
Appendix C
Solutions

Section 1.1

1 . Setting pref=0.00002 Pa and p=100 000 Pa in the decibel expression we get

20log10

µ

p
pref

∂

= 20log10

µ

100000
0.00002

∂

= 20log10

µ

105

2£10°5

∂

= 20log10

µ

1010

2

∂

= 20
°

10° log10 2
¢

º 194db.

Section 1.2

1 . sin(2º∫1t) has period 1/∫1, while sin(2º∫2t) has period 1/∫2. The period is not
unique, however. The first one also has period n/∫1, and the second also n/∫2, for
any n. The sum is periodic if there exist n1,n2 so that n1/∫1 = n2∫2, i.e. so that there
exists a common period between the two. This common period will also be a period
of f . This amounts to that ∫1/∫2 = n1/n2, i.e. that ∫1/∫2 is a rational number.

Section 1.3

1 . The function f (t) = 1p
t
= t°1/2 can be used since it has the properties

ZT

0
f (t)d t = lim

x!0+

ZT

x
t°1/2d t = lim

x!0+

£

2t 1/2§T
x

= lim
x!0+

(2T 1/2 °2x1/2) = 2T 1/2

ZT

0
f (t)2d t = lim

x!0+

ZT

x
t°1d t = lim

x!0+
[ln t]T

x

= lnT ° lim
x!0+

ln x =1.

367

2 . The space VN1,T1 is spanned by pure tones with frequencies 1/T1, . . . , N1/T1,
while VN2,T2 is spanned by pure tones with frequencies 1/T2, . . . , N2/T2. We must
have that the first set of frequencies is contained in the second. This is achieved if
and only if 1/T1 = k/T2 for some integer k, and also N1/T1 ∑ N2/T2. In other words,
T2/T1 must be an integer, and T2/T1 ∑ N2/N1.

Section 1.4

2 . For f (t) = t we get that a0 = 1
T

RT
0 td t = T

2 . We also get

an = 2
T

ZT

0
t cos(2ºnt/T)d t

= 2
T

√

∑

T
2ºn

t sin(2ºnt/T)
∏T

0
° T

2ºn

ZT

0
sin(2ºnt/T)d t

!

= 0

bn = 2
T

ZT

0
t sin(2ºnt/T)d t

= 2
T

√

∑

° T
2ºn

t cos(2ºnt/T)
∏T

0
+ T

2ºn

ZT

0
cos(2ºnt/T)d t

!

=° T
ºn

.

The Fourier series is thus
T
2
°

X

n∏1

T
ºn

sin(2ºnt/T).

Note that this is almost a sine series, since it has a constant term, but no other co-
sine terms. If we had subtracted T /2 we would have obtained a function which is
antisymmetric, and thus a pure sine series.

For f (t) = t 2 we get that a0 = 1
T

RT
0 t 2d t = T 2

3 . We also get

an = 2
T

ZT

0
t 2 cos(2ºnt/T)d t

= 2
T

√

∑

T
2ºn

t 2 sin(2ºnt/T)
∏T

0
° T
ºn

ZT

0
t sin(2ºnt/T)d t

!

=
µ

° T
ºn

∂µ

° T
ºn

∂

= T 2

º2n2

bn = 2
T

ZT

0
t 2 sin(2ºnt/T)d t

= 2
T

√

∑

° T
2ºn

t 2 cos(2ºnt/T)
∏T

0
+ T
ºn

ZT

0
t cos(2ºnt/T)d t

!

=° T 2

ºn
.

Here we see that we could use the expressions for the Fourier coefficients of f (t) = t
to save some work. The Fourier series is thus

T 2

3
+

X

n∏1

µ

T 2

º2n2 cos(2ºnt/T)° T 2

ºn
sin(2ºnt/T)

∂

.

368

For f (t) = t 3 we get that a0 = 1
T

RT
0 t 3d t = T 3

4 . We also get

an = 2
T

ZT

0
t 3 cos(2ºnt/T)d t

= 2
T

√

∑

T
2ºn

t 3 sin(2ºnt/T)
∏T

0
° 3T

2ºn

ZT

0
t 2 sin(2ºnt/T)d t

!

=
µ

° 3T
2ºn

∂µ

° T 2

ºn

∂

= 3T 3

2º2n2

bn = 2
T

ZT

0
t 3 sin(2ºnt/T)d t

= 2
T

√

∑

° T
2ºn

t 3 cos(2ºnt/T)
∏T

0
+ 3T

2ºn

ZT

0
t 2 cos(2ºnt/T)d t

!

=° T 3

ºn
+ 3T

2ºn
T 2

º2n2 =° T 3

ºn
+ 3T 3

2º3n3 .

Also here we saved some work, by reusing the expressions for the Fourier coefficients
of f (t) = t 2. The Fourier series is thus

T 3

4
+

X

n∏1

µ

3T 3

2º2n2 cos(2ºnt/T)+
µ

° T 3

ºn
+ 3T 3

2º3n3

∂

sin(2ºnt/T)
∂

.

We see that all three Fourier series converge slowly. This is connected to the fact that
none of the functions are continuous at the borders of the periods.

3 . Let us define an,k ,bn,k as the Fourier coefficients of t k . When k > 0 and n > 0,
integration by parts gives us the following difference equations:

an,k = 2
T

ZT

0
t k cos(2ºnt/T)d t

= 2
T

√

∑

T
2ºn

t k sin(2ºnt/T)
∏T

0
° kT

2ºn

ZT

0
t k°1 sin(2ºnt/T)d t

!

=° kT
2ºn

bn,k°1

bn,k = 2
T

ZT

0
t k sin(2ºnt/T)d t

= 2
T

√

∑

° T
2ºn

t k cos(2ºnt/T)
∏T

0
+ kT

2ºn

ZT

0
t k°1 cos(2ºnt/T)d t

!

=°T k

ºn
+ kT

2ºn
an,k°1.

When n > 0, these can be used to express an,k ,bn,k in terms of an,0,bn,0, for which we

clearly have an,0 = bn,0 = 0. For n = 0 we have that a0,k = T k

k+1 for all k. The following
program computes an,k ,bn,k recursively when n > 0.

369

function [ank,bnk]=findfouriercoeffs(n,k,T)
ank=0; bnk=0;
if k>0
[ankprev,bnkprev]=findfouriercoeffs(n,k-1,T)
ank=-k*T*bnkprev/(2*pi*n);
bnk=-T^k/(pi*n) + k*T*ankprev/(2*pi*n);

end

Section 1.5

1 . For n1 6= n2 we have that

he2ºi n1t/T ,e2ºi n2t/T i= 1
T

ZT

0
e2ºi n1t/T e°2ºi n2t/T d t = 1

T

ZT

0
e2ºi (n1°n2)t/T d t

=
∑

T
2ºi (n1 °n2)

e2ºi (n1°n2)t/T
∏T

0

= T
2ºi (n1 °n2)

° T
2ºi (n1 °n2)

= 0.

When n1 = n2 the integrand computes to 1, so that ke2ºi nt/T k= 1.

2 . We have that

f (t) = sin2(2ºt/T) =
µ

1
2i

(e2ºi t/T °e°2ºi t/T
∂2

=°1
4

(e2ºi 2t/T °2+e°2ºi 2t/T) =°1
4

e2ºi 2t/T + 1
2
° 1

4
e°2ºi 2t/T .

This gives the Fourier series of the function (with y2 = y°2 = °1/4, y0 = 1/2). This
could also have been shown by using the trigonometric identity sin2 x = 1

2 (1°cos(2x))

first, or by computing the integral 1
T

RT
0 f (t)e°2ºi nt/T d t (but this is rather cumber-

some).

4 .a. We have that

cosn(t) =
µ

1
2

(ei t +e°i t)
∂n

sinn(t) =
µ

1
2i

(ei t °e°i t)
∂n

If we multiply out here, we get a sum of terms of the form ei kt , where °n ∑ k ∑ n. As
long as n ∑ N it is clear that this is in VN ,2º.

370

4 .b. We have that

cos(t) = 1
2

(ei t +e°i t)

cos2(t) = 1
4

(ei t +e°i t)2 = 1
4

e2i t + 1
2
+ 1

4
e°2i t

cos3(t) = 1
8

(ei t +e°i t)3 = 1
8

e3i t + 3
8

ei t + 3
8

e°i t + 1
8

e°3i t .

Therefore, for the first function the nonzero Fourier coefficients are y°1 = 1/2, y1 =
1/2, for the second function y°2 = 1/4, y0 = 1/2, y2 = 1/4, for the third function
y°3 = 1/8, y°1 = 3/8, y1 = 3/8, y3 = 1/8.

4 .c. In order to find the Fourier coefficients of cosn(t) we have to multiply out the
expression 1

2n (ei t + e°i t)n . The coefficients we get after this can alos be obtained
from Pascal’s triangle.

5 . We obtain that

yn = 1
T

ZT /2

0
e°2ºi nt/T d t ° 1

T

ZT

T /2
e°2ºi nt/T d t

=° 1
T

∑

T
2ºi n

e°2ºi nt/T
∏T /2

0
+ 1

T

∑

T
2ºi n

e°2ºi nt/T
∏T

T /2

= 1
2ºi n

≥

°e°ºi n +1+1°e°ºi n+
¥

= 1
ºi n

≥

1°e°ºi n
¥

=
(

0, if n is even;

2/(ºi n), if n is odd.
.

Instead using Theorem 1.27 together with the coefficients bn = 2(1°cos(nº)
nº we com-

puted in Example 1.18, we obtain

yn = 1
2

(an ° i bn) =°1
2

i

(

0, if n is even;

4/(nº), if n is odd.
=

(

0, if n is even;

2/(ºi n), if n is odd.

when n > 0. The case n < 0 follows similarly.

7 . For f (t) = t we get

yn = 1
T

ZT

0
te°2ºi nt/T d t = 1

T

√

∑

° T
2ºi n

te°2ºi nt/T
∏T

0
+

ZT

0

T
2ºi n

e°2ºi nt/T d t

!

=° T
2ºi n

= T
2ºn

i .

From Exercise 2 we had bn =° T
ºn , for which Theorem 1.27 gives yn = T

2ºn i for n > 0,
which coincides with the expression we obtained. The case n < 0 follows similarly.
For f (t) = t 2 we get

yn = 1
T

ZT

0
t 2e°2ºi nt/T d t = 1

T

√

∑

° T
2ºi n

t 2e°2ºi nt/T
∏T

0
+2

ZT

0

T
2ºi n

te°2ºi nt/T d t

!

=° T 2

2ºi n
+ T 2

2º2n2 = T 2

2º2n2 + T 2

2ºn
i .

371

From Exercise 2 we had an = T 2

º2n2 and bn =° T 2

ºn , for which Theorem 1.27 gives yn =
1
2

≥

T 2

º2n2 + i T 2

ºn

¥

for n > 0, which also is seen to coincide with what we obtained. The
case n < 0 follows similarly.
For f (t) = t 3 we get

yn = 1
T

ZT

0
t 3e°2ºi nt/T d t = 1

T

√

∑

° T
2ºi n

t 3e°2ºi nt/T
∏T

0
+3

ZT

0

T
2ºi n

t 2e°2ºi nt/T d t

!

=° T 3

2ºi n
+3

T
2ºi n

(
T 2

2º2n2 + T 2

2ºn
i) = 3

T 3

4º2n2 +
µ

T 3

2ºn
°3

T 3

4º3n3

∂

i =

From Exercise 2 we had an = 3T 3

2º2n2 and bn = ° T 3

ºn + 3T 3

2º3n3 for which Theorem 1.27
gives

yn = 1
2

µ

3T 3

2º2n2 + i
µ

T 3

ºn
° 3T 3

2º3n3

∂∂

= 3T 3

4º2n2 +
µ

T 3

2ºn
° 3T 3

4º3n3

∂

i

for n > 0, which also is seen to coincide with what we obtained. The case n < 0
follows similarly.

8 .a. If f is symmetric about 0 we have that bn = 0. Theorem 1.27 then gives that
yn = 1

2 an , which is real. The same theorem gives that y°n = 1
2 an = yn .

8 .b. If f is antisymmetric about 0 we have that an = 0. Theorem 1.27 then gives that
yn = ° 1

2 bn , which is purely imaginary. The same theorem gives that y°n = 1
2 bn =

°yn .

8 .c. When yn = y°n we can write

y°ne2ºi (°n)t/T + yne2ºi nt/T = yn(e2ºi nt/T +e°2ºi nt/T) = 2yn cos(2ºnt/T)

This is clearly symmetric, but then also
PN

n=°N yne2ºi nt/T is symmetric since it is a
sum of symmetric functions.

8 .d. When yn =°y°n we can write

y°ne2ºi (°n)t/T + yne2ºi nt/T = yn(°e2ºi nt/T +e2ºi nt/T) = 2i yn sin(2ºnt/T)

This is clearly antisymmetric, but then also
PN

n=°N yne2ºi nt/T is antisymmetric since
it is a sum of antisymmetric functions, and since y0 = 0.

Section 1.6

1 . The 2nth complex Fourier coefficient of f̆ is

1
2T

Z2T

0
f̆ (t)e°2ºi 2nt/(2T)d t

= 1
2T

ZT

0
f (t)e°2ºi nt/T d t + 1

2T

Z2T

T
f (2T ° t)e°2ºi nt/T d t .

372

Substituting u = 2T ° t in the second integral we see that this is

= 1
2T

ZT

0
f (t)e°2ºi nt/T d t ° 1

2T

Z0

T
f (u)e2ºi nu/T du

= 1
2T

ZT

0
f (t)e°2ºi nt/T d t + 1

2T

ZT

0
f (t)e2ºi nt/T d t

= 1
2

yn + 1
2

y°n .

Therefore we have a2n = yn ° y°n .

Section 1.7

1 . We obtain that

yn = 1
T

ZT /4

°T /4
e°2ºi nt/T d t ° 1

T

Z°T /4

°T /2
e°2ºi nt/T d t ° 1

T

ZT /2

T /4
e°2ºi nt/T d t

=°
∑

1
2ºi n

e°2ºi nt/T
∏T /4

°T /4
+

∑

1
2ºi n

e°2ºi nt/T
∏°T /4

°T /2
+

∑

1
2ºi n

e°2ºi nt/T
∏T /2

T /4

= 1
2ºi n

≥

°e°ºi n/2 +eºi n/2 +eºi n/2 °eºi n +e°ºi n °e°ºi n/2
¥

= 1
ºn

(2sin(ºn/2)° sin(ºn)) = 2
ºn

sin(ºn/2).

The square wave defined in this exercise can be obtained by delaying our original
square wave with °T /4. Using Property 3 in Theorem 1.37 with d = °T /4 on the

complex Fourier coefficients yn =
(

0, if n is even;

2/(ºi n), if n is odd.
which we obtained for the

square wave in Exercise 1.5.5, we obtain the Fourier coefficients

e2ºi n(T /4)/T

(

0, if n is even;

2/(ºi n), if n is odd.
=

(

0, if n is even;
2i sin(ºn/2)

ºi n , if n is odd.

=
(

0, if n is even;
2
ºn sin(ºn/2), if n is odd.

.

This verifies the result.

2 . Since the real Fourier series of the square wave is

X

n∏1,n odd

4
ºn

sin(2ºnt/T),

Theorem 1.27 gives us that the complex Fourier coefficients are yn = ° 1
2 i 4

ºn = ° 2i
ºn

, and y°n = 1
2 i 4

ºn = 2i
ºn for n > 0. This means that yn = ° 2i

ºn for all n, so that the
complex Fourier series of the square wave is

°
X

n odd

2i
ºn

e2ºi nt/T .

373

Using Property 4 in Theorem 1.37 we get that the e°2ºi 4t/T (i.e. set d = °4) times
the square wave has its n’th Fourier coefficient equal to ° 2i

º(n+4) . Using linearity, this

means that 2i e°2ºi 4t/T times the square wave has its n’th Fourier coefficient equal
to 4

º(n+4) . We thus have that the function

f (t) =
(

2i e°2ºi 4t/T ,0 ∑ t < T /2

°2i e°2ºi 4t/T ,T /2 ∑ t < T

has the desired Fourier series.

Section 2.2

1 . The code for playing the sound can look like this:

fs=44100;
t1=0:(1/fs):(4/440); % 1/fs is the distance between the samples
% You can also write t1=linspace(0,4/440,fs*(4/440));
t2=(4/440):(1/fs):(12/440);
t3=(12/440):(1/fs):(20/440);

f1=0*t1; % The first part of f
f2=2*((440*t2-4)/8).*sin(2*pi*440*t2); % The second part of f
f3=2*sin(2*pi*440*t3); % The third part of f
x=[f1 f2 f3];

x=x/max(abs(x));
playerobj=audioplayer(x,fs);
playblocking(playerobj);

Note that the sound has duration less than 0.05s, so you should only hear a very
short beep. You also need to scale the values to be within -1 and 1, since some of the
listed values are outside this range.

2 . The important thing to note here is that there are two oscillations present in Fig-
ure 1.1(b): One slow oscillation with a higher amplitude, and one faster oscillation,
with a lower amplitude. We see that there are 10 periods of the smaller oscillation
within one period of the larger oscillation, so that we should be able to reconstruct
the figure by using frequencies where one is 10 times the other, such as 440Hz and
4400Hz. Also, we see from the figure that the amplitude of the larger oscillation is
close to 1, and close to 0.3 for the smaller oscillation. A good choice therefore seems
to be a = 1,b = 0.3. The code can look this: The code can look like this:

fs=44100;
T=1/440;
t=0:(1/fs):3;
x=sin(2*pi*440*t)+0.3*sin(2*pi*4400*t);
x=x/max(abs(x));

374

playerobj=audioplayer(x,fs);
playblocking(playerobj);

3 .a. The code can look like this:

function playpuresound(f)
fs=2.5*f;
t=0:(1/fs):3;
x=sin(2*pi*f*t);
playerobj=audioplayer(x,fs);
playblocking(playerobj)

4 . The code can look like this:

function playsquare(T)
% Play a square wave with period T over 3 seconds
fs=40000;
numsec=3;
samplesperperiod=round(fs*T);
oneperiod=[ones(1,round(samplesperperiod/2)) ...

-ones(1,round(samplesperperiod/2))];
numperiods=floor(numsec/T);
x=zeros(1,numperiods*length(oneperiod));
for k=1:numperiods
x(((k-1)*length(oneperiod)+1):k*length(oneperiod))=oneperiod;

end
% It is simpler to replace for-loop with Matlabs repmat command as follows
% x=repmat(oneperiod,1,numperiods);
playerobj=audioplayer(x,fs);
playblocking(playerobj)

function playtriangle(T)
% Play a triangle wave with period T over 3 seconds
fs=40000;
numsec=3;
samplesperperiod=round(fs*T);
oneperiod=[linspace(-1,1,round(samplesperperiod/2)) ...

linspace(1,-1,round(samplesperperiod/2))];
numperiods=floor(numsec/T);
x=zeros(1,numperiods*length(oneperiod));
for k=1:numperiods
x(((k-1)*length(oneperiod)+1):k*length(oneperiod))=oneperiod;

end
% It is simpler to replace for-loop with Matlabs repmat command as follows
% x=repmat(oneperiod,1,numperiods);

375

playerobj=audioplayer(x,fs);
playblocking(playerobj)

5 .a. The code can look like this:

function playsquaretrunk(T,N)
fs=44100;
t=0:(1/fs):3;
x=zeros(1,length(t));
n=1;
while n<=N
x = sd + (4/(n*pi))*sin(2*pi*n*t/T);
n=n+2;

end
x=x/max(abs(x));
playerobj=audioplayer(x,fs);
playblocking(playerobj)

function playtriangletrunk(T,N)
fs=44100;
t=0:(1/fs):3;
x=zeros(1,length(t));
n=1;
while n<=N
x = x - (8/(n^2*pî 2))*cos(2*pi*n*t/T);
n=n+2;

end
x=x/max(abs(x));
playerobj=audioplayer(x,fs);
playblocking(playerobj)

6 .a. The code can look like this:

function playdifferentfs()
[x,fs]=wavread(’castanets.wav’);
playerobj=audioplayer(x,fs);
playblocking(playerobj);
playerobj=audioplayer(x,2*fs);
playblocking(playerobj);
playerobj=audioplayer(x,fs/2);
playblocking(playerobj);

6 .b. The code can look like this:

376

function playreverse()
[x,fs]=wavread(’castanets.wav’);
sz=size(x,1);
playerobj=audioplayer(x(sz:(-1):1,:),fs);
playblocking(playerobj);

7 .a. The code can look like this:

function playnoise(c)
[x,fs]=wavread(’castanets.wav’);
sz=size(x,1);
newx=x+c*(2*rand(sz,2)-1);
newx=newx/max(max(abs(newx)));
playerobj=audioplayer(newx,fs);
playblocking(playerobj);

Section 2.4

1 . As in Example 2.19 we get

F4

0

B

B

@

2
3
4
5

1

C

C

A

= 1
2

0

B

B

@

1 1 1 1
1 °i °1 i
1 °1 1 °1
1 i °1 °i

1

C

C

A

0

B

B

@

2
3
4
5

1

C

C

A

= 1
2

0

B

B

@

2+3+4+5
2°3i °4+5i
2°3+4°5

2+3i °4°5i

1

C

C

A

=

0

B

B

@

7
°1+ i
°1

°1° i

1

C

C

A

.

2 . For N = 6 the entries are on the form 1p
6

e°2ºi nk/6 = 1p
6

e°ºi nk/3. This means

that the entries in the Fourier matrix are the numbers 1p
6

e°ºi /3 = 1p
6

(1/2° i
p

3/2),
1p
6

e°2ºi /3 = 1p
6

(°1/2° i
p

3/2), and so on. The matrix is thus

F6 =
1
p

6

0

B

B

B

B

B

B

B

@

1 1 1 1 1 1
1 1/2° i

p
3/2 °1/2° i

p
3/2 °1 °1/2+ i

p
3/2 1/2+ i

p
2/2

1 °1/2° i
p

3/2 °1/2+ i
p

3/2 1 °1/2° i
p

3/2 +1/2° i
p

3/2
1 °1 1 °1 1 °1
1 °1/2+ i

p
3/2 °1/2° i

p
3/2 1 °1/2+ i

p
3/2 °1/2° i

p
3/2

1 1/2+ i
p

2/2 °1/2+ i
p

3/2 °1 °1/2° i
p

3/2 1/2° i
p

3/2

1

C

C

C

C

C

C

C

A

The cases N = 8 and N = 12 follow similarly, but are even more tedious. For N = 8 the
entries are 1p

8
eºi nk/4, which can be expressed exactly since we can express exactly

any sines and cosines of a multiple of º/4. For N = 12 we get the base angle º/6, for
which we also have exact values for sines and cosines for all multiples.

377

3 . z is the vector x delayed with d = 5 samples, and then Property 3 of Theorem 2.21
gives us that (FN z)n = e°2ºi 5k/N (FN x)n . In particular |(FN z)n | = |(FN x)n | = 2, since
|e°2ºi 5k/N | = 1.

4 . By Theorem 2.21 we know that (FN (x))N°n = (FN (x))n when x is a real vector. If
we set N = 8 and n = 2 we get that (F8(x))6 = (F8(x))2 = 2° i = 2+ i .

5 . The idea is to express x as a linear combination of the Fourier basis vectors ¡n ,
and use that FN¡n = en . We have that

cos2(2ºk/N) =
µ

1
2

≥

e2ºi k/N +e°2ºi kn/N
¥

∂2

= 1
4

e2ºi 2k/N + 1
2
+ 1

4
e°2ºi 2k/N = 1

4
e2ºi 2k/N + 1

2
+ 1

4
e2ºi (N°2)k/N

=
p

N
µ

1
4
¡2 +

1
2
¡0 +

1
4
¡N°2

∂

.

We here used the periodicity of e2ºi kn/N , i.e. that e°2ºi 2k/N = e2ºi (N°2)k/N . Since FN
is linear and FN (¡n) = en , we have that

FN (x) =
p

N
µ

1
4

e2 +
1
2

e0 +
1
4

eN°2

∂

=
p

N (1/2,0,1/4,0, . . . ,0,1/4,0) .

6 . We get

yn = 1
p

N

N°1
X

k=0
ck e°2ºi nk/N = 1

p
N

N°1
X

k=0
(ce°2ºi n/N)k

= 1
p

N

1° (ce°2ºi n/N)N

1° ce°2ºi n/N
= 1

p
N

1° cN

1° ce°2ºi n/N
.

8 . The code can look like this

function x=IDFTImpl(y)
N=length(y);
FN=zeros(N);
for k=1:N
FN(k,:)=exp(2*pi*1i*(k-1)*(0:(N-1))/N)/sqrt(N);

end
x=FN*y;

378

9 .a. We have that

yn = 1
p

N

√

N /2°1
X

k=0
xk e°2ºi kn/N +

N°1
X

k=N /2
xk e°2ºi kn/N

!

= 1
p

N

√

N /2°1
X

k=0
xk e°2ºi kn/N +

N /2°1
X

k=0
xk e°2ºi (k+N /2)n/N

!

= 1
p

N

N /2°1
X

k=0
xk (e°2ºi kn/N + (°1)ne°2ºi kn/N)

= (1+ (°1)n)
1

p
N

N /2°1
X

k=0
xk e°2ºi kn/N

If n is odd, we see that yn = 0.

9 .b. The proof is the same as in a., except for a sign change.

9 .c. Clearly the set of vectors which satisfies xk+N /2 =±xk is a vector space V of di-
mension N /2. The set of vectors where every second component is zero is also a vec-
tor space of dimension N /2, let us denote this by W . We have shown that FN (V) Ω
W , but since FN is unitary, FN (V) also has dimension N /2, so that FN (V) =W . This
shows that when every second yn is 0, we must have that xk+N /2 = ±xk , and the
proof is done.

9 . In the proofs above, compute the IDFT instead.

10 . We have that

(FN (x))k = (FN (x1 + i x2))k = (FN (x1))k + i (FN (x2))k

(FN (x))N°k = (FN (x1))N°k + i (FN (x2))N°k = (FN (x1))k + i (FN (x2))k ,

where we have used Property 1 of Theorem 2.21. If we take the complex conjugate
in the last equation, we are left with the two equations

(FN (x))k = (FN (x1))k + i (FN (x2))k

(FN (x))N°k = (FN (x1))k ° i (FN (x2))k .

If we add these we get

(FN (x1))k = 1
2

≥

(FN (x))k + (FN (x))N°k

¥

,

which is the first equation. If we instead subtract the equations we get

(FN (x2))k = 1
2i

≥

(FN (x))k ° (FN (x))N°k

¥

,

which is the second equation

379

Section 2.6

1 . On the first line a sound file is read. On the next line we keep only the first
sound canal, and restrict to the first 217 sound samples. We then perform a DFT, zero
out the frequencies which correspond to DFT-indices between 215 and 217 °215 °1,
run an IDFT, and play the new sound. On the third line from bottom we scale the
sound samples so that these lie between°1 and 1, so that they lie in the range Matlab
demands for sound samples.

2 . As we have seen, DFT index n corresponds to frequency ∫ = n fs /N . Above N =
217, so that we get the connection ∫ = n fs /N = n £44100/217. We zeroed the DFT
indices above n = 215, so that frequencies above ∫= 215 £44100/217 = 11025H z are
affected.

Section 2.8

1 . The code can look as follows

[S,fs] = wavread(’../castanets.wav’);
mono = S(:,1);

kvals=4:12;
slowtime=zeros(1,length(kvals));
fasttime=slowtime; fastesttime=slowtime;
N = 2.^(kvals);
for k=kvals

x = mono(1:2^k);

start=toc;
y = DFTImpl(x);
slowtime(k-3) = toc-start;

start=toc;
y = FFTImpl(x);
fasttime(k-3) = toc-start;

start=toc;
y = fft(x);
fastesttime(k-3) = toc-start;

end

% a
plot(kvals, slowtime, ’ro-’)
hold on
plot(kvals,fasttime, ’bo-’)
plot(kvals,fastesttime, ’go-’)
grid on

380

title(’time usage of the DFT methods’)
legend(’slow DFT’, ’FFT algorithm’, ’Matlab FFT algorithm’)
xlabel(’log_2 N’)
ylabel(’time used [s]’)

% b
figure(2)
loglog(N, slowtime, ’ro-’)
hold on
loglog(N,fasttime, ’bo-’)
axis equal
legend(’slow DFT’, ’FFT algorithm’)

1 .b. The two different curves you see should have a derivative approximately equal
to one and two, respectively.

1 .d. There are several reasons for this. Perhaps most important is that Matlab func-
tions copy the parameters each time a function is called. When the vectors are large,
this leads to extensive copying, also since the recursion depth is big. Another issue
has to do with that Matlab code itself runs slowly when compared to native code.
Also, Matlab’s built-in fft has been subject to much more optimization than we
have covered here.

2 . We get

F4x1 =
1
2

0

B

B

@

1 1 1 1
1 °i °1 i
1 °1 1 °1
1 i °1 °i

1

C

C

A

0

B

B

@

1
3
5
7

1

C

C

A

=

0

B

B

@

8
°2+2i
°2

°2°2i

1

C

C

A

F4x2 =
1
2

0

B

B

@

1 1 1 1
1 °i °1 i
1 °1 1 °1
1 i °1 °i

1

C

C

A

0

B

B

@

2
4
6
8

1

C

C

A

=

0

B

B

@

10
°2+2i
°2

°2°2i

1

C

C

A

In the FFT-algorithm we split the computation of F4(x) into the computation of
F2(x

(e)) and F2(x

(o)), where x(e) and x(o) are vectors of length 4 with even-indexed
and odd-indexed components, respectively. In this case we have x

(e) = (1,3,5,7) and
x

(o) = (2,4,6,8). In other words, the FFT-algorithm uses the FFT-computations we
first made, so that we can save computation. The benefit of using the FFT-algorithm
is that we save computations, so that we end up with O(5N log2 N) real arithmetic
operations.

4 .a. We have that x

(p) is a constant vector of length N2 for 0 ∑ p < N1. But then
the DFT of all the x

(p) has zero outside entry zero. Multiplying with e°2ºi kn/N does
not affect this. The last N2 ° 1 rows are thus zero before the final DFT is applied,
so that these rows are zero also after this final DFT. After assembling the polyphase
components again we have that yr N2 are the only nonzero DFT-coefficients.

381

5 . When we compute e°2ºi n/N , we do some multiplications/divisions in the expo-
nent. These are not counted because they do not depend on x , and may therefore
be precomputed.

8 . The algorithm for the nonecursive FFT can look as follows

function y=FFTImplnonrec(x)
y= bitreverse(x);
N=length(y);
Ns=2.^(0:(log2(N)-1));
for nextN=Ns
D=exp(-2*pi*1i*(0:(nextN-1))’/(2*nextN));
k=1;
while k<=N
int1=k:(k+nextN-1); int2=int1+nextN;
y(int2)=D.*y(int2);
y([int1 int2])=[y(int1)+y(int2); y(int1)-y(int2)];
k=k+2*nextN;

end
end
y=y/sqrt(N);

If you add the nonrecursive algorithm to the code from Exercise 1, you will see that
the non-recursive algorithm performs much better. There may be several reasons
for this. First of all, recursive function calls which are omitted. Secondly, the values
in the matrices DN /2 are constructed once and for all with the non-recursive algo-
rithm.

9 .e. The code for the split-radix algorithm can look as follows

function y=FFTImplsplitradix(x)
N = length(x);
if N == 1
y = x(1);

elseif N==2
y=[x(1)+x(2);x(1)-x(2)];

else
ye = FFTImplsplitradix(x(1:2:(N-1)));
yo1 = FFTImplsplitradix(x(2:4:(N-2)));
yo2 = FFTImplsplitradix(x(4:4:N));
G=exp(-2*pi*1j*(0:(N/4-1))’/N);
H=G.*exp(-2*pi*1j*(0:(N/4-1))’/(N/2));
yo1=G.*yo1;
yo2=H.*yo2;
yo=[yo1+yo2; 1i*(yo2-yo1)];
y = [ye + yo; ye - yo];

end

382

If you add the split-radix FFT algorithm also to the code from Exercise 1, you will
see that it performs better than the FFT algorithm, but worse than the non-recursive
algorithm. That it performs better than the FFT algorithm is as expected, since it has
a reduced number of arithmetic operations, and also a smaller number of recursive
calls. It is not surprising that the non-recursive function performs better, since only
that function omits recursive calls, and computes the values in the diagonal matrices
once and for all.

Section 3.1

1 . Here we have that t°1 = 1/4, t0 = 1/4, t1 = 1/4, and t2 = 1/4. We now get that
s0 = t0 = 1/4, s1 = t1 = 1/4, and s2 = t2 = 1/4 (first formula), and sN°1 = s7 = t°1 = 1/4
(second formula). This means that the matrix of S is

S = 1
4

0

B

B

B

B

B

B

B

B

B

B

B

@

1 1 0 0 0 0 1 1
1 1 1 0 0 0 0 1
1 1 1 1 0 0 0 0
0 1 1 1 1 0 0 0
0 0 1 1 1 1 0 0
0 0 0 1 1 1 1 0
0 0 0 0 1 1 1 1
1 0 0 0 0 1 1 1

1

C

C

C

C

C

C

C

C

C

C

C

A

.

Section 3.2

3 .a. The eigenvalues of S are 1,5,9, and are found by computing a DFT of the first
column (and multiplying by

p
N = 2). The eigenvectors are the Fourier basis vectors.

1 has multiplicity 2.

3 .c. Matlab uses some numeric algorithm to find the eigenvectors. However, eigen-
vectors may not be unique, so you have no control on which eigenvectors Matlab
actually selects. In particular, here the eigenspace for ∏ = 1 has dimension 2, so
that any linear combination of the two eigenvectors from this eigenspace also is an
eigenvector. Here it seems that Matlab has chosen a linear combination which is
different from a Fourier basis vector.

4 .a. If we write S1 = F H
N D1FN and S2 = F H

N D2FN we get

S1 +S2 = F H
N (D1 +D2)FN S1S2 = F H

N D1FN F H
N D2FN = F H

N D1D2FN

This means that the eigenvalues of S1+S2 are the sum of the eigenvalues of S1 and S2.
The actual eigenvalues which are added are dictated by the index of the frequency
response, i.e. ∏S1+S2,n =∏S1,n +∏S2,n .

4 .b. As above we have that S1S2 = F H
N D1FN F H

N D2FN = F H
N D1D2FN , and the same

reasoning gives that the eigenvalues of S1S2 are the product of the eigenvalues of S1
and S2. The actual eigenvalues which are multiplied are dictated by the index of the
frequency response, i.e. ∏S1S2,n =∏S1,n∏S2,n .

383

4 .c. In general there is no reason to believe that there is a formula for the eigenval-
ues for the sum or product of two matrices, based on eigenvalues of the individual
matrices. However, the same type of argument as for filters can be used in all cases
where the eigenvectors are equal.

5 . The matrix for the operation which keeps every second component is
0

B

B

B

B

B

B

@

1 0 · · · 0 0
0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 0

1

C

C

C

C

C

C

A

,

where 1 and 0 are repeated in alternating order along the main diagonal. Since the
matrix is not constant on the main diagonal, it is not a circulant Toeplitz matrix, and
hence not a filter.

Section 3.3

1 . The frequency response is

∏S (!) = 1
4

(ei!+1+e°i!+e°2i!) = ei!(1°e°4i!)

4(1°e°i!)
= 1

4
e°i!/2 sin(2!)

sin(!/2)
.

2 .a. The filter coefficients are t0 = t3 = 1/3, t1 = t2 = 1. We have that

∏S (!) =
X

k
tk e°i k! = 1

3
(1+3e°i!+3e°2i!+e°3i!)

= 2
3

e°3i!/2 1
2

(e3i!/2 +3ei!/2 +3e°i!/2 +e°3i!/2)

= 2
3

e°3i!/2(cos(3!/2)+3cos(!/2)).

From this expression it is easy to plot the frequency response, but since this is com-
plex, we have to plot the magnitude, i.e. |∏S (!)| = 2

3 |cos(3!/2)+3cos(!/2)|. We also
see that ∏S (0) = 2

3 , and that ∏S (º) = 0, so that the filter is a lowpass filter.

2 .b. If we use the connection between the vector frequency response and the con-
tinuous frequency response we get

∏S,2 =∏S (2º2/N) = 2
3

e°6ºi /N (cos(6º/N)+3cos(2º/N)).

Alternatively you can here compute that the first column in the circulant Toeplitz
matrix for S is given by s0 = t1, s2 = t2, s3 = t3, and s4 = t4, and insert this in the
definition of the vector frequency response, ∏S,2 =

PN°1
k=0 sk e°2ºi 2k/N . We know that

e2ºi 2k/N is an eigenvector for S since S is a filter, and that ∏S,2 is the corresponding
eigenvalue. We therefore get that

Sx =∏S,2x = 2
3

e°6ºi /N (cos(6º/N)+3cos(2º/N))x .

384

3 .a. Since clearly t°2 = t2 = 1/16, t°1 = t1 = 1/4, and t0 = 6/16, the first column s

in the circulant Toeplitz matrix is given by s0 = t0 = 6/16, s1 = t1 = 4/16, s2 = t2 =
1/16, sN°2 = t°2 = 1/16, sN°1 = t°1 = 4/16. An 8£8 circulant Toeplitz matrix which
corresponds to applying S1 to a periodic signal of length N = 8 is therefore

1
16

0

B

B

B

B

B

B

B

B

B

B

B

@

6 4 1 0 0 0 1 4
4 6 4 1 0 0 0 1
1 4 6 4 1 0 0 0
0 1 4 6 4 1 0 0
0 0 1 4 6 4 1 0
0 0 0 1 4 6 4 1
1 0 0 0 1 4 6 4
4 1 0 0 0 1 4 6

1

C

C

C

C

C

C

C

C

C

C

C

A

.

3 .b. The frequency response is

∏S1 (!) = 1
16

(e2i!+4ei!+6+4e°i!+e°2i!) =
µ

1
2

(ei!/2 +e°i!/2)
∂4

= cos4(!/2),

where we recognized (1,4,6,4,1) as a row in Pascal’s triangle, so that we could write
the expression as a power. From this expression it is easy to plot the frequency re-
sponse, and it is clear that the filter is a lowpass filter, since ∏S1 (0) = 1, ∏S1 (º) = 0.

3 .c. We have that

∏S2 (!) = (ei!+2+e°i!)/4 =
µ

1
2

(ei!/2 +e°i!/2)
∂2

= cos2(!/2).

We then get that

∏S1S2 (!) =∏S1 (!)∏S2 (!) = cos4(!/2)cos2(!/2) = cos6(!/2)

=
µ

1
2

(ei!/2 +e°i!/2)
∂6

= 1
64

(e3i!+6e2i!+15ei!+20+15e°i!+6e°2i!+e°3i!),

where we have used that, since we have a sixth power, the values can be obtained
from fra a row in Pascal’s triangle also here. It is now clear that

S1S2 =
1

64
{1,6,15,20,15,6,1}.

You could also have argumented here by taking the convolution of 1
16 (1,4,6,4,1) with

1
4 (1,2,1).

Section 3.4

1 . We have that ∏S (!) = 1
2 (1+cos!). This clearly has the maximum point (0,1), and

the minimum point (º,0).

385

2 . We have that |∏T (!)| = 1
2 (1° cos!). This clearly has the maximum point (º,1),

and the minimum point (0,0). The connection between the frequency responses is
that ∏T (!) =∏S (!+º).

3 . Here we have that s0 = t0 = 3, s1 = t1 = 4, s2 = t2 = 5, and s3 = t3 = 6 (first formula),
and sN°2 = t°2 = 1, sN°1 = t°1 = 2 (second formula). This means that the matrix of S
is

S =

0

B

B

B

B

B

B

B

B

B

B

B

@

3 2 1 0 0 6 5 4
4 3 2 1 0 0 6 5
5 4 3 2 1 0 0 6
6 5 4 3 2 1 0 0
0 6 5 4 3 2 1 0
0 0 6 5 4 3 2 1
1 0 0 6 5 4 3 2
2 1 0 0 6 5 4 3

1

C

C

C

C

C

C

C

C

C

C

C

A

The frequency response is

∏S (!) = e2i!+2ei!+3+4e°i!+5e°2i!+6e°3i!.

4 . The filter coefficients are t0 = s0 = 1/5, t1 = s1 = 1/5 (first formula), and t°1 =
sN°1 = 1/5, t°2 = sN°2 = 1/5, t°3 = sN°3 = 1/5 (second formula). All other tk are
zero. This means that the filter can be written as 1

5 {1,1,1,1,1}, using our compact
notation.

5 . The frequency response is

k
X

s=0
cs e°i s! = 1° ck+1e°i (k+1)!

1° ce°i!
.

It is straightforward to compute the limit as !! 0 as ck (k +1). This means that as
we increase k or c, this limit also increases. The value of k also dictates oscillations
in the frequency response, since the numerator oscillates fastest. When c = 1, k
dictates how often the frequency response hits 0.

Section 3.5

2 .a. The code can look like this:

function playwithecho(c,d)
[S fs]=wavread(’castanets.wav’);
N=size(S,1);
S((d+1):N,:)=S((d+1):N,:)+c*S(1:(N-d),:); % Add echo
S(:,1)=S(:,1)/max(max(abs(S(:,1)))); % Scale so that sound values are
S(:,2)=S(:,2)/max(max(abs(S(:,2)))); % within [-1,1].
playerobj=audioplayer(S,fs);
playblocking(playerobj);

386

3 . The sum of two digital filters is again a digital filter, and the first column in the
sum can be obtained by summing the first columns in the two matrices. This means
that the filter coefficients in 1

2 (S1 +S2) can be obtained by summing the filter coeffi-
cients of S1 and S2, and we obtain

1
2

°

{1,0, . . . ,0,c}+ {1,0, . . . ,0,°c}
¢

= {1}.

This means that 1
2 (S1 + S2) = I , since I is the unique filter with e0 as first column.

The interpretation in terms of echos is that the echo from S2 cancels that from S1.

4 .a. The code can look like this:

function reducebass(k)
c=[1/2 1/2];
for z=1:(2*k-1)
c=conv(c,[1/2 1/2]);

end
c=(-1).^(0:(2*k)).*c;
[S fs]=wavread(’castanets.wav’);
N=size(S,1);

y=zeros(N,2);
y(1:k,:)=S(1:k,:);
for t=(k+1):(N-k)
for j=1:(2*k+1)
y(t,:)=y(t,:)+c(j)*S(t+k+1-j,:);

end
end
y((N-k+1):N,:)=S((N-k+1):N,:);
y=y/max(max(abs(y)));

playerobj=audioplayer(y,fs);
playblocking(playerobj);

function reducetreble(k)
c=[1/2 1/2];
for z=1:(2*k-1)
c=conv(c,[1/2 1/2]);

end
[S fs]=wavread(’castanets.wav’);
N=size(S,1);

y=zeros(N,2);
y(1:k,:)=S(1:k,:);
for t=(k+1):(N-k)
for j=1:(2*k+1)

387

y(t,:)=y(t,:)+c(j)*S(t+k+1-j,:);
end

end
y((N-k+1):N,:)=S((N-k+1):N,:);

playerobj=audioplayer(y,fs);
playblocking(playerobj);

9 . We have that

∏S2 (!) =
X

k
cos(2ºkn/N)tk e°i k! = 1

2

X

k
(e2ºi kn/N +e°2ºi kn/N)tk e°i k!

= 1
2

√

X

k
tk e°i k(!°2ºn/N) +

X

k
tk e°i k(!+2ºn/N)

!

= 1
2

(∏S1 (!°2ºn/N)+∏S1 (!+2ºn/N)).

1 0.a. In the code a filter is run on the sound samples from the file castanets.wav.
Finally the new sound is played. In the first two lines after the for-loop, the first and
the last sound samples in the filtered sound are computed, under the assumption
that the sound has been extended to a periodic sound with period N. After this, the
sound is normalized so that the sound samples lie in the range between °1 and 1.
In this case the filter is a lowpass-filter (as we show in b.), so that we can expect that
that the treble in the sound is reduced.

1 0.b. Compact filter notation for the filter which is run is {2,4,2}. A 5£5 circulant
Toeplitz matrix becomes

0

B

B

B

B

@

4 2 0 0 2
2 4 2 0 0
0 2 4 2 0
0 0 2 4 2
2 0 0 2 4

1

C

C

C

C

A

.

The frequency response is ∏S (!) = 2ei!+4+2e°i! = 4+4cos!. It is clear that this
gives a lowpass filter.

1 0.c. The frequency response for the new filter is

°2ei!+4°2e°i! = 4°4cos!= 4+4cos(!+º) =∏S (!+º),

where S is the filter from the first part of the exercise. The new filter therefore be-
comes a highpass filter, since to addº to! corresponds to swapping the frequencies
0 andº. We could also here refered to Observation 3.39, where we stated that adding
an alternating sign in the filter coefficients turns a lowpass filter into a highpass filter
and vice versa.

388

Section 3.6

1 .a. The matrix for time reversal is the matrix
0

B

B

B

B

B

B

@

0 0 · · · 0 1
0 0 · · · 1 0
...

...
...

...
...

0 1 · · · 0 0
1 0 · · · 0 0

1

C

C

C

C

C

C

A

This is not a circulant Toeplitz matrix, since all diagonals assume the values 0 and
1, so that they are not constant on each diagonal. Time reversal is thus not a digital
filter.

1 .b. Let S denote time reversal. Clearly Se1 = eN°2. If S was time-invariant we
would have that Se0 = eN°3, where we have delayed the input and output. But this
clearly is not the case, since by definition Se0 = eN°1.

Section 3.7

Section 3.8

Section 4.1

2 . First we obtain the matrix S as
0

B

B

B

B

B

B

B

B

B

B

B

@

1
2

1
4 0 0 0 0 0 1

4
1
4

1
2

1
4 0 0 0 0 0

0 1
4

1
2

1
4 0 0 0 0

0 0 1
4

1
2

1
4 0 0 0

0 0 0 1
4

1
2

1
4 0 0

0 0 0 0 1
4

1
2

1
4 0

0 0 0 0 0 1
4

1
2

1
4

1
4 0 0 0 0 0 1

4
1
2

1

C

C

C

C

C

C

C

C

C

C

C

A

where we have drawn the boundaries between the blocks S1, S2, S3, S4. From this
we see that

S1 =

0

B

B

@

1
2

1
4 0 0

1
4

1
2

1
4 0

0 1
4

1
2

1
4

0 0 1
4

1
2

1

C

C

A

S2 =

0

B

B

@

0 0 0 1
4

0 0 0 0
0 0 0 0
1
4 0 0 0

1

C

C

A

(S2) f =

0

B

B

@

1
4 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

4

1

C

C

A

.

From this we get

Sr = S1 + (S2) f =

0

B

B

@

3
4

1
4 0 0

1
4

1
2

1
4 0

0 1
4

1
2

1
4

0 0 1
4

3
4

1

C

C

A

.

389

