, the introductory programming course with a mathematical and scien-
tific flavour, and I have benefited from many hours of discussions with both of
them. Morten Hjorth-Jensen, Arnt-Inge Vistnes and Anders Malthe-Sorenssen
with colleagues have introduced a computational perspective in a number of
physics courses, and discussions with them have convinced me of the impor-
tance of introducing computations for all students in the mathematical sciences.
Thank you to all of you.

The CSE project is run by a group of people: Morten Hjorth-Jensen and An-
ders Malthe-Sorenssen from the Physics Department, Hans Petter Langtangen
from the Simula Research Lab and the Department of Informatics, @yvind Ryan
from the CMA, Annik Myhre (Dean of Education at the MN-faculty!), Hanne
Selna (Head of the Studies section at the MN—faculty{ﬂ), Helge Galdal (Adminis-
trative Leader of the CMA), and myself. This group of people has been the main
source of inspiration for this work, and without you, there would still only be
uncoordinated attempts at including computations in our elementary courses.
Thank you for all the fun we have had.

The CSE project has become much more than I could ever imagine, and the
reason is that there seems to be a genuine collegial atmosphere at the University
of Oslo in the mathematical sciences. This means that it has been possible to
build momentum in a common direction not only within a research group, but
across several departments, which seems to be quite unusual in the academic
world. Everybody involved in the CSE project is responsible for this, and I can
only thank you all.

Finally, as in all teaching endeavours, the main source of inspiration is the
students, without whom there would be no teaching. Many students become
frustrated when their understanding of the nature of mathematics is challenged,
but the joy of seeing the excitement in their eyes when they understand some-
thing new is a constant source of satisfaction.

Blindern, August 2012

Knut Morken

I The Faculty of Mathematics and Natural Sciences.
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