
Chapter 1
Introduction

Why are computational methods in mathematics important? What can we do
with these methods? What is the difference between computation by hand and
by computer? What do I need to know to perform computations on computers?

These are natural questions for a student to ask before starting a course on
computational methods. And therefore it is also appropriate to try and provide
some short answers already in this introduction. By the time you reach the end
of the notes you will hopefully have more substantial answers to these as well as
many other questions.

1.1 A bit of history

A major impetus for the development of mathematics has been the need for
solving everyday computational problems. Originally, the problems to be solved
were quite simple, like adding and multiplying numbers. These became rou-
tine tasks with the introduction of the decimal numeral system. Another an-
cient problem is how to determine the area of a field. This was typically done
by dividing the field into small squares, rectangles or triangles with known ar-
eas and then adding up. Although the method was time-consuming and could
only provide an approximate answer, it was the best that could be done. Then in
the 18th century Newton and Leibniz developed the differential calculus. This
made it possible to compute areas and similar quantities via quite simple sym-
bolic computations, namely integration and differentiation.

In the absence of good computational devices, this has proved to be a power-
ful way to approach many computational problems: Look for deeper structures
in the problem and exploit these to develop alternative, often non-numerical,
ways to compute the desired quantities. At the beginning of the 21st century

1

this has developed mathematics into an extensive collection of theories, many
of them highly advanced and requiring extensive training to master. And math-
ematics has become much more than a tool to solve practical computational
problems. It has long ago developed into a subject of its own, that can be valued
for its beautiful structures and theories. At the same time mathematics is the
language in which the laws of nature are formulated and that engineers use to
build and analyse a vast diversity of man-made objects, that range from aircrafts
and economic models to digital music players and special effects in movies.

An outsider might think that the intricate mathematical theories that have
been developed have quenched the need for old fashioned computations. Noth-
ing could be further from the truth. In fact, a large number of the developments
in science and engineering over the past fifty years would have been impossible
without huge calculations on a scale that would have been impossible a hun-
dred years ago. The new device that has made such calculations possible is of
course the digital computer.

The birth of the digital computer is usually dated to the early 1940s. From
the beginning it was primarily used for mathematical computations, and today
it is an indispensable tool in almost all scientific research. But as we all know, the
usefulness of computers goes far beyond the scientific laboratories. Computers
are now essential tools in virtually all offices and homes in our society, and small
computers control a wide range of machines.

The one feature of modern computers that has made such an impact on sci-
ence and society is undoubtedly the speed with which a computer operates. We
mentioned above that the area of a field can be computed by dividing the field
into smaller parts like triangles and rectangles whose areas are very simple to
compute. This has been known for hundreds of years, but the method was only
of limited interest as complicated shapes had to be split into a large number
of smaller parts to get sufficient accuracy. The symbolic computation methods
that were developed worked well, but only for certain special problems. Sym-
bolic integration, for example, is only possible for a small class of integrals; the
vast majority of integrals cannot be computed by symbolic methods. The de-
velopment of fast computers means that the old methods for computing areas,
based on dividing the shape into simple parts, are highly relevant as we can very
quickly sum up the areas of a large number of triangles or rectangles.

With all the spectacular accomplishments of computers one may think that
formal methods and proofs are not of interest any more. This is certainly not the
case. A truth in mathematics is only accepted when it can be proved through
strict logical reasoning, and once it has been proved to be true, it will always
be true. A mathematical theory may lose popularity because new and better
theories are developed, but the old theory remains true as long as those who

2

discovered it did not make any mistakes. Later, new discoveries are made which
may bring the old, and often forgotten, theory back into fashion again. The sim-
ple computational methods is one example of this. In the 20th century mathe-
matics went through a general process of more abstraction and many of the old
computational techniques were ignored or even forgotten. When the computer
became available, there was an obvious need for computing methods and the
old techniques were rediscovered and applied in new contexts. All properties
of the old methods that had been established with proper mathematical proofs
were of course still valid and could be utilised straightaway, even if the methods
were several hundred years old and had been discovered at a time when digital
computers were not even dreamt of.

This kind of renaissance of old computational methods happens in most ar-
eas when computers are introduced as a tool. However, there is usually a contin-
uation of the story that is worth mentioning. After some years, when the classical
computational methods have been adapted to work well on modern comput-
ers, completely new methods often appear. The classical methods were usually
intended to be performed by hand, using pencil and paper. Three characteris-
tics of this computing environment (human with pencil and paper) is that it is
quite slow, is error prone, and has a preference for computations with simple
numbers. On the other hand, an electronic computer is fast (billions of oper-
ations pr. second), is virtually free of errors and has no preference for particu-
lar numbers. A computer can of course execute the classical methods designed
for humans very well. However, it seems reasonable to expect that even bet-
ter methods should be obtainable if one starts from scratch and develops new
methods that exploit the characteristics of the electronic computer. This has
indeed proved to be the case in many fields where the classical methods have
been succeeded by better methods that are completely unsuitable for human
operation.

1.2 Computers and different types of information

The computer has become a universal tool that is used for all kinds of different
purposes and tasks. To understand how this has become possible we must know
a little bit about how a computer operates. A computer can really only work with
numbers, and in fact, the numbers even have to be expressed in terms of 0s and
1s. It turns out that any number can be represented in terms of 0s and 1s so
that is no restriction. But how can computers work with text, sound, images and
many other forms of information when it can really only handle numbers?

3

1.2.1 Text

Let us first consider text. In the English alphabet there are 26 letters. If we in-
clude upper case and lower case letters plus comma, question mark, space, and
other common characters we end up with a total of about 100 different charac-
ters. How can a computer handle these characters when it only knows about
numbers? The solution is simple; we just assign a numerical code to each char-
acter. Suppose we use two decimal digits for the code and that ’a’ has the code
01, ’b’ the code 02 and so on. Then we can refer to the different letters via these
codes, and words can be referred to by sequences of codes. The word ’and’ for
example, can be referred to by the sequence 011404 (remember that each code
consists of two digits). Multi-word texts can be handled in the same way as long
as we have codes for all the characters. For this to work, the computer must
always know how to interpret numbers presented to it, either as numbers or
characters or something else.

1.2.2 Sound

Computers work with numbers, so a sound must be converted to numbers be-
fore it can be handled by a computer. What we perceive as sound corresponds
to small variations in air pressure. Sound is therefore converted to numbers by
measuring the air pressure at regular intervals and storing the measurements as
numbers. On a CD for example, measurements are taken 44 100 times a second,
so three minutes of sound becomes 7 938 000 measurements of air pressure.
Sound on a computer is therefore just a long sequence of numbers. The process
of converting a given sound to regular numerical measurements of the air pres-
sure is referred to as digitising the sound, and the result is referred to as digital
sound.

1.2.3 Images

Images are handled by computers in much the same way as sound. Digital cam-
eras have an image sensor that records the amount of light hitting its rectangular
array of points called pixels. The amount of light at a given pixel corresponds to a
number, and the complete image can therefore be stored by storing all the pixel
values. In this way an image is reduced to a large collection of numbers, a digital
image, which is perfect for processing by a computer.

1.2.4 Film

A film is just a sequence of images shown in quick succession (25-30 images
pr. second), and if each image is represented digitally, we have a film represented

4

by a large number of numerical values, a digital film. A digital film can be ma-
nipulated by altering the pixel values in the individual images.

1.2.5 Geometric form

Geometric shapes surround us everywhere in the form of natural objects like
rocks, flowers and animals as well as man-made objects like buildings, aircrafts
and other machines. A specific shape can be converted to numbers by splitting
it into small pieces that each can be represented as a simple mathematical func-
tion like for instance a cubic polynomial. A cubic polynomial is represented in
terms of its coefficients, which are numbers, and the complete shape can be rep-
resented by a collection of cubic pieces, joined smoothly together, i.e., by a set
of numbers. In this way a mathematical model of a shape can be built inside a
computer.

Graphical images of characters, or fonts, is one particular type of geometric
form that can be represented in this way. Therefore, when you read the letters
on this page, whether on paper or a computer screen, the computer figured out
exactly how to draw each character by computing its shape from a collection of
mathematical formulas.

1.2.6 Laws of nature

The laws of nature, especially the laws of physics, can often be expressed in
terms of mathematical equations. These equations can be represented in terms
of their coefficients and solved by performing computations based on these co-
efficients. In this way we can simulate physical phenomena by solving the equa-
tions that govern the phenomena.

1.2.7 Virtual worlds

We have seen how we can represent and manipulate sound, film, geometry and
physical laws by computers. By combining objects of this kind, we can create
artificial or virtual worlds inside a computer, built completely from numbers.
This is exactly what is done in computer games. A complete world is built with
geometric shapes, creatures that can move (with movements governed by math-
ematical equations), and physical laws, also represented by mathematical equa-
tions. An important part of creating such virtual worlds is to deduce methods for
how the objects can be drawn on the computer screen — this is the essence of
the field of computer graphics.

A very similar kind of virtual world is used in machines like flight simula-
tors and machines used for training purposes. In many cases it is both cheaper
and safer to give professionals their initial training by using a computer simula-
tor rather than letting them try ’the real thing’. This applies to pilots as well as

5

heart surgeons and requires that an adequate virtual world is built in terms of
mathematical equations, with a realistic user interface.

In many machines this is taken a step further. A modern passenger jet has a
number of computers that can even land the airplane. To do this the computer
must have a mathematical model of itself as well as the equations that govern
the plane. In addition the plane must be fitted with sensors that measure quan-
tities like speed, height, and direction. These data are measured at regular time
intervals and fed into the mathematical model. Instead of just producing a film
of the landing on a computer screen, the computer can actually land the aircraft,
based on the mathematical model and the data provided by the sensors.

In the same way surgeons may make use of medical imaging techniques to
obtain different kinds of information about the interior of the patient. This in-
formation can then be combined to produce an image of the area undergoing
surgery, which is much more informative to the surgeon than the information
that is available during traditional surgery.

Similar virtual worlds can also be used to perform virtual scientific experi-
ments. In fact a large part of scientific experiments are now performed by us-
ing a computer to solve the mathematical equations that govern an experiment
rather than performing the experiment itself.

1.2.8 Summary

Via measuring devices (sensors), a wide range of information can be converted
to digital form, i.e., to numbers. These numbers can be read by computers and
processed according to mathematical equations or other logical rules. In this
way both real and non-real phenomena can be investigated by computation. A
computer can therefore be used to analyse an industrial object before it is built.
For example, by making a detailed mathematical model of a car it is possible
to compute its fuel consumption and other characteristics by simulation in a
computer, without building a single car.

A computer can also be used to guide or run machines. Again the computer
must have detailed information about the operation of the machine in the form
of mathematical equations or a strict logical model from which it can compute
how the machine should behave. The result of the computations must then be
transferred to the devices that control the machine.

To build these kinds of models requires specialist knowledge about the phe-
nomenon which is to be modelled as well as a good understanding of the basic
tools used to solve the problems, namely mathematics, computing and comput-
ers.

6

1.3 Computation by hand and by computer

As a student of mathematics, it is reasonable to expect that you have at least a
vague impression of what classical mathematics is. What I have in mind is the
insistence on a strict logical foundation of all concepts like for instance differen-
tiation and integration, logical derivation of properties of the concepts defined,
and the development of symbolic computational techniques like symbolic inte-
gration and differentiation. This is all extremely important and should be well-
known to any serious student of mathematics and the mathematical sciences.
Not least is it important to be fluent in algebra and symbolic computations.

When computations are central to classical mathematics, what then is the
new computational approach? To understand this we first need to reflect a bit
on how we do our pencil-and-paper computations. Suppose you are to solve a
system of three linear equations in three unknowns, like

2x +4y −2z = 2,

3x −6z = 3,

4x −2y +4z = 2.

There are many different ways to solve this, but one approach is as follows. We
observe that the middle equation does not contain y , so we can easily solve for
one of x or z in terms of the other. If we solve for x we can avoid fractions so this
seems like the best choice. From the second equation we then obtain x = 1+2z.
Inserting this in the first and last equations gives

2+4z +4y −2z = 2,

4+8z −2y +4z = 2,

or

4y +2z = 0,

−2y +12z =−2.

Using either of these equations we can express y or z in terms of one another.
In the first equation, however, the right-hand side is 0 and we know that this will
lead to simpler arithmetic. And if we express z in terms of y we avoid fractions.
From the first equation we then obtain z = −2y . When this is inserted in the
last equation we end up with −2y +12(−2y) = −2 or −26y = −2 from which we
see that y = 1/13. We then find z = −2y = −2/13 and x = 1+ 2z = 9/13. This
illustrates how an experienced equation solver typically works, always looking
for shortcuts and simple numbers that simplify the calculations.

7

This is quite different from how a computer operates. A computer works
according to a very detailed procedure which states exactly how the calculations
are to be done. The procedure can tell the computer to look for simple numbers
and shortcuts, but this is usually a waste of time since most computers handle
fractions just as well as integers.

Another, more complicated example, is computation of symbolic integrals.
For most of us this is a bag of isolated techniques and tricks. In fact the Nor-
wegian mathematician Viggo Brun once said that differentiation is a craft; in-
tegration is an art. If you have some experience with differentiation you will
understand what Brun meant by it being a craft; you arrive at the answer by fol-
lowing fairly simple rules. Many integrals can also be solved by definite rules,
but the more complicated ones require both intuition and experience. And in
fact most indefinite integrals cannot be solved at all. It may therefore come as a
surprise to many that computers can be programmed to perform symbolic inte-
gration. In fact, Brun was wrong. There is a precise procedure which will always
give the answer to the integral if it exists, or say that it does not exist if this is the
case. For a human the problem is of course that the procedure requires so much
work that for most integrals it is useless, and integration therefore appears to be
an art. For computers, which work so must faster, this is less of a problem, see
Figure 1.1. Still there are plenty of integrals (most!) that require so many calcu-
lations that even the most powerful computers are not fast enough. Not least
would the result require so much space to print that it would be incomprehen-
sible to humans!

These simple examples illustrate that when (experienced) humans do com-
putations they try to find shortcuts, look for patterns and do whatever they can
to simplify the work; in short they tend to improvise. In contrast, computations
on a computer must follow a strict, predetermined algorithm. A computer may
appear to improvise, but such improvisation must necessarily be planned in ad-
vance and built into the procedure that governs the calculations.

1.4 Algorithms

In the previous section we repeatedly talked about the ’procedure’ that governs
a calculation. This procedure is simply a sequence of detailed instructions for
how the quantity in question can be computed; such procedures are usually re-
ferred to as algorithms. Algorithms have always been important in mathematics
as they specify how calculations should be done. In the past, algorithms were
usually intended to be performed manually by humans, but today many algo-
rithms are designed to work well on digital computers.

If we want an algorithm to be performed by a computer, it must be expressed

8

à sinHxL
cosH6 xL â x =

1

6
+

ä

6
H-1L1�4 ArcTanB 1

2
+

ä

2
H-1L1�4 SecB x

2
F KCosB x

2
F + SinB x

2
FOF -

1

6
+

ä

6
H-1L3�4 ArcTanhB 1

2
+

ä

2
H-1L3�4 SecB x

2
F KCosB x

2
F - SinB x

2
FOF +

1

12 J2 + 2 N K1 + 2 O x + 2 3 ArcTanhB 2 + J2 + 2 N TanA x
2

E
6

F - LogBSecB x

2
F2F +

LogBSecB x

2
F2 K 2 - 2 Cos@xD + 2 Sin@xDOF + 2 K 2 + 3 O ArcTanhB 2 + J2 + 6 N TanA x

2
E

2
F +

K3 + 6 O x - LogBSecB x

2
F2F + LogBSecB x

2
F2 K 6 - 2 Cos@xD + 2 Sin@xDOF

K1 + 6 Sin@xDO K3 + 6 - K2 + 6 O Cos@xD + K2 + 6 O Sin@xDO �

K12 KK12 + 5 6 O Cos@2 xD + 2 Cos@xD K5 + 2 6 + 5 6 Sin@xDO -

2 K12 + 5 6 + 4 K5 + 2 6 O Sin@xD - 6 Sin@2 xDOOO +

x - 2 3 ArcTanhB 2 + J-1 + 2 N TanA x
2

E
3

F - LogBSecB x

2
F2F +

LogB-SecB x

2
F2 K1 + 2 Cos@xD - 2 Sin@xDOF

K 2 + 2 Sin@xDO K-1 + 2 - K-2 + 2 O Cos@xD + K-2 + 2 O Sin@xDO �

K24 KK-2 + 2 O Cos@xD - K-1 + 2 O HCos@2 xD + Sin@2 xDLOO +

-2 K-2 + 6 O ArcTanhB 2 + K 2 - 3 O TanB x

2
FF +

K3 2 - 2 3 O x - LogBSecB x

2
F2F + LogB-SecB x

2
F2 K 3 + 2 Cos@xD - 2 Sin@xDOF

K 2 - 2 3 Sin@xDO K-3 + 6 - K-2 + 6 O Cos@xD + K-2 + 6 O Sin@xDO �
K24 KK-12 + 5 6 O Cos@2 xD + 2 Cos@xD K-5 + 2 6 + 5 6 Sin@xDO -

2 K-12 + 5 6 + 4 K-5 + 2 6 O Sin@xD + 6 Sin@2 xDOOO
Figure 1.1. An integral and its solution as computed by the computer program Mathematica. The function
sec(x) is given by sec(x) = 1/cos(x).

9

in a form that the computer understands. Various languages, such as C++, Java,
Python, Matlab etc., have been developed for this purpose, and a computer pro-
gram is nothing but an algorithm translated into such a language. Programming
therefore requires both an understanding of the relevant algorithms and knowl-
edge of the programming language to be used.

We will express the algorithms we encounter in a language close to standard
mathematics which should be quite easy to understand. This means that if you
want to test an algorithm on a computer, it must be translated to your preferred
programming language. For the simple algorithms we encounter, this process
should be straightforward, provided you know your programming language well
enough.

1.4.1 Statements

The building blocks of algorithms are statements, and statements are simple op-
erations that form the basis for more complex computations.

Definition 1.1. An algorithm is a finite sequence of statements. In these notes
there are only five different kinds of statements:

1. Assignments

2. For-loops

3. If-tests

4. While-loops

5. Print statement

Statements may involve expressions, which are combinations of mathemati-
cal operations, just like in general mathematics.

The first four types of statements are the important ones as they cause cal-
culations to be done and control how the calculations are done. As the name
indicates, the print statement is just a tool for communicating to the user the
results of the computations.

Below, we are going to be more precise about what we mean by the five kinds
of statements, but let us also ensure that we agree what expressions are. The
most common expressions will be formulas like a +bc, sin(a +b), or ex/y . But
an expression could also be a bit less formal, like “the list of numbers x sorted in
increasing order”. Usually expressions only involve the basic operations in the

10

mathematical area we are currently studying and which the algorithm at hand
relates to.

1.4.2 Variables and assignment

Mathematics is in general known for being precise, but its notation sometimes
borders on being ambiguous. An example is the use of the equals sign, ’=’. When
we are solving equations, like x + 2 = 3, the equals sign basically tests equality
of the two sides, and the equation is either true or false, depending on the value
of x. On the other hand, in an expression like f (x) = x2, the equals sign acts
like a kind of definition or assignment in that we assign the value x2 to f (x). In
most situations the interpretation can be deduced by the context, but there are
situations where confusion may arise as we will see in section 2.3.1.

Computers are not very good at judging this kind of context, and therefore
most programming languages differentiate between the two different uses of ’=’.
For this reason it is also convenient to make the same kind of distinction when
we describe algorithms. We do this by using the operator = for assignment and
== for comparison.

When we do computations, we may need to store the results and interme-
diate values for later use, and for this we use variables. Based on the discussion
above, to store the number 2 in a variable a, we will use the notation a = 2; we
say that the variable a is assigned the value 2. Similarly, to store the sum of the
numbers b and c in a, we write a = b + c. One important feature of assignments
is that we can write something like s = s+2. This means: Take the value of s, add
2, and store the result back ins. This does of course mean that the original value
of s is lost.

Definition 1.2 (Assignment). The formulation

var = expression;

means that the expression on the right is to be calculated, and the result stored
in the variable var. For clarity the expression is often terminated by a semi-
colon.

Note that the assignment a = b + c is different from the mathematical equa-
tion a = b+c. The latter basically tests equality: It is true if a and b+c denote the
same quantities, and false otherwise. The assignment is more like a command:
Calculate the the right-hand side and store the result in the variable on the right.

11

1.4.3 For-loops

Very often in algorithms it is necessary to repeat essentially the same thing many
times. A common example is calculation of a sum. An expression like

s =
100∑
i=1

i

in mathematics means that the first 100 integers should be added together. In
an algorithm we may need to be a bit more precise since a computer can really
only add two numbers at a time. One way to do this is

s = 0;
for i = 1, 2, . . . , 100

s = s + i ;

The sum will be accumulated in the variable s, and before we start the computa-
tions we make sure s has the value 0. The for-statement means that the variable
i will take on all the values from 1 to 100, and each time we add i to s and store
the result in s. After the for-loop is finished, the total sum will then be stored ins.

Definition 1.3 (For-loop). The notation

for var = list of values
sequence of statements;

means that the variable var will take on the values given by list of values.
For each such value, the indicated sequence of statements will be performed.
These may include expressions that involve the loop-variable var.

A slightly more complicated example than the one above is

s = 0;
for i = 1, 2, . . . , 100

x = sin(i);
s = s +x;

s = 2s;

which calculates the sum s = 2
∑100

i=1 sin i . Note that the two indented statements
are both performed for each iteration of the for-loop, while the non-indented
statement is performed after the for-loop has finished.

12

1.4.4 If-tests

The third kind of statement lets us choose what to do based on whether or not a
condition is true. The general form is as follows.

Definition 1.4 (If-statement). Consider the statement

if condition
sequence of statements;

else
sequence of statements;

where condition denotes an expression that is either true or false. The mean-
ing of this is that the first group of statements will be performed if condition
is true, and the second group of statements if condition is false.

As an example, suppose we have two numbers a and b, and we want to find
the largest and store this in c. This can be done with the if-statement

if a < b
c = b;

else
c = a;

The condition in the if-test can be any expression that evaluates to true or
false. In particular it could be something like a == b which tests whether a and b
are equal. This should not be confused with the assignment a = b which causes
the value of b to be stored in a.

Our next example combines all the three different kinds of statements we
have discussed so far. Many other examples can be found in later chapters.

Example 1.5. Suppose we have a sequence of real numbers (ak)n
k=1, and we

want to compute the sum of the negative and the positive numbers in the se-
quence separately. For this we need to compute two sums which we will store
in the variables s1 and s2: In s1 we will store the sum of the positive numbers,
and in s2 the sum of the negative numbers. To determine these sums, we step
through the whole sequence, and check whether an element ak is positive or
negative. If it is positive we add it to s1 otherwise we add it to s2. The following
algorithm accomplishes this.

s1 = 0; s2 = 0;
for k = 1, 2, . . . , n

if ak > 0
s1 = s1+ak ;

13

else
s2 = s2+ak ;

After these statements have been performed, the two variables s1 and s2 should
contain the sums of the positive and negative elements of the sequence, respec-
tively.

1.4.5 While-loops

The final type of statement that we need is the while-loop, which is a combina-
tion of a for-loop and an if-test.

Definition 1.6 (While-statement). Consider the statement

while condition
sequence of statements;

This will repeat the sequence of statements as long as condition is true.

Note that unless the logical condition depends on the computations in the
sequence of statements this loop will either not run at all or run forever. Note
also that a for-loop can always be replaced by a while-loop.

Consider once again the example of adding the first 100 integers. With a
while-loop this can be expressed as

s = 0; i = 1;
while i ≤ 100

s = s +1;
i = i + i ;

This example is expressed better with a for-loop, but it illustrates the idea
behind the while-loop. A typical situation where a while-loop is convenient is
when we compute successive approximations to some quantity. In such situa-
tions we typically want to continue the computations until some measure of the
error has become smaller than a given tolerance, and this is expressed best with
a while-loop.

1.4.6 Print statement

Occasionally we may want our toy computer to print something. For this we use
a print statement. As an example, we could print all the integers from 1 to 100
by writing

14

for i = 1, 2, . . . , 100
print i ;

Sometimes we may want to print more elaborate texts; the syntax for this will be
introduced when it is needed.

1.5 Doing computations on a computer

So far, we have argued that computations are important in mathematics, and
computers are good at doing computations. We have also seen that humans
and computers do calculations in quite different ways. A natural question is
then how you can make use of computers in your calculations. And once you
know this, the next question is how you can learn to use computers in this way.

1.5.1 How can computers be used for calculations?

There are at least two essentially distinct ways in which you can use a computer
to do calculations:

1. You can use software written by others; in other words you may use the
computer as an advanced calculator.

2. You can develop your own algorithms and implement these in your own
programs.

Anybody who uses a computer has to depend on software written by others,
so if your are going to do mathematics by computer, you will certainly do so in
the ’calculator style’ sometimes. The simplest example is the use of a calculator
for doing arithmetic. A calculator is nothing but a small computer, and we all
know that calculators can be very useful. There are many programs available
which you can use as advanced calculators for doing common computations
like plotting, integration, algebra and a wide range of other mathematical rou-
tine tasks.

The calculator style of computing can be very useful and may help you solve
a variety of problems. The goal of these notes however, is to help you learn to
develop your own algorithms which you can then implement in your own com-
puter programs. This will enable you to deduce new computer methods and
solve problems which are beyond the reach of existing algorithms.

When you develop new algorithms, you usually want to implement the al-
gorithms in a computer program and run the program. To do this you need to
know a programming language, i.e., an environment in which you can express
your algorithm in such a way that a computer can execute the algorithm. It is

15

therefore assumed that you are familiar with a suitable programming language
already, or that you are learning one while you are working with these notes. Vir-
tually any programming language like Java, C++, Python, Matlab, Mathematica,
. . . , will do. The algorithms in these notes will be written in a form that should
make it quite simple to translate them to your choice of programming language.
Note however that it will usually not work to just type the text literally into C++
or Python; you need to know the syntax (grammar) of the language you are using
and translate the algorithm accordingly.

1.5.2 What do you need to know?

There are a number of things you need to learn in order to become able to de-
duce efficient algorithms and computer programs:

• You must learn to recognise when a computer calculation is appropriate,
and when formal methods or calculations by hand are more suitable

• You must learn to translate your informal mathematical ideas into de-
tailed algorithms that are suitable for computers

• You must understand the characteristics of the computing environment
defined by your computer and the programming language you use

Let us consider each of these points in turn. Even if the power of a computer is
available to you, you should not forget your other mathematical skills. Some-
times your intuition, computation by hand or logical reasoning will serve you
best. On the other hand, with good algorithmic skills you can often use the com-
puter to answer questions that would otherwise be impossible even to consider.
You should therefore aim to gain an intuitive understanding for when a mathe-
matical problem is suitable for computer calculation. It is difficult to say exactly
when this is the case; a good learning strategy is to read these notes and see
how algorithms are developed in different situations. As you do this you should
gradually develop an algorithmic thinking yourself.

Once you have decided that some computation is suitable for computer im-
plementation you need to formulate the calculation as a precise algorithm that
only uses operations available in your computing environment. This is also best
learnt through practical experience, and you will see many examples of this pro-
cess in these notes.

An important prerequisite for both of the first points is to have a good under-
standing of the characteristics of the computing environment where you intend
to do your computations. At the most basic level, you need to understand the
general principles of how computers work. This may sound a bit overwhelming,

16

but at a high level, these principles are not so difficult, and we will consider most
of them in later chapters.

1.5.3 Different computing environments

One interesting fact is that as your programming skills increase, you will begin to
operate in a number of different computing environments. We will not consider
this in any detail here, but a few examples may illustrate this point.

Sequential computing As you begin using a computer for calculations it is nat-
ural to make the assumption that the computer works sequentially and does one
operation at a time, just like we tend to do when we perform computations man-
ually.

Suppose for example that you are to compute the sum

s =
100∑
i=1

ai = a1 +a2 +·· ·+a100,

where each ai is a real number. Most of us would then first add a1 and a2, re-
member the result, then add a3 to this result and remember the new result, then
add a4 to this and so on until all numbers have been added. The good news is
that you can do exactly the same on a computer! This is called sequential com-
puting and is definitely the most common computing environment.

Parallel computing If a group of people work together it is possible to add
numbers faster than a single person can. The key observation is that the num-
bers can be summed in many different ways. We may for example sum the num-
bers in the order indicated by

s =
100∑
i=1

ai = a1 +a2︸ ︷︷ ︸
a1

1

+a3 +a4︸ ︷︷ ︸
a1

2

+a5 +a6︸ ︷︷ ︸
a1

3

+·· ·+a97 +a98︸ ︷︷ ︸
a1

49

+a99 +a100︸ ︷︷ ︸
a1

50

.

Here we have added ’1’ as a superscript to indicate that this is the first time we
group terms in the sum together — it is the first time step of the algorithm. The
key is that these partial sums, each with two terms, are independent of each
other. In other words we may hire 50 people, give them two numbers each, and
tell them to add their two numbers.

When everybody is finished, we can repeat this and ask 25 people to add the
50 results,

s =
50∑

i=1
a1

i = a1
1 +a1

2︸ ︷︷ ︸
a2

1

+a1
3 +a1

4︸ ︷︷ ︸
a2

2

+a1
5 +a1

6︸ ︷︷ ︸
a2

3

+·· ·+a1
47 +a1

48︸ ︷︷ ︸
a2

24

+a1
49 +a1

50︸ ︷︷ ︸
a2

25

.

17

The superscript ’2’ here does not signify that the number in question should be
squared; it simply means that this is the second time step of the algorithm.

At the next time step we ask 13 people to the compute the 13 sums

s =
25∑

i=1
a2

i = a2
1 +a2

2︸ ︷︷ ︸
a3

1

+a2
3 +a2

4︸ ︷︷ ︸
a3

2

+a2
5 +a2

6︸ ︷︷ ︸
a3

3

+·· ·+a2
21 +a2

22︸ ︷︷ ︸
a2

11

+a2
23 +a2

24︸ ︷︷ ︸
a3

12

+ a2
25︸︷︷︸

a3
13

.

Note that the last person has an easy job; since the total number of terms in this
sum is an odd number she just needs to remember the result.

The structure should now be clear. At the next time step we ask 7 people
to compute pairs in the sum s = ∑13

i=1 a3
i in a similar way. The result is the 7

numbers a4
1, a4

2,. . . , a4
7. We then ask 4 people to compute the pairs in the sum

s = ∑7
i=1 a4

i which results in the 4 numbers a5
1, a5

2, a5
3 and a5

4. Two people can
then add pairs in the sum s = ∑4

i=1 a5
i and obtain the two numbers a6

1 and a6
2.

Finally one person computes the final sum as s = a6
1 +a6

2.
Note that at each time step, everybody can work independently. At the first

step we therefore compute 25 sums in the time that it takes one person to com-
pute one sum. The same is true at each step and the whole sum is computed in
6 steps. If one step takes 10 seconds, we have computed the sum of 100 num-
bers in one minute, while a single person would have taken 990 seconds or 16
minutes and 30 seconds.

Our simple example illustrates the concept of parallel computing. Instead of
making use of just one computing unit, we may attack a problem with several
units. Supercomputers, which are specifically designed for number crunching,
work on this principle. Today’s (July 2007) most powerful computer has 65 536
computing units, each of which again has two processors for a total of 131 072
computing units.

An alternative to expensive supercomputers is to let standard PCs work in
parallel. They can either be connected in a specialised network or can commu-
nicate via the Internet. 1 In fact, modern PCs themselves are so-called multi-
core computers which consist of several computing units or CPUs, although at
present, the norm is at most 4 or 8 cores.

One challenge with parallel computing that we have overlooked here is the
need for communication between the different computing units. Once the 25
persons have completed their sums, they must communicate their results to the
12 people who are going to do the next sums. This time is significant and super-
computers have very sophisticated communication channels. At the other end

1There is a project aimed at computing large prime numbers that make use of the internet in
this way, see www.mersenne.org.

18

www.mersenne.org

of the scale, the Internet is in most respects a relatively slow communication
channel for parallel computing.

Other computing environments Computing environments are characterised
by many other features than whether or not calculations can be done in parallel.
Other characteristics are the number of digits used in numerical computations,
how numbers are represented internally in the machine, whether symbolic cal-
culations are possible, and so on. It is not necessary to know the details of how
these issues are handled on your computer, but if you want to use the computer
efficiently, you need to understand the basic principles. After having studied
these notes you should have a decent knowledge of the most common comput-
ing environments.

1.5.4 Exercises

1. The algorithm in example 1.5 calculates the sums of the positve and nega-
tive numbers in a sequence (ak)n

k=1. In this exercise you are going to adjust this
algorithm.

a. Change the algorithm so that it computes the sum of the positive num-
bers and the absolute value of the sum of the negative numbers.

b. Change the algorithm so that it also determines the number of positive
and negative elements in the sequence.

2. Formulate an algorithm for adding two three-digit numbers. You may assume
that it is known how to sum one-digit numbers.

3. Formulate an algorithm which describes how you multiply together two three-
digit numbers. You may assume that it is known how to add numbers.

19

