
How to read the lecture notes

Knut Mørken

September 28, 2013

This document is a navigation tool for reading Numerical Algorithms and Dig-
ital Representation, tailored to students in MAT-INF1100. Hopefully, this will
simplify the task of reading and studying the notes.

Chapter 1: Introduction
This chapter provides background information and context for the rest of the
lecture notes. For those who are not familiar with programming, sections 1.3–
1.5 contain a simple introduction to the pseudo language that is used in later
chapters for describing algorithms.

About numbers
From Kalkulus we know that there are both rational and irrational numbers.
For normal purposes it is usually best to view the numbers as expansions in
the decimal numeral system. Some rational numbers can be represented with
a finite number of digits, but most real numbers require an infinite number of
digits. This is the major challenge when we represent numbers in a computer:
Because of finite resources we can only represent numbers with a finite number
of digits. And we can only represent a finite collection of numbers.

Chapter 2: 0 and 1
The core of this chapter is the simple fact that if we want robust communication
in the presence of noise it is wise to code information in terms of as few symbols
as possible. Since we need at least two symbols to get something interesting,
it’s a good idea to use exactly two symbols, for example 0 and 1. This is one of
the main reasons for representing information in a computer in terms of 0s and
1s.

Chapter 3: Numbers and Numeral Systems
We are used to thinking of real numbers as decimal numbers, that is, numbers
represented as a sequence of digits with a point somewhere in the expansion, as
in

0.1, 4.6, 3.14, 354.65878723, 0.33333333 · · · , 1.414213562373095 · · ·

1



The last two numbers we recognise as 1/3 and
√
2—the · · · -notation indicates

that there are infinitely many digits to the right which means that we can never
write these numbers accurately as decimal numbers.

The decimal numeral system uses 10 as the base and makes use of the 10
digits 0–9. In chapter 3 we show that there is nothing magical about 10—
numbers may be represented in any integer base β > 1. Regardless of the
base, irrational numbers will always require infinitely many digits to the right
of the point. For rational numbers however, it is not completely obvious which
numbers require infinitely many digits to the right of the point; this actually
depends on the base β, see Lemma 3.22. In particular, the only rational numbers
that can be represented with a finite number of digits in base β = 2 are numbers
in the form a/2n for integers a and n. This means that numbers like 0.1 and
3.4 can not be represented exactly in standard computer hardware.

Chapter 4: Computers, Numbers, and Text
This chapter describes how integers, decimal numbers and text are represented
in a computer. This is quite factual, but is based on the following simple ideas:

1. The hardware of a computer is built to handle groups of 32 or 64 bits (4
or 8 bytes) as a unit.

2. Integers represented with 32 bits use 31 bits for the digits and 1 bit for
the sign, and similarly for 64-bit integers. The detailed representation is
based on so-called two’s complement.

3. Real numbers are represented in binary normalised form, see section 4.2.2,
these are called floating-point numbers. For 32 bit floating numbers 23
bits are used for the significand and 11 bits for the exponent. For 64 bit
numbers 53 bits are used for the significand and 11 bits for the exponent.

4. Text is represented as a sequence of characters. A character is represented
as an integer that points into a table; the table lists all the characters
available for this particular character encoding, see section 4.3.

5. The Unicode table contains virtually all the characters that are in use
today, see section 4.3.3.

Chapter 5: Computer Arithmetic and Round-Off
Errors
Section 5.1 gives a simple description of what can go wrong in integer arith-
metic. The arithmetic of floating-point numbers is more challenging, and this is
described in section 5.2. The key observation is that subtraction of two almost
equal numbers may lead to a result with very few, if any, correct digits, see
section 5.2, and in particular example 5.12.

There are different ways to represent errors and this is discussed in section
5.3. The most important observation here is that the relative error provides a
natural way to measure the number of correct digits in an approximation, see
observation 5.20.

2



Two expressions that are mathematically equivalent may behave very differ-
ently on a computer. In section 5.4 we discuss how some expressions may be
rewritten to be less sensitive to round-off errors.

Chapter 6: Numerical Simulation of Difference
Equations
This is the first chapter that discusses numerical computations. The chapter
overlaps with the chapter in Kalkulus about difference equations so you do not
necessarily need to read everything. The core is the discussion of round-off
errors in section 6.5.

1. Section 6.1 is just a short introduction to equations in general, may be
skipped.

2. Section 6.2 define difference equations, more generally than in Kalkulus,
and also discusses different types of difference equations. In particular,
linear difference equations are defined. Observation 6.8 makes an impor-
tant distinction between simulating a difference equation and finding an
explicit formula for the solution.

3. Section 6.3 discusses simple algorithms for simulation of difference equa-
tions. This may be useful if you are not so familiar with programming.

4. Section 6.4 reviews the theory of linear difference equations. Most of
this material can also be found in Kalkulus, except for the discussion of
equations of general order in section 6.4.3.

5. Difference equations provide a simple setting where round-off errors may
cause serious problems. This is discussed in section 6.5, particularly ex-
ample 6.27 and the explanation in section 6.27.

Chapter 7: Lossless Compression
The theme of this chapter is how information may be stored compactly. Two
methods are discussed in detail, namely Huffman coding (section 7.2) and Arith-
metic coding (section 7.4). Section 7.3 provides some additional theory, while
the rest are useful facts.

Chapter 8: Digital Sound
In this chapter we discuss how sound can be stored and manipulated in a com-
puter. This is peripheral in the course, and only simple facts are relevant for
the exam.

Chapter 9: Polynomial Interpolation
The topic of this chapter is a generalisation of Taylor approximation. Instead of
determining a polynomial of degree n by matching the function value and first

3



n derivatives of a function at a point, the idea is to determine an approximating
polynomial by matching n+ 1 function values of a given function.

1. Section 9.1 reviews Taylor polynomials. Most of the material here can
also be found in Kalkulus, but there are some examples of deriving error
estimates that may be helpful.

2. Section 9.2 introduces the interpolation problem and defines the Newton
form of the interpolating polynomial, which simplifies the solution of the
interpolation problem.

3. Section 9.3 discusses divided differences and the divided difference table
which simplifies the determination of the interpolating polynomial.

4. Section 9.4 is not essential, and section 9.5 is not part of the syllabus.

Chapter 10: Zeros of Functions
Determining zeros of functions is important in many applications. The tradition
in mathematics is that solving an equation means finding a formula for the
solution. However, this approach is only possible in some special cases. The
alternative is to compute numerical approximations to the solution, which can be
done for a large class of equations, and this chapter discusses three such methods.
All three methods are based on very simple ideas and are best remembered by
these ideas.

1. Section 10.1 discusses some examples where finding zeros is necessary, this
is not essential reading.

2. The bisection method in section 10.2 is a very simple method for finding
zeros, based on the intermediate value theorem. For this method it is very
easy to derive an error estimate.

3. The secant method in section 10.3 is based on approximating the given
function f by a secant through two points and using the zero of the secant
as an approximation to the zero of the function. By repeating this, a
sequence of numbers are generated that hopefully converges to a zero of
f .

4. Newton’s method in section 10.4 is similar to the secant method, but is
based on approximating the given function by its tangent at a point, using
the zero of the tangent as an approximation of the zero. By repeating this,
a sequence is obtained that also hopefully converges to a zero of f .

Both Newton’s method and the secant method work very well in most cases
and usually only require a few iterations to arrive at a good approximation to
a zero. However, it is quite easy to find cases where both methods fail.

For Newton’s method it is relatively easy to show that if it converges and
the function f is ’nice’, then it converges quadratically, which means that the
number of correct digits roughly doubles for each iteration, see Lemma 10.19.
A similar result holds for the secant method, but this is harder to prove, and
for this method the number of correct digits only increases by about 60 % per
iteration.

4



Chapter 11: Numerical Differentiation
In many situations we need to differentiate a function whose values are only
known at isolated points. This is the case when the function values are given by
measurements or the function is given as a computer program—in either case
symbolic differentiation is not possible.

The recommended way to approach this chapter is to study the simplest
method in section 11.1 in detail. The method is simple, but all the features
of the more complicated methods are present. This includes the effects of
both the truncation error (replacing the derivative with a divided difference,
section 11.1.2) and the round-off error (subtraction of almost equal numbers,
section 11.1.3).

Section 11.2 gives a general procedure for deriving numerical differentiation
methods, and some such methods are discussed in sections 11.3–11.5. The
essence here is to understand the principles: How to derive the methods, and
how to analyse them. All the details are not so important, but it is useful to
remember how the errors depend on h.

Chapter 12: Numerical Integration
This chapter is similar to the previous, but discusses numerical integration in-
stead of numerical differentiation. The general approach to the construction of
the methods is similar: Replace f locally by a polynomial p and integrate p
instead of f . For numerical integration it turns out that round-off errors are
not critical. On the other hand, the analysis of the truncation error now con-
sists of two parts. First the derivation of an error estimate on one subinterval,
and then considering what happens when we assemble the results from all the
subintervals to obtain the approximation to the complete integral.

Section 12.1 gives some background information on integration, and the
simplest method is analysed and formulated as an algorithm in section 12.2.
In particular it is possible to estimate a subinterval width that will ensure that
the total error is smaller than a given tolerance.

For the methods in sections 12.3 and 12.4 it is sufficient to understand the
ideas behind the methods and be familiar with the final error estimates.

Chapter 13: Numerical Solution of Differential
Equations
This is a long chapter that may seem overwhelming. The core of the chapter
is Euler’s method in section 13.3 and its simple refinement, Euler’s midpoint
method in section 13.7.1.

Section 13.1 provides some background information and motivation for study-
ing differential equations, including a classification of different types of equations
in section 13.1.3. Section 13.2 provides some basic information about first or-
der differential equations, with a geometric interpretation in section 13.2.2 and
discussion of what a numerical solution is in section 13.2.4. Euler’s method is
an intuitive method for solving differential equations based on a simple geomet-
ric idea and is described in section 13.3. Section 13.4 gives an error analysis

5



for Euler’s method. The mathematics should be understandable, but the total
analysis is more advanced than what is expected for the exam. In general it is
only expected that you are familiar with the convergence order of the numerical
methods in this chapter.

Section 13.6 discusses Taylor methods which are based on differentiation of
the differential equation, see section 13.5. Note that it is sufficient to understand
differentiation for a specific equation—differentiation may appear quite abstract
for a general equation. Section 13.7 discusses Runge-Kutta methods. Finally, in
section 13.8 we show that a general system of differential equations of arbitrary
orders may be expressed as a system of first-order differential equations.

Chapter 14: Functions of two variables
Not part of the syllabus

Chapter 15: Digital images and image formats
In this chapter we discuss how images can be stored and manipulated in a
computer. This is peripheral in the course, and only simple facts are relevant
for the exam.

6


