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Preface

The starting point for this book was a new course developed at the Univeristy of
Oslo, called “Applications of Linear Algebra”. This was given for the first time in 2012.
At the university we had recognized that students who just had their first course in
linear algebra already have the right background to learn about several important
and interesting topics in signal processing and wavelet theory. Unfortunately, most
textbooks on these subjects are written in a language which does not favour a ba-
sic background in linear algebra. This makes much literature unavailable to a large
class of students, and only available to engineering- and signal processing students.
Moreover, it is not a common textbook strategy to introduce signal processing and
wavelets together from scratch, even though the two can very much motivate each
other. Why not write such a self-contained textbook, where linear algebra is the
main fundament? This question is the motivation behind this book.

Some examples on where many signal processing textbooks fail in refering to
linear algebra are:

1. Matrix notation is often absent. Instead, linear operations are often expressed
by component formulas, and matrix multiplication is instead refered to as
convolution (when filters are used).

2. Many operations, which really represent change of coordinates, such as the
DFT, the DCT, and the DWT, are not represented as such. These operations
are thus considered outside a linear algebra framework, so that one does not
use tools, notation, and results from linear algebra for them.

3. Eigenvalues and eigenvectors are not mentioned, even if these often are at
play behind the scene: It is often not mentioned that the Fourier basis vectors
are eigenvectors for filters, with the frequency response being the correspond-
ing eigenvalues. Also, the property for filters that convolution in time corre-
sponds to multiplication in frequency can in linear algebra terms be summa-
rized by that the frequency representation is obtained from diagonalization,
so that multiplication in frequency corresponds to multiplying diagonal ma-
trices where the frequency responses are on the diagonal.

4. Function spaces are often not put into a vector space/inner product context,
even if Fourier series can be seen as a least squares approximation on the
Fourier spaces, and the Fourier integrals for the Fourier coefficients can be
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seen as the inner product coefficients of the orthogonal decomposition for-
mula.

Several other books have also seen the need for writing new textbooks which exploit
linear algebra. One example is [33], which goes further in using matrix notation
than many signal processing textbooks. Still, the author feels that this book and oth-
ers should do even more (such as addressing the issues above) to integrate a linear
algebra framework, so that students feel more at home when they have a basic linear
algebra background. As an example, it seems that many textbooks refer to matrices
with polynomial entries, something which stems from signal processing and the Z -
transform. We will see that this is unnecessary, as one can identify the polynomial
entries with Toeplitz matrices, and such “non-standard matrices” confuse students.

This book is an introduction to Fourier analysis and signal processing (first part
of the book) and wavelets (second part of the book), assuming only a beginning
course in linear algebra. Without such a course, the value in this book is limited.
An appendix has been included so that students can repeat the linear algebra back-
ground they need, but a full course on these topics is prefered in order to follow the
contents of the book. This book is fitting for use in one or two university level un-
dergraduate courses, and is perhaps best directly after a beginning linear algebra
course. Also, some of the theory from a beginning course in linear algebra is further
developed: Complex vector spaces and inner products are considered (many intro-
ductory linear algebra textbooks concentrate only on real vector spaces and inner
product spaces). Also, while many introductory linear algebra textbooks consider
inner product spaces which are function spaces, they often do not go very far in
training the student on these spaces. This book goes longer in this respect, in that
both Fourier and wavelet function spaces are heavily used, both in theory and ex-
ercises. The book also builds more intuition on changes of coordinates, such as the
DFT, the DCT, and the DWT, and the basic properties of these operations. The book
itself can thus be seen as an extension to a linear algebra textbook. In the future, the
author hopes that this material can become additional chapters in a new linear alge-
bra textbook, or as part of a general learning package comprising of different theory
integrated together.

Since a linear algebra background is assumed, and this is the common denom-
inator between the presented topics, some with signal processing background may
feel excluded. In particular, signal processing nomenclature is not used. To also
make this book accessible for these students, we have included several comments in
the various chapters, which may help to unify the understanding from a signal pro-
cessing and a linear algebra perspective. We have also included another appendix
which can serve as a general translation guide between linear algebra and signal
processing.

This book has been written with a clear computational perspective. The theory
motivates algorithms and code, for which many programming issues need to be ad-
dressed. A central idea is thus to elaborate on the interplay between theory, numer-
ical methods, and applications: We not only want to explain the theoretical foun-
dations of the selected topics, but also to go from there to numerical methods, and
finally motivate these by their applications in diverse fields. The book goes a long
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way in integrating important applications, such as modern standards for compres-
sion of sound (MPEG) and images (JPEG, JPEG2000). In some respects we go longer
than other books with the name “applications” in their title: many books on linear
algebra sneak in words like “applied” or “applications” in their title. The main con-
tents in most of these books may still be theory, and particular applications where
the presented theory is used are perhaps only mentioned superficially, without dig-
ging deep enough to explain how these applications can be implemented using the
presented theory.

Implementations and important algorithms related to the presented theory are
presented throughout the book, and not only as isolated exercises without corre-
sponding examples. There is a focus on implementation and good coding practice,
algorithms and the number of arithmetic operations they need, memory usage, and
opportunities for parallel computing. We unveil how we can turn the theory into
practical implementations of the applications, in order to make the student oper-
ational. By “Practical implementation” we do not mean a “full implementation”,
which typically involves many other components, unrelated or only weakly related
to the theory we present. This focus on the computational perspective has been in-
spired by the project “Computing in science education” at the University of Oslo,
which is an initiative to integrate computations into the basic science curriculum
from the very first semester at the university. Wavelet theory in particular has a large
amount of detail incoorporated into it. Much literature skip some of these details,
in order to make a simpler presentation. In this book we have attempted not to skip
details for the sake of completeness, but attempted to isolate tricky details from the
ideas. We attempt to point out which details can be skipped for the introductory
reader, but the interested reader still has the opportunity to go through all details
by following all aspects of the book. There are many more topics which could have
been included in this book, but much of these would require more detail. We have
therefore chosen a stopping point which seems to be a good compromise with the
level of detail one needs to go into.

Programming

It is assumed that the student already has been introduced to some programming
language or computational tool. It is to prefer that the student has taken a full course
in programming first, since the book does not give an introduction to primitives
such as for-loops, conditional statements, lists, function definitions, file handling,
and plotting. At the University of Oslo, most students take such a Python-based
course the first semester where such primitives are gone through.

This book comes in two versions: One where Matlab programming is used through-
out, and one where Python programming is used throughout. The version of the
book you are reading uses Matlab. If you search the internet for recommendations
about what programming language to use in a basic course in a linear algebra, you
may find comments such as “python is too advanced for such a beginning course”,
or “Matlab is much quicker to get started with”. The author believes that such com-
ments would not have been posted if all students received the same training in
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Python programming the first semester as they do at the university of Oslo: Once
educational institutions agree on a common framework for programming for the
students, we believe that the programming you see in this book will not feel too ad-
vanced, irrespective of which version of this book you have.

A code repository accompanies the book, where all Matlab and Python code in
the book can be found. The code repository can be found on the webpage for the
book, and contains the following:

1. Notebooks, which list the examples in the book in such a way that they can be
run sequentially. The example code within the book may not run on its own, as
it may rely on importing certain packages, or defining certain variables. These
imports ans definitions will in any way be part of the notebook. Each chapter
lists the notebooks the examples can be found in, and there is typically one
notebook per chapter. The notebooks also contains a lot of solution code to
the exercises. This code is also listed in the solution manual.

2. Function libraries which are developed throughout the book. The most no-
table of these are the FFT and DWT libraries. The book may list simplified
versions of these which the students are asked to extend to more general im-
plementations in the exercises, so that for instance the code is valid for sound
with any number of channels, or images with any number of colour compo-
nents. The solution manual may then list the full versions of these functions,
as they appear in the code repository. In the book, we always list what mod-
ules the refered functionality can be found in.

3. Documentation for all functions. As the student often is asked to implement
much of the functionality himself, this documentation is a good source to en-
sure that he interprets input and output parameters and return values cor-
rectly.

4. Test code for the functions we develop.

If you compare the code in the Matlab and Python versions of the book, you will
see that the programming style is such that much of the code in the two languages
is very similar: Function signatures are almost the same. Code indentation follows
the Python standard, where indentation is an important part of the syntax. Classes
could have been used several places in the Python code, but this has been avoided,
since they are not supported in Matlab. Much of the programming syntax is also
similar.

There are also some differences in the Matlab and Python versions, however.
The python code is structured into modules, a very important structuring concept
in Python. In Matlab the concept of a module does not exist. Instead functions are
placed in different files, rather than in modules, and this leads to a high number of
files in the Matlab part of the code repository. For the Python version, each chapter
states what modules the accompanying functionality are part of. In Python, it is
customary to place test code in the same module as the functions being tested. This
can’t be done with Matlab, so the compromise made is to create a separate file with
the test code, and where there is a main function which calls different test functions
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in the same file, with these test functions following the Python naming conventions
for test functions.

Another difference has to do with that Matlab copies input and return parame-
ters whenever they are accessed. This is not the case in Python, where input and
return parameters are passed by reference. This means that we can perform in-
place computation in Python code, i.e. we can write the result directly into the in-
put buffer, rather than copying it. As this can lead to much more efficent code, the
Python code attempts to perform in-place operations wherever possible, contrary
to the Matlab code where this approach is not possible. This affects the signatures
of many functions: Several Python functions have no return values since the result
is written directly into an input buffer, contrary to the Matlab counterparts which
use return parameters for the result.

Matlab has built-in functionality for reading and writing sound and images, as
well as built-in functionality for playing sound and displaying images. To make the
Python code similar to the Matlab code, the code repository includes the modules
sound and images, with functions with similar signatures to the Matlab counter-
parts. These functions simply call Python counterparts, in such a way that the inter-
face is the same.

Although the code repository contains everything developed in the book, it is
recommended that the student follows the code development procedure of the book,
and establishes as much code as possible on his own. In this way he is guided
through the development of a full library, which is general in purpose. The student
is encouraged to create his own files where the functions have the same signatures
as the fully developed functions in the code repository. To ensure that the student’s
functions are run, rather than the functions in the code repository, it is important
that the student’s files are listed first in the path. With Python teh student can also
place his code in separate modules, and override code in the modules in the code
repository.

Structure of the book

Part I of the book starts with a general discussion on what sound is. Chapter 1 also
introduces Fourier series as a finite-dimensional model for sound, and establishes
the mathematics for computing and analysing Fourier series. While the first chap-
ter models sound as continuous functions, the chapter 2 moves on to digital sound.
Now sound is modeled as finite-dimensional vectors, and this establishes a parallel
theory, where the computation of Fourier series is replaced with a linear transforma-
tion called the Discrete Fourier Transform. Two important topics ar gone through in
connection with this: Fast computation of the Discrete Fourier Transform, and the
sampling theorem, which establioshes a connection between Fourier series and the
Discrete Fourier Transform. In chapter 3 we look at a general type of operations on
sound called filters. When applied to digital sound, it turns out that filters are exactly
those operations which are diagonalized by the Discrete Fourier Transform. Finally,
the chapter 4 ends the first part of the book by looking at the Discrete Cosine Trans-
form, which can be thought of as a useful variant of the Discrete Fourier Transform.
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Part II of the book starts with a motivation for introducing what is called wavelets.
While the first part of the book works on representations of sound in terms of fre-
quency only, wavelets take into account that such a representation may change
with time. After motivating the first wavelets and setting up a general framework
in chapter 5, chapter 6 establishes the connection between wavelets and filters, so
that the theory from the first part of the book can be applied. In chapter 7 we es-
tablish theory which is used to construct useful wavelets which are used in practice,
while chapter 8 goes through implementational aspects of wavelets, and establishes
their implementations. Chapter 9 takes a small step to the side to look at how we can
experiment with images, before we end the book in chapter 10 with setting up the
theory for wavelets in a two-dimensional framework, so that we can can use them
to experiment with images.

Assumptions

This book makes some assumptions, which are not common in the literature, in
order to adapt the exposition to linear algebra. The most important one is that
most spaces are considered finite-dimensional, and filters are considered as finite-
dimensional operations. In signal processing literature, filters are usually consid-
ered as infinite-dimensional operations. In generality this is true, but in practice
one rarely encounters an infinite set of numbers, which justifies our assumptions.
Since Fourier analysis implicitly assumes some kind of periodicity, we are left with
the challenge of extending a finite signal to a periodic signal. This can be done in
several ways, and we go through the two most important ways, something which is
often left out in signal processing literature.

New contributions

It would be wrong to say that this book provides new results. But it certainly provides
some new proofs for existing results, in order to make the results more accessible for
a linear algebra point of view. Let us mention some examples.

1. The sampling theorem, which is proved in more generality with more advanced
Fourier methods than is presented here (i.e. with Continuous-time and Discrete-
time Fourier transforms), has been restricted to periodic functions, for which
a much simpler proof can be found, fitting our context.

2. The DCT and its orthogonality is found in a constructive way.

3. The quadrature formula for perfect reconstruction is reproved in simple linear
algebra terms.

What has been omitted

In the book, analytical function-theoretical proofs have been avoided. We do not de-
fine the Continuous-time and Discrete-time Fourier transforms. We do give a short
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introduction into analog filters, however, as they are useful in explaining proper-
ties for their digital counterparts. We do not define the Z -transform, and we do not
make filter design based on the placement of poles and zeros, as is common in signal
processing literature.

Notation

We will follow linear algebra notation as you know it from classical linear algebra
textbooks. In particular, vectors will be in boldface (x , y , etc.), while matrices will
be in uppercase (A, B , etc.). The zero vector, or the zero matrix, is denoted by 0.
All vectors stated will be assumed to be column vectors. A row vector will always
be written as xT , where x is a (column) vector. We will also write column vectors as
x = (x0, x1, . . . , xn), i.e. as a comma-separated list of values.

How to use this book

Note that this is a curricular book, not an encyclopaedia for researchers. Besides the
theory, the focus is on drilling the theory with exercises. Each chapter also has a list
of minimum requirements, which may be helpful in preparation for exams.

There are many important topics in the exercises in this book, which are not
gone through in the text of the book. A detailed solution manual for many of these
exercises can be found on the web page of the book. These solutions represents
important material which is theoretical material in many other books. It is rec-
ommended that these solutions be used with care. Much of the learning outcome
depends on that the students try and fail for some time in solving exercises. They
should therefore not take the shortcut directly to the solutions: Although they may
understand the solution to an exercise in this way, they may not learn the thinking
process on how to arrive at that solution, and how to solve it logically and under-
standably.

The entire book is too much for a one-semester course. Two semesters should
suffice to go through everything. There are several different ways material can be
chosen so that the amount fits a one-semester course. Most material in chapters 2
and 3 can be gone through independently of Chapter 1, in that one sacrifices the
motivation of this material in ternms of analog filters. Chapter 4 can be skipped.
Chapter 5 can be read independently from the first part of the book. The same ap-
plies for Chapter 9. Chapters 9, and 10 can be omitted if time is scarce, since they
are the only chapters which concentrate on images and the two-dimensional per-
spective.
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Chapter 1
Sound and Fourier series

A major part of the information we receive and perceive every day is in the form of
audio. Most sounds are transferred directly from the source to our ears, like when
we have a face to face conversation with someone or listen to the sounds in a forest
or a street. However, a considerable part of the sounds are generated by loudspeak-
ers in various kinds of audio machines like cell phones, digital audio players, home
cinemas, radios, television sets and so on. The sounds produced by these machines
are either generated from information stored inside, or electromagnetic waves are
picked up by an antenna, processed, and then converted to sound. It is this kind
of sound we are going to study in this chapter. The sound that is stored inside the
machines or picked up by the antennas is usually represented as digital sound. This
has certain limitations, but at the same time makes it very easy to manipulate and
process the sound on a computer.

What we perceive as sound corresponds to the physical phenomenon of slight
variations in air pressure near our ears. Larger variations mean louder sounds, while
faster variations correspond to sounds with a higher pitch. The air pressure varies
continuously with time, but at a given point in time it has a precise value. This
means that sound can be considered to be a mathematical function.

Observation 1.1. A sound can be represented by a mathematical function, with
time as the free variable. When a function represents a sound, it is often referred
to as a continuous sound.

In the following we will briefly discuss the basic properties of sound: first the
significance of the size of the variations, and then how many variations there are per
second, the frequency of the sound. We also consider the important fact that any rea-
sonable sound may be considered to be built from very simple basis sounds. Since
a sound may be viewed as a function, the mathematical equivalent of this is that
any decent function may be constructed from very simple basis functions. Fourier-
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Figure 1.1: Two examples of audio signals.

analysis is the theoretical study of this, and in the last part of this chapter we estab-
lish the framework for this study, and analyze this on some examples for sound.

1.1 Characteristics of sound: Loudness and frequency

An example of a simple sound is shown in Figure 1.1(a) where the oscillations in
air pressure are plotted agains time. We observe that the initial air pressure has the
value 101 325 (we will shortly return to what unit is used here), and then the pressure
starts to vary more and more until it oscillates regularly between the values 101 323
and 101 327. In the area where the air pressure is constant, no sound will be heard,
but as the variations increase in size, the sound becomes louder and louder until
about time t = 0.6 where the size of the oscillations becomes constant. The following
summarises some basic facts about air pressure.

Fact 1.2 (Air pressure). Air pressure is measured by the SI-unit Pa (Pascal) which
is equivalent to N /m2 (force / area). In other words, 1 Pa corresponds to the force
exerted on an area of 1 m2 by the air column above this area. The normal air
pressure at sea level is 101 325 Pa.

Fact 1.2 explains the values on the vertical axis in Figure 1.1(a): The sound was
recorded at the normal air pressure of 101 325 Pa. Once the sound started, the pres-
sure started to vary both below and above this value, and after a short transient
phase the pressure varied steadily between 101 324 Pa and 101 326 Pa, which cor-
responds to variations of size 1 Pa about the fixed value. Everyday sounds typically
correspond to variations in air pressure of about 0.00002–2 Pa, while a jet engine
may cause variations as large as 200 Pa. Short exposure to variations of about 20 Pa
may in fact lead to hearing damage. The volcanic eruption at Krakatoa, Indonesia,
in 1883, produced a sound wave with variations as large as almost 100 000 Pa, and
the explosion could be heard 5000 km away.
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When discussing sound, one is usually only interested in the variations in air
pressure, so the ambient air pressure is subtracted from the measurement. This cor-
responds to subtracting 101 325 from the values on the vertical axis in Figure 1.1(a).
In Figure 1.1(b) the subtraction has been performed for another sound, and we see
that the sound has a slow, cos-like, variation in air pressure, with some smaller and
faster variations imposed on this. This combination of several kinds of systematic
oscillations in air pressure is typical for general sounds. The size of the oscillations is
directly related to the loudness of the sound. We have seen that for audible sounds
the variations may range from 0.00002 Pa all the way up to 100 000 Pa. This is such
a wide range that it is common to measure the loudness of a sound on a logarithmic
scale. Often air pressure is normalized so that it lies between −1 and 1: The value 0
then represents the ambient air pressure, while −1 and 1 represent the lowest and
highest representable air pressure, respectively. The following fact box summarises
the previous discussion of what a sound is, and introduces the logarithmic decibel
scale.

Fact 1.3 (Sound pressure and decibels). The physical origin of sound is varia-
tions in air pressure near the ear. The sound pressure of a sound is obtained by
subtracting the average air pressure over a suitable time interval from the mea-
sured air pressure within the time interval. A square of this difference is then
averaged over time, and the sound pressure is the square root of this average.

It is common to relate a given sound pressure to the smallest sound pressure
that can be perceived, as a level on a decibel scale,

Lp = 10log10

(
p2

p2
ref

)
= 20log10

(
p

pref

)
.

Here p is the measured sound pressure while pref is the sound pressure of a just
perceivable sound, usually considered to be 0.00002 Pa.

The square of the sound pressure appears in the definition of Lp since this rep-
resents the power of the sound which is relevant for what we perceive as loudness.

The sounds in Figure 1.1 are synthetic in that they were constructed from math-
ematical formulas (see Exercises 1 and 2 in Section 2.1). The sounds in Figure 1.2
on the other hand show the variation in air pressure when there is no mathematical
formula involved, such as is the case for a song. In (a) there are so many oscillations
that it is impossible to see the details, but if we zoom in as in (c) we can see that there
is a continuous function behind all the ink. It is important to realise that in reality
the air pressure varies more than this, even over the short time period in (c). How-
ever, the measuring equipment may not be able to pick up those variations, and it is
also doubtful whether we would be able to perceive such rapid variations.
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Figure 1.2: Variations in air pressure during parts of a song.

1.1.1 The frequency of a sound

Besides the size of the variations in air pressure, a sound has another important
characteristic, namely the frequency (speed) of the variations. For most sounds the
frequency of the variations varies with time, but if we are to perceive variations in
air pressure as sound, they must fall within a certain range.

Fact 1.4. For a human with good hearing to perceive variations in air pressure as
sound, the number of variations per second must be in the range 20–20 000.
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To make these concepts more precise, we first recall what it means for a function
to be periodic.

Definition 1.5. A real function f is said to be periodic with period T if

f (t +T ) = f (t )

for all real numbers t .

Note that all the values of a periodic function f with period T are known if f (t )
is known for all t in the interval [0,T ). The prototypes of periodic functions are the
trigonometric ones, and particularly sin t and cos t are of interest to us. Since sin(t +
2π) = sin t , we see that the period of sin t is 2π and the same is true for cos t .

There is a simple way to change the period of a periodic function, namely by
multiplying the argument by a constant.

Observation 1.6 (Frequency). If ν is an integer, the function f (t ) = sin(2πνt ) is
periodic with period T = 1/ν. When t varies in the interval [0,1], this function
covers a total of ν periods. This is expressed by saying that f has frequency ν.

Figure 1.3 illustrates observation 1.6. The function in (a) is the plain sin t which
covers one period when t varies in the interval [0,2π]. By multiplying the argument
by 2π, the period is squeezed into the interval [0,1] so the function sin(2πt ) has fre-
quency ν = 1. Then, by also multiplying the argument by 2, we push two whole
periods into the interval [0,1], so the function sin(2π2t ) has frequency ν = 2. In (d)
the argument has been multiplied by 5 — hence the frequency is 5 and there are five
whole periods in the interval [0,1]. Note that any function on the form sin(2πνt +a)
has frequency ν, regardless of the value of a.

Since sound can be modelled by functions, it is reasonable to say that a sound
with frequency ν is a trigonometric function with frequency ν.

Definition 1.7. The function sin(2πνt ) represents what we will call a pure tone
with frequency ν. Frequency is measured in Hz (Herz) which is the same as s−1

(the time t is measured in seconds).

A pure tone with frequency 440 Hz sounds like this, and a pure tone with fre-
quency 1500 Hz sounds like this. In Section 2.1 we will explain how we generated
these sounds so that they could be played on a computer.

Any sound may be considered to be a function. In the next section we will ex-
plain why any reasonable function may be written as a sum of simple sin- and cos-
functions with integer frequencies. When this is translated into properties of sound,
we obtain an important principle.
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Figure 1.3: Versions of sin with different frequencies.

Observation 1.8 (Decomposition of sound into pure tones). Any sound f is a
sum of pure tones at different frequencies. The amount of each frequency re-
quired to form f is the frequency content of f . Any sound can be reconstructed
from its frequency content.

The most basic consequence of observation 1.8 is that it gives us an understand-
ing of how any sound can be built from the simple building blocks of pure tones.
This also means that we can store a sound f by storing its frequency content, as an
alternative to storing f itself. This also gives us a possibility for lossy compression of
digital sound: It turns out that, in a typical audio signal, most information is found
in the lower frequencies, and some frequencies will be almost completely absent.
This can be exploited for compression if we change the frequencies with small con-
tribution a little bit and set them to 0, and then store the signal by only storing the
nonzero part of the frequency content. When the sound is to be played back, we
first convert the adjusted values to the adjusted frequency content back to a normal
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function representation with an inverse mapping.

Fact 1.9 (Basic idea behind audio compression). Suppose an audio signal f is
given. To compress f , perform the following steps:

1. Rewrite the signal f in a new format where frequency information becomes
accessible.

2. Remove those frequencies that only contribute marginally to human per-
ception of the sound.

3. Store the resulting sound by coding the adjusted frequency content with
some lossless coding method.

This lossy compression strategy is essentially what is used in practice by com-
mercial audio formats. The difference is that commercial software does everything
in a more sophisticated way and thereby gets better compression rates. We will re-
turn to this in later chapters.

We will see later that Observation 1.8 also is the basis for many operations on
sound. The same observation also makes it possible to explain more precisely what
it means that we only perceive sounds with a frequency in the range 20–20000 Hz:

Fact 1.10. Humans can only perceive variations in air pressure as sound if the
Fourier series of the sound signal contains at least one sufficiently large term with
frequency in the range 20–20 000 Hz.

With appropriate software it is easy to generate a sound from a mathematical
function; we can ’play’ the function. If we play a function like sin(2π440t ), we hear
a pleasant sound with a very distinct frequency, as expected. There are, however,
many other ways in which a function can oscillate regularly. The function in Fig-
ure 1.1(b) for example, definitely oscillates 2 times every second, but it does not
have frequency 2 Hz since it is not a pure tone. This sound is also not that pleasant
to listen to. We will consider two more important examples of this, which are very
different from smooth, trigonometric functions.
Example 1.11. We define the square wave of period T as the function which repeats
with period T , and is 1 on the first half of each period, and −1 on the second half.
This means that we can define it as the function

fs (t ) =
{

1, if 0 ≤ t < T /2;

−1, if T /2 ≤ t < T .
(1.1)

In Figure 1.4(a) we have plotted the square wave when T = 1/440. This period is
chosen so that it corresponds to the pure tone we already have listened to, and you
can listen to this square wave here. In Exercise 4 in Section 2.1 you will learn how to
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Figure 1.4: The square wave and the triangle wave, two functions with regular oscil-
lations, but which are not simple, trigonometric functions.

generate this sound. We hear a sound with the same frequency as sin(2π440t ), but
note that the square wave is less pleasant to listen to: There seems to be some sharp
corners in the sound, translating into a rather shrieking, piercing sound. We will
later explain this by the fact that the square wave can be viewed as a sum of many
frequencies, and that all the different frequencies pollute the sound so that it is not
pleasant to listen to.

♣
Example 1.12. We define the triangle wave of period T as the function which re-
peats with period T , and increases linearly from −1 to 1 on the first half of each
period, and decreases linearly from 1 to −1 on the second half of each period. This
means that we can define it as the function

ft (t ) =
{

4t/T −1, if 0 ≤ t < T /2;

3−4t/T, if T /2 ≤ t < T .
(1.2)

In Figure 1.4(b) we have plotted the triangle wave when T = 1/440. Again, this
same choice of period gives us an audible sound, and you can listen to the trian-
gle wave here. Again you will note that the triangle wave has the same frequency as
sin(2π440t ), and is less pleasant to listen to than this pure tone. However, one can
argue that it is somewhat more pleasant to listen to than a square wave. This will
also be explained in terms of pollution with other frequencies later. ♣

In Section 1.2 we will begin to peek behind the curtains as to why these waves
sound so different, even though we recognize them as having the exact same fre-
quency.

Exercises for Section 1.1

1. Compute the loudness of the Krakatoa explosion on the decibel scale, assuming
that the variation in air pressure peaked at 100 000 Pa.
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2. Consider a sum of two pure tones, f (t ) = A1 sin(2πν1t )+A2 sin(2πν2t ). For which
values of A1, A2,ν1,ν2 is f periodic? What is the period of f when it is periodic?

1.2 Fourier series: Basic concepts

In Section 1.1.1 we identified audio signals with functions and discussed informally
the idea of decomposing a sound into basis sounds (pure sounds) to make its fre-
quency content available. In this chapter we will make this kind of decomposition
more precise by discussing how a given function can be expressed in terms of the
basic trigonometric functions. This is similar to Taylor series where functions are
approximated by combinations of polynomials. But it is also different from Taylor
series because we use trigonometric series rather than power series, and the ap-
proximations are computed in a very different way. The theory of approximation
of functions with trigonometric functions is generally refered to as Fourier analysis.
This is a central tool in practical fields like image- and signal processing, but it is also
an important field of research within pure mathematics.

In the start of this chapter we had no constraints on the function f . Although
Fourier analysis can be performed for very general functions, it turns out that it takes
its simplest form when we assume that the function is periodic. Periodic functions
are fully known when we know their values on a period [0,T ]. In this case we will
see that we can carry out the Fourier analysis in finite dimensional vector spaces of
functions. This makes linear algebra a very useful tool in Fourier analysis: Many of
the tools from your linear algebra course will be useful, in a situation that at first
may seem far from matrices and vectors.

The basic idea of Fourier series is to approximate a given function by a combi-
nation of simple cos and sin functions. This means that we have to address at least
three questions:

1. How general do we allow the given function to be?

2. What exactly are the combinations of cos and sin that we use for the approxi-
mations?

3. How do we determine the approximation?

Each of these questions will be answered in this section. Since we restrict to periodic
functions, we will without much loss of generality assume that the functions are
defined on [0,T ], where T is some positive number. Mostly we will also assume that
f is continuous, but the theory can also be extended to functions which are only
Riemann-integrable, and more precisely, to square integrable functions.

Definition 1.13 (Continuous and square-integrable functions). The set of con-
tinuous, real functions defined on an interval [0,T ] is denoted C [0,T ].

A real function f defined on [0,T ] is said to be square integrable if f 2 is
Riemann-integrable, i.e., if the Riemann integral of f 2 on [0,T ] exists,∫ T

0
f (t )2 d t <∞.
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The set of all square integrable functions on [0,T ] is denoted L2[0,T ].

The sets of continuous and square-integrable functions can be equippped with
an inner-product, a generalisation of the so-called dot-product for vectors.

Theorem 1.14. Both L2[0,T ] and C [0,T ] are vector spaces. Moreover, if the two
functions f and g lie in L2[0,T ] (or in C [0,T ]), then the product f g is also in
L2[0,T ] (or in C [0,T ]). Moreover, both spaces are inner product spaces1, with
inner product2 defined by

〈 f , g 〉 = 1

T

∫ T

0
f (t )g (t )d t , (1.3)

and associated norm

‖ f ‖ =
√

1

T

∫ T

0
f (t )2d t . (1.4)

The mysterious factor 1/T is included so that the constant function f (t ) = 1 has
norm 1, i.e., its role is as a normalizing factor.

Definition 1.13 and Theorem 1.14 answer the first question above, namely how
general we allow our functions to be. Theorem 1.14 also gives an indication of how
we are going to determine approximations—we are going to use inner products. We
recall from linear algebra that the projection of a function f onto a subspace W with
respect to an inner product 〈·, ·〉 is the function g ∈ W which minimizes ‖ f − g‖,
also called the error in the approximation3. This projection is therefore also called
a best approximation of f from W and is characterised by the fact that the function
f −g , also called the error function, should be orthogonal to the subspace W , i.e. we
should have

〈 f − g ,h〉 = 0, for all h ∈W .

More precisely, ifφ= {φi }m
i=1 is an orthogonal basis for W , then the best approxima-

tion g is given by

g =
m∑

i=1

〈 f ,φi 〉
〈φi ,φi 〉

φi . (1.5)

The error ‖ f − g‖ is often referred to as the least square error.
We have now answered the second of our primary questions. What is left is a

description of the subspace W of trigonometric functions. This space is spanned by
the pure tones we discussed in Section 1.1.1.

3See Section 6.3 in [20] for a review of projections and least squares approximations.
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Definition 1.15 (Fourier series). Let VN ,T be the subspace of C [0,T ] spanned by
the set of functions given by

DN ,T = {1,cos(2πt/T ),cos(2π2t/T ), · · · ,cos(2πN t/T ),

sin(2πt/T ),sin(2π2t/T ), · · · , sin(2πN t/T )}. (1.6)

The space VN ,T is called the N ’th order Fourier space. The N th-order Fourier
series approximation of f , denoted fN , is defined as the best approximation of f
from VN ,T with respect to the inner product defined by (1.3).

The space VN ,T can be thought of as the space spanned by the pure tones of
frequencies 1/T , 2/T , . . . , N /T , and the Fourier series can be thought of as linear
combination of all these pure tones. From our discussion in Section 1.1.1, we should
expect that if N is sufficiently large, VN ,T can be used to approximate most sounds
in real life. The approximation fN of a sound f from a space VN ,T can also serve as
a compressed version if many of the coefficients can be set to 0 without the error
becoming too big.

Note that all the functions in the set DN ,T are periodic with period T , but most
have an even shorter period. More precisely, cos(2πnt/T ) has period T /n, and fre-
quency n/T . In general, the term fundamental frequency is used to denote the low-
est frequency of a given periodic function.

Definition 1.15 characterises the Fourier series. The next lemma gives precise
expressions for the coefficients.

Theorem 1.16. The set DN ,T is an orthogonal basis for VN ,T . In particular, the di-
mension of VN ,T is 2N+1, and if f is a function in L2[0,T ], we denote by a0, . . . , aN

and b1, . . . ,bN the coordinates of fN in the basis DN ,T , i.e.

fN (t ) = a0 +
N∑

n=1
(an cos(2πnt/T )+bn sin(2πnt/T )) . (1.7)

The a0, . . . , aN and b1, . . . ,bN are called the (real) Fourier coefficients of f , and they
are given by

a0 = 〈 f ,1〉 = 1

T

∫ T

0
f (t )d t , (1.8)

an = 2
〈

f ,cos(2πnt/T )
〉= 2

T

∫ T

0
f (t )cos(2πnt/T )d t for n ≥ 1, (1.9)

bn = 2〈 f , sin(2πnt/T )〉 = 2

T

∫ T

0
f (t )sin(2πnt/T )d t for n ≥ 1. (1.10)

Proof: To prove orthogonality, assume first that m 6= n. We compute the inner
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product

〈cos(2πmt/T ),cos(2πnt/T )〉

= 1

T

∫ T

0
cos(2πmt/T )cos(2πnt/T )d t

= 1

2T

∫ T

0
(cos(2πmt/T +2πnt/T )+cos(2πmt/T −2πnt/T ))

= 1

2T

[
T

2π(m +n)
sin(2π(m +n)t/T )+ T

2π(m −n)
sin(2π(m −n)t/T )

]T

0

= 0.

Here we have added the two identities cos(x ± y) = cos x cos y ∓ sin x sin y together
to obtain an expression for cos(2πmt/T )cos(2πnt/T )d t in terms of cos(2πmt/T +
2πnt/T ) and cos(2πmt/T −2πnt/T ). By testing all other combinations of sin and
cos also, we obtain the orthogonality of all functions in DN ,T in the same way.

We find the expressions for the Fourier coefficients from the general formula
(1.5). We first need to compute the following inner products of the basis functions,

〈cos(2πmt/T ),cos(2πmt/T )〉 = 1

2

〈sin(2πmt/T ),sin(2πmt/T )〉 = 1

2
〈1,1〉 = 1,

which are easily derived in the same way as above. The orthogonal decomposition
theorem (1.5) now gives

fN (t ) = 〈 f ,1〉
〈1,1〉 1++

N∑
n=1

〈 f ,cos(2πnt/T )〉
〈cos(2πnt/T ),cos(2πnt/T )〉 cos(2πnt/T )

+
N∑

n=1

〈 f , sin(2πnt/T )〉
〈sin(2πnt/T ),sin(2πnt/T )〉 sin(2πnt/T )

=
1
T

∫ T
0 f (t )d t

1
+

N∑
n=1

1
T

∫ T
0 f (t )cos(2πnt/T )d t

1
2

cos(2πnt/T )

+
N∑

n=1

1
T

∫ T
0 f (t )sin(2πnt/T )d t

1
2

sin(2πnt/T )

= 1

T

∫ T

0
f (t )d t +

N∑
n=1

(
2

T

∫ T

0
f (t )cos(2πnt/T )d t

)
cos(2πnt/T )

+
N∑

n=1

(
2

T

∫ T

0
f (t )sin(2πnt/T )d t

)
sin(2πnt/T ).

Equation (1.8)-(1.10) now follow by comparison with Equation (1.7).
Since f is a function in time, and the an ,bn represent contributions from dif-

ferent frequencies, the Fourier series can be thought of as a change of coordinates,
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from what we vaguely can call the time domain, to what we can call the frequency
domain (or Fourier domain). We will call the basis DN ,T the N ’th order Fourier basis
for VN ,T . We note that DN ,T is not an orthonormal basis; it is only orthogonal.

In the signal processing literature, Equation (1.7) is known as the synthesis equa-
tion, since the original function f is synthesized as a sum of trigonometric functions.
Similarly, equations (1.8)-(1.10) are called analysis equations.

A major topic in harmonic analysis is to state conditions on f which guaran-
tees the convergence of its Fourier series. We will not discuss this in detail here,
since it turns out that, by choosing N large enough, any reasonable periodic func-
tion can be approximated arbitrarily well by its N th-order Fourier series approxima-
tion. More precisely, we have the following result for the convergence of the Fourier
series, stated without proof.

Theorem 1.17 (Convergence of Fourier series). Suppose that f is periodic with
period T , and that

1. f has a finite set of discontinuities in each period.

2. f contains a finite set of maxima and minima in each period.

3.
∫ T

0 | f (t )|d t <∞.

Then we have that limN→∞ fN (t ) = f (t ) for all t , except at those points t where f
is not continuous.

The conditions in Theorem 1.17 are called the Dirichlet conditions for the con-
vergence of the Fourier series. They are just one example of conditions that ensure
the convergence of the Fourier series. There also exist much more general condi-
tions that secure convergence. These can require deep mathematical theory in order
to prove, depending on the generality.

An illustration of Theorem 1.17 is shown in Figure 1.5 where the cubic polyno-
mial f (x) =− 1

3 x3 + 1
2 x2 − 3

16 x +1 is approximated by a 9th order Fourier series. The
trigonometric approximation is periodic with period 1 so the approximation be-
comes poor at the ends of the interval since the cubic polynomial is not periodic.
The approximation is plotted on a larger interval in Figure 1.5(b), where its period-
icity is clearly visible.

Let us compute the Fourier series of some interesting functions.
Example 1.18. Let us compute the Fourier coefficients of the square wave, as de-
fined by Equation (1.1) in Example 1.11. If we first use Equation (1.8) we obtain

a0 = 1

T

∫ T

0
fs (t )d t = 1

T

∫ T /2

0
d t − 1

T

∫ T

T /2
d t = 0.
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Figure 1.5: The cubic polynomial f (x) = − 1
3 x3 + 1

2 x2 − 3
16 x +1 on the interval [0,1],

together with its Fourier series approximation from V9,1.

Using Equation (1.9) we get

an = 2

T

∫ T

0
fs (t )cos(2πnt/T )d t

= 2

T

∫ T /2

0
cos(2πnt/T )d t − 2

T

∫ T

T /2
cos(2πnt/T )d t

= 2

T

[
T

2πn
sin(2πnt/T )

]T /2

0
− 2

T

[
T

2πn
sin(2πnt/T )

]T

T /2

= 2

T

T

2πn
((sin(nπ)− sin0)− (sin(2nπ)− sin(nπ)) = 0.

Finally, using Equation (1.10) we obtain

bn = 2

T

∫ T

0
fs (t )sin(2πnt/T )d t

= 2

T

∫ T /2

0
sin(2πnt/T )d t − 2

T

∫ T

T /2
sin(2πnt/T )d t

= 2

T

[
− T

2πn
cos(2πnt/T )

]T /2

0
+ 2

T

[
T

2πn
cos(2πnt/T )

]T

T /2

= 2

T

T

2πn
((−cos(nπ)+cos0)+ (cos(2nπ)−cos(nπ)))

= 2(1−cos(nπ)

nπ

=
{

0, if n is even;

4/(nπ), if n is odd.

In other words, only the bn-coefficients with n odd in the Fourier series are nonzero.
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Figure 1.6: The Fourier series of the square wave of Example 1.18

The Fourier series of the square wave is thus

4

π
sin(2πt/T )+ 4

3π
sin(2π3t/T )+ 4

5π
sin(2π5t/T )+ 4

7π
sin(2π7t/T )+·· · . (1.11)

With N = 20, there are 10 trigonometric terms in this sum. The corresponding Fourier
series can be plotted on the same interval with the following code.

t = linspace(0, T, 100);
y = zeros(size(t));
for n = 1:2:19

y = y + (4/(n*pi))*sin(2*pi*n*t/T);
end
plot(t,y)

In Figure 1.6(a) we have plotted the Fourier series of the square wave when T =
1/440, and when N = 20. In Figure 1.6(b) we have also plotted the values of the
first 100 Fourier coefficients bn , to see that they actually converge to zero. This is
clearly necessary in order for the Fourier series to converge.

Even though f oscillates regularly between −1 and 1 with period T , the dis-
continuities mean that it is far from the simple sin(2πt/T ) which corresponds to
a pure tone of frequency 1/T . From Figure 1.6(b) we see that the dominant coeffi-
cient in the Fourier series is b1, which tells us how much there is of the pure tone
sin(2πt/T ) in the square wave. This is not surprising since the square wave oscil-
lates T times every second as well, but the additional nonzero coefficients pollute
the pure sound. As we include more and more of these coefficients, we gradually
approach the square wave, as shown for N = 20.

There is a connection between how fast the Fourier coefficients go to zero, and
how we perceive the sound. A pure sine sound has only one nonzero coefficient,
while the square wave Fourier coefficients decrease as 1/n, making the sound less
pleasant. This explains what we heard when we listened to the sound in Exam-
ple 1.11. Also, it explains why we heard the same pitch as the pure tone, since the
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first frequency in the Fourier series has the same frequency as the pure tone we lis-
tened to, and since this had the highest value.

Let us listen to the Fourier series approximations of the square wave. For N = 1
and with T = 1/440 as above, it sounds like this. This sounds exactly like the pure
sound with frequency 440Hz, as noted above. For N = 5 the Fourier series approxi-
mation sounds like this, and for N = 9 it sounds like this. Indeed, these sounds are
more like the square wave itself, and as we increase N we can hear how the introduc-
tion of more frequencies gradually pollutes the sound more and more. In Exercise 5
in Section 2.1 you will be asked to write a program which verifies this. ♣
Example 1.19. Let us also compute the Fourier coefficients of the triangle wave, as
defined by Equation (1.2) in Example 1.12. We now have

a0 = 1

T

∫ T /2

0

4

T

(
t − T

4

)
d t + 1

T

∫ T

T /2

4

T

(
3T

4
− t

)
d t .

Instead of computing this directly, it is quicker to see geometrically that the graph
of ft has as much area above as below the x-axis, so that this integral must be zero.
Similarly, since ft is symmetric about the midpoint T /2, and sin(2πnt/T ) is anti-
symmetric about T /2, we have that ft (t )sin(2πnt/T ) also is antisymmetric about
T /2, so that ∫ T /2

0
ft (t )sin(2πnt/T )d t =−

∫ T

T /2
ft (t )sin(2πnt/T )d t .

This means that, for n ≥ 1,

bn = 2

T

∫ T /2

0
ft (t )sin(2πnt/T )d t + 2

T

∫ T

T /2
ft (t )sin(2πnt/T )d t = 0.

For the final coefficients, since both f and cos(2πnt/T ) are symmetric about T /2,
we get for n ≥ 1,

an = 2

T

∫ T /2

0
ft (t )cos(2πnt/T )d t + 2

T

∫ T

T /2
ft (t )cos(2πnt/T )d t

= 4

T

∫ T /2

0
ft (t )cos(2πnt/T )d t = 4

T

∫ T /2

0

4

T

(
t − T

4

)
cos(2πnt/T )d t

= 16

T 2

∫ T /2

0
t cos(2πnt/T )d t − 4

T

∫ T /2

0
cos(2πnt/T )d t

= 4

n2π2 (cos(nπ)−1)

=
{

0, if n is even;

−8/(n2π2), if n is odd.

where we have dropped the final tedious calculations (use integration by parts).
From this it is clear that the Fourier series of the triangle wave is

− 8

π2 cos(2πt/T )− 8

32π2 cos(2π3t/T )− 8

52π2 cos(2π5t/T )− 8

72π2 cos(2π7t/T )+·· · .

(1.12)
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Figure 1.7: The Fourier series of the triangle wave of Example 1.19

In Figure 1.7 we have repeated the plots used for the square wave, for the triangle
wave. As before, we have used T = 1/440. The figure clearly shows that the Fourier
series coefficients decay much faster.

Let us also listen to different Fourier series approximations of the triangle wave.
For N = 1 and with T = 1/440 as above, it sounds like this. Again, this sounds exactly
like the pure sound with frequency 440Hz. For N = 5 the Fourier series approxima-
tion sounds like this, and for N = 9 it sounds like this. Again these sounds are more
like the triangle wave itself, and as we increase N we can hear that the introduction
of more frequencies pollutes the sound. However, since the triangle wave Fourier
coefficients decrease as 1/n2 instead of 1/n as for the square wave, the sound is, al-
though unpleasant due to pollution by many frequencies, not as unpleasant as the
square wave. Also, it converges faster to the triangle wave itself, as also can be heard.
In Exercise 5 in Section 2.1 you will be asked to write a program which verifies this.
♣

There is an important lesson to be learnt from the previous examples: Even if
the signal is nice and periodic, it may not have a nice representation in terms of
trigonometric functions. Thus, trigonometric functions may not be the best bases
to use for expressing other functions. Unfortunately, many more such cases can be
found, as the next example shows.
Example 1.20. Let us consider a periodic function which is 1 on [0,T0], but 0 is on
[T0,T ]. This is a signal with short duration when T0 is small compared to T . We
compute that y0 = T0/T , and

an = 2

T

∫ T0

0
cos(2πnt/T )d t = 1

πn
[sin(2πnt/T )]T0

0 = sin(2πnT0/T )

πn

for n ≥ 1. Similar computations hold for bn . We see that |an | is of the order 1/(πn),
and that infinitely many n contribute, This function may be thought of as a simple
building block, corresponding to a small time segment. However, we see that it is
not a simple building block in terms of trigonometric functions. This time segment
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building block may be useful for restricting a function to smaller time segments, and
later on we will see that it still can be useful. ♣

1.2.1 Fourier series for symmetric and antisymmetric functions

In Example 1.18 we saw that the Fourier coefficients bn vanished, resulting in a sine-
series for the Fourier series of the square wave. Similarly, in Example 1.19 we saw
that an vanished, resulting in a cosine-series for the triangle wave. This is not a co-
incident, and is captured by the following result, since the square wave was defined
so that it was antisymmetric about 0, and the triangle wave so that it was symmetric
about 0.

Theorem 1.21 (Symmetry and antisymmetry). If f is antisymmetric about 0
(that is, if f (−t ) = − f (t ) for all t ), then an = 0, so the Fourier series is actually
a sine-series. If f is symmetric about 0 (which means that f (−t ) = f (t ) for all t ),
then bn = 0, so the Fourier series is actually a cosine-series.

Proof: Note first that we can write

an = 2

T

∫ T /2

−T /2
f (t )cos(2πnt/T )d t bn = 2

T

∫ T /2

−T /2
f (t )sin(2πnt/T )d t ,

i.e. we can change the integration bounds from [0,T ] to [−T /2,T /2]. This follows
from the fact that all f (t ), cos(2πnt/T ) and sin(2πnt/T ) are periodic with period T .

Suppose first that f is symmetric. We obtain

bn = 2

T

∫ T /2

−T /2
f (t )sin(2πnt/T )d t

= 2

T

∫ 0

−T /2
f (t )sin(2πnt/T )d t + 2

T

∫ T /2

0
f (t )sin(2πnt/T )d t

= 2

T

∫ 0

−T /2
f (t )sin(2πnt/T )d t − 2

T

∫ −T /2

0
f (−t )sin(−2πnt/T )d t

= 2

T

∫ 0

−T /2
f (t )sin(2πnt/T )d t − 2

T

∫ 0

−T /2
f (t )sin(2πnt/T )d t = 0.

where we have made the substitution u = −t , and used that sin is antisymmetric.
The case when f is antisymmetric can be proved in the same way, and is left as an
exercise.

In fact, the connection between symmetric and antisymmetric functions, and
sine- and cosine series can be made even stronger by observing the following:

1. Any cosine series a0 +∑N
n=1 an cos(2πnt/T ) is a symmetric function.

2. Any sine series
∑N

n=1 bn sin(2πnt/T ) is an antisymmetric function.
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3. Any periodic function can be written as a sum of a symmetric- and an anti-
symmetric function by writing

f (t ) = f (t )+ f (−t )

2
+ f (t )− f (−t )

2
. (1.13)

4. If fN (t ) = a0 +∑N
n=1(an cos(2πnt/T )+bn sin(2πnt/T )), then

fN (t )+ fN (−t )

2
= a0 +

N∑
n=1

an cos(2πnt/T )

fN (t )− fN (−t )

2
=

N∑
n=1

bn sin(2πnt/T ).

What you should have learnt in this section

The inner product which we use for function spaces. Definition of the Fourier spaces,
and the orthogonality of the Fourier basis. Fourier series approximations as best ap-
proximations. Formulas for the Fourier coefficients. Using the computer to plot
Fourier series. For symmetric /antisymmetric functions, Fourier series are actually
cosine/sine series.

Exercises for Section 1.2

1. Find a function f which is Riemann-integrable on [0,T ], and so that
∫ T

0 f (t )2d t
is infinite.

2. Given the two Fourier spaces VN1,T1 , VN2,T2 . Find necessary and sufficient condi-
tions in order for VN1,T1 ⊂VN2,T2 .

3. Prove the second part of Theorem 1.21, i.e. show that if f is antisymmetric about
0 (i.e. f (−t ) = − f (t ) for all t ), then an = 0, i.e. the Fourier series is actually a sine-
series.

4. Find the Fourier series coefficients of the periodic functions with period T de-
fined by being f (t ) = t , f (t ) = t 2, and f (t ) = t 3, on [0,T ].

5. Write down difference equations for finding the Fourier coefficients of f (t ) =
t k+1 from those of f (t ) = t k , and write a program which uses this recursion. Use the
program to verify what you computed in Exercise 4.

6. Use the previous exercise to find the Fourier series for f (x) =− 1
3 x3+ 1

2 x2− 3
16 x+1

on the interval [0,1]. Plot the 9th order Fourier series for this function. You should
obtain the plots from Figure 1.5.

1.3 Complex Fourier series

In Section 1.2 we saw how a function can be expanded in a series of sines and cosines.
These functions are related to the complex exponential function via Eulers formula

e i x = cos x + i sin x
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where i is the imaginary unit with the property that i 2 = −1. Because the algebraic
properties of the exponential function are much simpler than those of cos and sin, it
is often an advantage to work with complex numbers, even though the given setting
is real numbers. This is definitely the case in Fourier analysis. More precisely, we
will make the substitutions

cos(2πnt/T ) = 1

2

(
e2πi nt/T +e−2πi nt/T

)
(1.14)

sin(2πnt/T ) = 1

2i

(
e2πi nt/T −e−2πi nt/T

)
(1.15)

in Definition 1.15. From these identities it is clear that the set of complex exponen-
tial functions e2πi nt/T also is a basis of periodic functions (with the same period) for
VN ,T . We may therefore reformulate Definition 1.15 as follows:

Definition 1.22 (Complex Fourier basis). We define the set of functions

FN ,T = {e−2πi N t/T ,e−2πi (N−1)t/T , · · · ,e−2πi t/T , (1.16)

1,e2πi t/T , · · · ,e2πi (N−1)t/T ,e2πi N t/T }, (1.17)

and call this the order N complex Fourier basis for VN ,T .

The function e2πi nt/T is also called a pure tone with frequency n/T , just as sines
and cosines are. We would like to show that these functions also are orthogonal.
To show this, we need to say more on the inner product we have defined by Equa-
tion (1.3). A weakness with this definition is that we have assumed real functions f
and g , so that this can not be used for the complex exponential functions e2πi nt/T .
For general complex functions we will extend the definition of the inner product as
follows:

〈 f , g 〉 = 1

T

∫ T

0
f ḡ d t . (1.18)

The associated norm now becomes

‖ f ‖ =
√

1

T

∫ T

0
| f (t )|2d t . (1.19)

The motivation behind Equation 1.18, where we have conjugated the second func-
tion, lies in the definition of an inner product for vector spaces over complex num-
bers. From before we are used to vector spaces over real numbers, but vector spaces
over complex numbers are defined through the same set of axioms as for real vec-
tor spaces, only replacing real numbers with complex numbers. For complex vector
spaces, the axioms defining an inner product are the same as for real vector spaces,
except for that the axiom

〈 f , g 〉 = 〈g , f 〉 (1.20)

is replaced with the axiom
〈 f , g 〉 = 〈g , f 〉, (1.21)
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i.e. a conjugation occurs when we switch the order of the functions. This new axiom
can be used to prove the property 〈 f ,cg 〉 = c̄〈 f , g 〉, which is a somewhat different
property from what we know for real inner product spaces. This follows by writing

〈 f ,cg 〉 = 〈cg , f 〉 = c〈g , f 〉 = c̄〈g , f 〉 = c̄〈 f , g 〉.
Clearly the inner product given by (1.18) satisfies Axiom (1.21). With this definition
it is quite easy to see that the functions e2πi nt/T are orthonormal. Using the orthog-
onal decomposition theorem we can therefore write

fN (t ) =
N∑

n=−N

〈 f ,e2πi nt/T 〉
〈e2πi nt/T ,e2πi nt/T 〉e2πi nt/T =

N∑
n=−N

〈 f ,e2πi nt/T 〉e2πi nt/T

=
N∑

n=−N

(
1

T

∫ T

0
f (t )e−2πi nt/T d t

)
e2πi nt/T .

We summarize this in the following theorem, which is a version of Theorem 1.16
which uses the complex Fourier basis:

Theorem 1.23. We denote by y−N , . . . , y0, . . . , yN the coordinates of fN in the basis
FN ,T , i.e.

fN (t ) =
N∑

n=−N
yne2πi nt/T . (1.22)

The yn are called the complex Fourier coefficients of f , and they are given by.

yn = 〈 f ,e2πi nt/T 〉 = 1

T

∫ T

0
f (t )e−2πi nt/T d t . (1.23)

Let us consider some examples where we compute complex Fourier series.
Example 1.24. Let us consider the pure sound f (t ) = e2πi t/T2 with period T2, but let
us consider it only on the interval [0,T ] instead, where T < T2. Note that this f is
not periodic, since we only consider the part [0,T ] of the period [0,T2]. The Fourier
coefficients are

yn = 1

T

∫ T

0
e2πi t/T2 e−2πi nt/T d t = 1

2πi T (1/T2 −n/T )

[
e2πi t (1/T2−n/T )

]T

0

= 1

2πi (T /T2 −n)

(
e2πi T /T2 −1

)
.

Here it is only the term 1/(T /T2−n) which depends on n, so that yn can only be large
when n is close T /T2. In Figure 1.8 we have plotted |yn | for two different combina-
tions of T,T2. In both examples it is seen that many Fourier coefficients contribute,
but this is more visible when T /T2 = 0.5. When T /T2 = 0.9, most conribution is seen
to be in the y1-coefficient. This sounds reasonable, since f then is closest to the pure
tone f (t ) = e2πi t/T of frequency 1/T (which in turn has y1 = 1 and all other yn = 0).
♣
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Figure 1.8: Plot of |yn | when f (t ) = e2πi t/T2 , and T2 > T

Apart from computing complex Fourier series, there is an important lesson to
be learnt from the previous example: In order for a periodic function to be approx-
imated by other periodic functions, their period must somehow match. Let us con-
sider another example as well.
Example 1.25. What often is the case is that a sound changes in content over time.
Assume that it is equal to a pure tone of frequency n1/T on [0,T /2), and equal to a
pure tone of frequency n2/T on [T /2,T ), i.e.

f (t ) =
{

e2πi n1t/T on [0,T2]

e2πi n2t/T on[T2,T )
.

When n 6= n1,n2 we have that

yn = 1

T

(∫ T /2

0
e2πi n1t/T e−2πi nt/T d t +

∫ T

T /2
e2πi n2t/T e−2πi nt/T d t

)
= 1

T

([
T

2πi (n1 −n)
e2πi (n1−n)t/T

]T /2

0
+

[
T

2πi (n2 −n)
e2πi (n2−n)t/T

]T

T /2

)

= eπi (n1−n) −1

2πi (n1 −n)
+ 1−eπi (n2−n)

2πi (n2 −n)
.

Let us restrict to the case when n1 and n2 are both even. We see that

yn =


1
2 + 1

πi (n2−n1) n = n1,n2

0 n even ,n 6= n1,n2
n1−n2

πi (n1−n)(n2−n) n odd

Here we have computed the cases n = n1 and n = n2 as above. In Figure 1.9 we have
plotted |yn | for two different combinations of n1,n2. We see from the figure that,
when n1,n2 are close, the Fourier coefficients are close to those of a pure tone with
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Figure 1.9: Plot of |yn | when we have two different pure tones at the different parts
of a period.

n ≈ n1,n2, but that also other frequencies contribute. When n1,n2 are further apart,
we see that the Fourier coefficients are like the sum of the two base frequencies, but
that other frequencies contribute also here. ♣

There is an important lesson to be learnt from this as well: We should be aware
of changes in a sound over time, and it may not be smart to use a frequency repre-
sentation over a large interval when we know that there are simpler frequency rep-
resentations on the smaller intervals. The following example shows that, in some
cases it is not necessary to compute the Fourier integrals at all, in order to compute
the Fourier series.
Example 1.26. Let us compute the complex Fourier series of the function f (t ) =
cos3(2πt/T ), where T is the period of f . We can write

cos3(2πt/T ) =
(

1

2
(e2πi t/T +e−2πi t/T )

)3

= 1

8
(e2πi 3t/T +3e2πi t/T +3e−2πi t/T +e−2πi 3t/T )

= 1

8
e2πi 3t/T + 3

8
e2πi t/T + 3

8
e−2πi t/T + 1

8
e−2πi 3t/T .

From this we see that the complex Fourier series is given by y1 = y−1 = 3
8 , and that

y3 = y−3 = 1
8 . In other words, it was not necessary to compute the Fourier integrals in

this case, and we see that the function lies in V3,T , i.e. there are finitely many terms
in the Fourier series. In general, if the function is some trigonometric function, we
can often use trigonometric identities to find an expression for the Fourier series. ♣

If we reorder the real and complex Fourier bases so that the two functions
{cos(2πnt/T ),sin(2πnt/T )} and {e2πi nt/T ,e−2πi nt/T } have the same index in the bases,
equations (1.14)-(1.15) give us that the change of coordinates matrix4 from DN ,T to

4See Section 4.7 in [20], to review the mathematics behind change of coordinates.
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FN ,T , denoted PFN ,T ←DN ,T , is represented by repeating the matrix

1

2

(
1 1/i

1 −1/i

)

along the diagonal (with an additional 1 for the constant function 1). In other words,
since an ,bn are coefficients relative to the real basis and yn , y−n the corresponding
coefficients relative to the complex basis, we have for n > 0,(

yn

y−n

)
= 1

2

(
1 1/i

1 −1/i

)(
an

bn

)
.

This can be summarized by the following theorem:

Theorem 1.27 (Change of coefficients between real and complex Fourier bases).
The complex Fourier coefficients yn and the real Fourier coefficients an ,bn of a
function f are related by

y0 = a0,

yn = 1

2
(an − i bn),

y−n = 1

2
(an + i bn),

for n = 1, . . . , N .

Combining with Theorem 1.21, Theorem 1.27 can help us state properties of
complex Fourier coefficients for symmetric- and antisymmetric functions. We look
into this in Exercise 8.

Due to the somewhat nicer formulas for the complex Fourier coefficients when
compared to the real Fourier coefficients, we will write most Fourier series in com-
plex form in the following.

What you should have learnt in this section

The complex Fourier basis and its orthonormality.

Exercises for Section 1.3

1. Show that the complex functions e2πi nt/T are orthonormal.

2. Compute the complex Fourier series of the function f (t ) = sin2(2πt/T ).

3. Repeat Exercise 4 in Section 1.2, computing the complex Fourier series instead
of the real Fourier series.

4. In this exercise we will find a connection with certain Fourier series and the rows
in Pascal’s triangle.
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a. Show that both cosn(t ) and sinn(t ) are in VN ,2π for 1 ≤ n ≤ N .

b. Write down the N ’th order complex Fourier series for f1(t ) = cos t , f2(t ) =
cos2 t , og f3(t ) = cos3 t .

c. In (b) you should be able to see a connection between the Fourier coef-
ficients and the three first rows in Pascal’s triangle. Formulate and prove a
general relationship between row n in Pascal’s triangle and the Fourier coef-
ficients of fn(t ) = cosn t .

5. Compute the complex Fourier coefficients of the square wave using Equation 1.23,
i.e. repeat the calculations from Example 1.18 for the complex case. Use Theo-
rem 1.27 to verify your result.

6. Repeat Exercise 5 for the triangle wave.

7. Use Equation (1.23) to compute the complex Fourier coefficients of the periodic
functions with period T defined by, respectively, f (t ) = t , f (t ) = t 2, and f (t ) = t 3, on
[0,T ]. Use Theorem 1.27 to verify your calculations from Exercise 4 in Section 1.2.

8. In this exercise we will prove a version of Theorem 1.21 for complex Fourier co-
efficients.

a. If f is symmetric about 0, show that yn is real, and that y−n = yn .

b. If f is antisymmetric about 0, show that the yn are purely imaginary, y0 =
0, and that y−n =−yn .

c. Show that
∑N

n=−N yne2πi nt/T is symmetric when y−n = yn for all n, and
rewrite it as a cosine-series.

d. Show that
∑N

n=−N yne2πi nt/T is antisymmetric when y0 = 0 and y−n =−yn

for all n, and rewrite it as a sine-series.

1.4 Some properties of Fourier series

We continue by establishing some important properties of Fourier series, in partic-
ular the Fourier coefficients for some important functions. In these lists, we will use
the notation f → yn to indicate that yn is the n’th Fourier coefficient of f (t ).

Theorem 1.28 (Fourier series pairs). The functions 1, e2πi nt/T , and χ−a,a have
the Fourier coefficients

1 → e0 = (1,0,0,0 . . . , )

e2πi nt/T → en = (0,0, . . . ,1,0,0, . . .)

χ−a,a → sin(2πna/T )

πn
.
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The 1 in en is at position n and the function χ−a,a is the characteristic function of
the interval [−a, a], defined by

χ−a,a(t ) =
{

1, if t ∈ [−a, a];

0, otherwise.

The first two pairs are easily verified, so the proofs are omitted. The case forχ−a,a

is very similar to the square wave, but easier to prove, and therefore also omitted.

Theorem 1.29 (Fourier series properties). The mapping f → yn is linear: if f →
xn , g → yn , then

a f +bg → axn +byn

For all n. Moreover, if f is real and periodic with period T , the following properties
hold:

1. yn = y−n for all n.

2. If g (t ) = f (−t ) and f → yn , then g → yn . In particular,

(a) if f (t ) = f (−t ) (i.e. f is symmetric), then all yn are real, so that bn are
zero and the Fourier series is a cosine series.

(b) if f (t ) =− f (−t ) (i.e. f is antisymmetric), then all yn are purely imagi-
nary, so that the an are zero and the Fourier series is a sine series.

3. If g (t ) = f (t −d) (i.e. g is the function f delayed by d) and f → yn , then
g → e−2πi nd/T yn .

4. If g (t ) = e2πi d t/T f (t ) with d an integer, and f → yn , then g → yn−d .

5. Let d be a number. If f → yn , then f (d + t ) = f (d − t ) for all t if and only if
the argument of yn is −2πnd/T for all n.

Proof: The proof of linearity is left to the reader. Property 1 follows immediately
by writing

yn = 1

T

∫ T

0
f (t )e−2πi nt/T d t = 1

T

∫ T

0
f (t )e2πi nt/T d t

= 1

T

∫ T

0
f (t )e−2πi (−n)t/T d t = y−n .
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Also, if g (t ) = f (−t ), we have that

1

T

∫ T

0
g (t )e−2πi nt/T d t = 1

T

∫ T

0
f (−t )e−2πi nt/T d t =− 1

T

∫ −T

0
f (t )e2πi nt/T d t

= 1

T

∫ T

0
f (t )e2πi nt/T d t = yn .

Property 2 follows from this, since the remaining statements here were established
in Theorems 1.21, 1.27, and Exercise 8 in Section 1.3. To prove property 3, we observe
that the Fourier coefficients of g (t ) = f (t −d) are

1

T

∫ T

0
g (t )e−2πi nt/T d t = 1

T

∫ T

0
f (t −d)e−2πi nt/T d t

= 1

T

∫ T

0
f (t )e−2πi n(t+d)/T d t

= e−2πi nd/T 1

T

∫ T

0
f (t )e−2πi nt/T d t = e−2πi nd/T yn .

For property 4 we observe that the Fourier coefficients of g (t ) = e2πi d t/T f (t ) are

1

T

∫ T

0
g (t )e−2πi nt/T d t = 1

T

∫ T

0
e2πi d t/T f (t )e−2πi nt/T d t

= 1

T

∫ T

0
f (t )e−2πi (n−d)t/T d t = yn−d .

If f (d+t ) = f (d−t ) for all t , we define the function g (t ) = f (t+d) which is symmetric
about 0, so that it has real Fourier coefficients. But then the Fourier coefficients of
f (t ) = g (t−d) are e−2πi nd/T times the (real) Fourier coefficients of g by property 3. It
follows that yn , the Fourier coefficients of f , has argument −2πnd/T . The proof in
the other direction follows by noting that any function where the Fourier coefficients
are real must be symmetric about 0, once the Fourier series is known to converge.
This proves property 5.

Let us analyze these properties, to see that they match the notion we already
have for frequencies and sound. We will say that two sounds “essentially are the
same” if the absolute values of each Fourier coefficient are equal. Note that this does
not mean that the sounds sound the same, it merely says that the contributions at
different frequencies are comparable.

The first property says that the positive and negative frequencies in a (real) sound
essentially are the same. The second says that, when we play a sound backwards,
the frequency content is essentially the same. This is certainly the case for all pure
sounds. The third property says that, if we delay a sound, the frequency content also
is essentially the same. This also matches our intiuition on sound, since we think of
the frequency representation as something which is time-independent. The fourth
property says that, if we multiply a sound with a pure tone, the frequency represen-
tation is shifted (delayed), according to the value of the frequency. This is something
we see in early models for the transmission of audio, where an audio signal is trans-
mitted after having been multiplied with what is called a carrier wave. You can
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think of the carrier signal as a pure tone. The result is a signal where the frequencies
have been shifted with the frequency of the carrier wave. The point of shifting the
frequency of the transmitted signal is to make it use a frequency range in which one
knows that other signals do not interfere. The last property looks a bit mysterious.
We will not have use for this property before the next chapter.

From Theorem 1.29 we also see that there exist several cases of duality between
a function and its Fourier series:

1. Delaying a function corresponds to multiplying the Fourier coefficients with
a complex exponential. Vice versa, multiplying a function with a complex ex-
ponential corresponds to delaying the Fourier coefficients.

2. Symmetry/antisymmetry for a function corresponds to the Fourier coefficients
being real/purely imaginary. Vice versa, a function which is real has Fourier
coefficients which are conjugate symmetric.

Actually, one can show that these dualities are even stronger if we had considered
Fourier series of complex functions instead of real functions. We will not go into
this.

1.4.1 Rate of convergence for Fourier series

We have earlier mentioned criteria which guarantee that the Fourier series con-
verges. Another important topic is the rate of convergence, given that it actually
converges. If the series converges quickly, we may only need a few terms in the
Fourier series to obtain a reasonable approximation. We have already seen exam-
ples which illustrate different convergence rates: The square wave seemed to have
very slow convergence rate near the discontinuities, while the triangle wave did not
seem to have the same problem.

Before discussing results concerning convergence rates we consider a simple
lemma which will turn out to be useful.

Lemma 1.30. Assume that f is differentiable. Then ( fN )′(t ) = ( f ′)N (t ). In other
words, the derivative of the Fourier series equals the Fourier series of the deriva-
tive.

Proof: We first compute

〈 f ,e2πi nt/T 〉 = 1

T

∫ T

0
f (t )e−2πi nt/T d t

= 1

T

([
− T

2πi n
f (t )e−2πi nt/T

]T

0
+ T

2πi n

∫ T

0
f ′(t )e−2πi nt/T d t

)

= T

2πi n

1

T

∫ T

0
f ′(t )e−2πi nt/T d t = T

2πi n
〈 f ′,e2πi nt/T 〉.
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where we used integration by parts, and that − T
2πi n f (t )e−2πi nt/T are periodic with

period T . It follows that 〈 f ,e2πi nt/T 〉 = T
2πi n 〈 f ′,e2πi nt/T 〉. From this we get that

( fN )′(t ) =
(

N∑
n=−N

〈 f ,e2πi nt/T 〉e2πi nt/T

)′
= 2πi n

T

N∑
n=−N

〈 f ,e2πi nt/T 〉e2πi nt/T

=
N∑

n=−N
〈 f ′,e2πi nt/T 〉e2πi nt/T = ( f ′)N (t ).

where we substituted the connection between the inner products we just found.
Example 1.31. The connection between the Fourier series of the function and its
derivative can be used to simplify the computation of Fourier series for new func-
tions. Let us see how we can use this to compute the Fourier series of the triangle
wave, which was quite a tedious job in Example 1.19. However, the relationship
f ′

t (t ) = 4
T fs (t ) is straightforward to see from the plots of the square wave fs and the

triangle wave ft . From this relationship and from Equation (1.11) for the Fourier
series of the square wave it follows that

(( ft )′)N (t ) = 4

T

(
4

π
sin(2πt/T )+ 4

3π
sin(2π3t/T )+ 4

5π
sin(2π5t/T )+·· ·

)
.

If we integrate this we obtain

( ft )N (t ) =− 8

π2

(
cos(2πt/T )+ 1

32 cos(2π3t/T )+ 1

52 cos(2π5t/T )+·· ·
)
+C .

What remains is to find the integration constant C . This is simplest found if we set
t = T /4, since then all cosine terms are 0. Clearly then C = 0, and we arrive at the
same expression as in Equation (1.12) for the Fourier series of the triangle wave.
This approach clearly had less computations involved. There is a minor point here
which we have not addressed: the triangle wave is not differentiable at two points,
as required by Lemma 1.30. It is, however, not too difficult to see that this result still
holds in cases where we have a finite number of nondifferentiable points only. ♣

We get the following corollary to Lemma 1.30:

Corollary 1.32. If the complex Fourier coefficients of f are yn and f is differen-
tiable, then the Fourier coefficients of f ′(t ) are 2πi n

T yn .

If we turn this around, we note that the Fourier coefficients of f (t ) are T /(2πi n)
times those of f ′(t ). If f is s times differentiable, we can repeat this argument to
show that the Fourier coefficients of f (t ) are

(
T /(2πi n)

)s times those of f (s)(t ). In
other words, the Fourier coefficients of a function which is many times differentiable
decay to zero very fast.
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(a) Perodic extension of f
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(b) Symmetric extension of f

Figure 1.10: Two different extensions of f to a periodic function on the whole real
line

Observation 1.33. The Fourier series converges quickly when the function is
many times differentiable.

An illustration is found in examples 1.18 and 1.19, where we saw that the Fourier
series coefficients for the triangle wave converged more quickly to zero than those of
the square wave. This is explained by the fact that the square wave is discontinuous,
while the triangle wave is continuous with a discontinuous first derivative. Also, the
functions considered in examples 1.24 and 1.25 are not continuous, which partially
explain why we there saw contributions from many frequencies.

The requirement of continuity in order to obtain quickly converging Fourier se-
ries may seem like a small problem. However, often the function is not defined on
the whole real line: it is often only defined on the interval [0,T ). If we extend this
to a periodic function on the whole real line, by repeating one period as shown in
Figure 1.10(a), there is no reason why the new function should be continuous at the
boundaries 0,T,2T etc., even though the function we started with may be contin-
uous on [0,T ). This would require that f (0) = limt→T f (t ). If this does not hold,
the function may not be well approximated with trigonometric functions, due to
a slowly convergence Fourier series. We can therefore ask ourselves the following
question:

Idea 1.34. Assume that f is continuous on [0,T ). Can we construct another pe-
riodic function which agrees with f on [0,T ], and which is both continuous and
periodic (maybe with period different from T )?

If this is possible the Fourier series of the new function could produce better
approximations for f . It turns out that the following extension strategy does the job:
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Definition 1.35 (Symmetric extension of a function). Let f be a function de-
fined on [0,T ]. By the symmetric extension of f , denoted f̆ , we mean the function
defined on [0,2T ] by

f̆ (t ) =
{

f (t ), if 0 ≤ t ≤ T ;

f (2T − t ), if T < t ≤ 2T .

Clearly the following holds:

Theorem 1.36. If f is continuous on [0,T ], then f̆ is continuous on [0,2T ], and
f̆ (0) = f̆ (2T ). If we extend f̆ to a periodic function on the whole real line (which
we also will denote by f̆ ), this function is continuous, agrees with f on [0,T ), and
is a symmetric function.

This also means that the Fourier series of f̆ is a cosine series, so that it is de-
termined by the cosine-coefficients an . The symmetric extension of f is shown in
Figure 1.10(b). f̆ is symmetric since, for 0 ≤ t ≤ T ,

f̆ (−t ) = f̆ (2T − t ) = f (2T − (2T − t )) = f (t ) = f̆ (t ).

In summary, we now have two possibilities for approximating a function f defined
only on [0,T ), where the latter addresses a shortcoming of the first:

1. By the Fourier series of f

2. By the Fourier series of f̆ restricted to [0,T ) (which actually is a cosine-series)

Example 1.37. Let f be the function with period T defined by f (t ) = 2t/T − 1 for
0 ≤ t < T . In each period the function increases linearly from −1 to 1. Because f
is discontinuous at the boundaries, we would except the Fourier series to converge
slowly. Since the function is antisymmetric, the coefficients an are zero, and we
compute bn as

bn = 2

T

∫ T

0

2

T

(
t − T

2

)
sin(2πnt/T )d t = 4

T 2

∫ T

0

(
t − T

2

)
sin(2πnt/T )d t

= 4

T 2

∫ T

0
t sin(2πnt/T )d t − 2

T

∫ T

0
sin(2πnt/T )d t

=− 2

πn
,

so that the Fourier series is

− 2

π
sin(2πt/T )− 2

2π
sin(2π2t/T )− 2

3π
sin(2π3t/T )− 2

4π
sin(2π4t/T )−·· · ,
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Figure 1.11: The Fourier series for N = 10 for the function in Example 1.37

which indeed converges slowly to 0. Let us now instead consider the symmetric
extension of f . Clearly this is the triangle wave with period 2T , and the Fourier
series of this was

− 8

π2 cos(2πt/(2T ))− 8

32π2 cos(2π3t/(2T ))− 8

52π2 cos(2π5t/(2T ))

− 8

72π2 cos(2π7t/(2T ))+·· · .

Comparing the two series, we see that the coefficient at frequency n/T in the first
series has value −2/(nπ), while in the second series it has value

− 8

(2n)2π2 =− 2

n2π2 .

The second series clearly converges faster than the first.

If we use T = 1/880, the symmetric extension will be the triangle wave of Exam-
ple 1.19. Its Fourier series for N = 10 is shown in Figure 1.7(b) and the Fourier series
for N = 20 is shown in Figure 1.11. The value N = 10 is used since this corresponds to
the same frequencies as the previous figure for N = 20. It is clear from the plot that
the Fourier series for f itself is not a very good approximation. However, we cannot
differentiate between the Fourier series and the function itself for the triangle wave.
♣

What you should have learnt in this section

Some simple Fourier series pairs. Certain properties of Fourier series, for instance
how delay of a function or multiplication with a complex exponential affect the
Fourier coefficients. The convergence rate of a Fourier series depends on the reg-
ularity of the function. How this motivates the symmetric extension of a function.
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Exercises for Section 1.4

1. Define the function f with period T on [−T /2,T /2] by

f (t ) =
{

1, if −T /4 ≤ t < T /4;

−1, if |T /4| ≤ t < |T /2|.

f is just the square wave, shifted with T /4. Compute the Fourier coefficients of f
directly, and use Property 3 in Theorem 1.29 to verify your result.

2. Find a function f which has the complex Fourier series

∑
n odd

4

π(n +4)
e2πi nt/T .

Hint: Attempt to use one of the properties in Theorem 1.29 on the Fourier series of
the square wave.

3. Show that the complex Fourier coefficients yn of f , and the cosine-coefficients
an of f̆ are related by a2n = yn + y−n . This result is not enough to obtain the entire
Fourier series of f̆ , but at least it gives us half of it.

1.5 Operations on sound: filters

It is easy to see how we can use Fourier coefficients to analyse or improve sound:
Noise in a sound often corresponds to the presence of some high frequencies with
large coefficients, and by removing these, we remove the noise. For example, we
could set all the coefficients except the first one to zero. This would change the
unpleasant square wave to the pure tone sin(2π440t ), which we started our exper-
iments with. Doing so is an example of an important operation on sound called
filtering:

Definition 1.38 (Analog filters). An operation on sound is called an analog filter
if it preserves the different frequencies in the sound. In other words, s is an analog
filter if, for any sound f = ∑

ν c(ν)e2πiνt , the output s( f ) is a sound which can be
written on the form

s( f ) = s

(∑
ν

c(ν)e2πiνt
)
=∑

ν
c(ν)λs (ν)e2πiνt ,

where λs (ν) is a function describing how s treats the different frequencies. λs (ν)
uniquely determines s, and is also called the frequency response of s.

The following is clear:

Theorem 1.39. The following hold for an analog filter s:
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1. When f is periodic with period T , s( f ) is also periodic with period T .

2. When s( f ) we have that (s( f ))N = s( fN ), i.e. s maps the N ’th order Fourier
series of f to the N ’th order Fourier series of s( f ).

3. Any pure tone is an eigenvector of s.

The analog filters we will look at have the following form:

Theorem 1.40. Assume that g ∈ L1(R). The operation

f (t ) → h(t ) =
∫ ∞

−∞
g (s) f (t − s)d s. (1.24)

is an analog filter. Analog filters which can be expressed like this are also called
convolutions. Also

1. When f ∈ L2(R), then h ∈ L2(R).

2. The frequency response of the filter is λs (ν) = ∫ ∞
∞ g (s)e−2πiνs d s

The function g is also called a convolution kernel. We also write sg for the analog
filter with convolution kernel g .

The name convolution kernel comes from the fact that filtering operations are
also called convolution operations in the literature. In the analog filters we will look
at later, the convolution kernel will always have compact support. The support of a
function f defined on a subset I ofR is given by the closure of the set of points where
the function is nonzero,

supp( f ) = {t ∈ I | f (t ) 6= 0}.

Compact support simply means that the support is contained in some interval on
the form [a,b] for some constants a,b. In this case the filter takes the form f (t ) →
h(t ) = ∫ b

a g (s) f (t − s)d s. Also note that the integral above may not exist, so that one
needs to put some restrictions on the functions, such that f ∈ L2(R). Note also that
all analog filters may not be expressed as convolutions.

Proof: We compute

s(e2πiνt ) =
∫ ∞

−∞
g (s)e2πiν(t−s)d s =

∫ ∞

−∞
g (s)e−2πiνs d se2πiνt =λs ( f )e2πiνt ,

which shows that s is a filter with the stated frequency response. That h ∈ L2(R),
when f ∈ L2(R) follows from Minkowski’s inequality for integrals [12].

The function g is arbitrary, so that this strategy leads to a wide class of analog
filters. We may ask the question of whether the general analog filter always has this
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form. We will not go further into this, although one can find partially affirmative
answers to this question.

We also need to say something about the connection between filters and sym-
metric functions. We saw that the symmetric extension of a function took the form
of a cosine-series, and that this converged faster to the symmetric extension than the
Fourier series did to the function. If a filter preserves cosine-series it will also pre-
serve symmetric extensions, and therefore also map fast-converging Fourier series
to fast-converging Fourier series. The following result will be useful in this respect:

Theorem 1.41. If the frequency response of a filter satisfies λs (ν) =λs (−ν) for all
frequencies ν, then the filter preserves cosine series and sine series.

Proof: We have that

s(cos(2πnt/T )) = s

(
1

2
(e2πi nt/T +e−2πi nt/T )

)
= 1

2
λs (n/T )e2πi nt/T + 1

2
λs (−n/T )e−2πi nt/T

=λs (n/T )

(
1

2
(e2πi nt/T +e−2πi nt/T )

)
=λs (n/T )cos(2πnt/T ).

This means that s preserves cosine-series. A similar computation holds for sine-
series holds as well.

An analog filter where λs (ν) = λs (−ν) is also called a symmetric filter. As an ex-
ample, consider the analog filter s( f1) = ∫ a

−a g (s) f1(t − s)d s where g is symmetric
around 0 and supported on [−a, a]. s is a symmetric filter since

λs (ν) =
∫ a

−a
g (s)e−2πiνs d s =

∫ a

−a
g (s)e2πiνs d s =λs (−ν).

Filters are much used in practice, but the way we have defined them here makes
them not very useful for computation. We will handle the problem of making filters
suitable for computation in Chapter 3.

1.6 The MP3 standard

Digital audio first became commonly available when the CD was introduced in the
early 1980s. As the storage capacity and processing speeds of computers increased,
it became possible to transfer audio files to computers and both play and manip-
ulate the data, in ways such as in the previous section. However, audio was rep-
resented by a large amount of data and an obvious challenge was how to reduce
the storage requirements. Lossless coding techniques like Huffman and Lempel-Ziv
coding were known and with these kinds of techniques the file size could be reduced
to about half of that required by the CD format. However, by allowing the data to be
altered a little bit it turned out that it was possible to reduce the file size down to
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about ten percent of the CD format, without much loss in quality. The MP3 audio
format takes advantage of this.

MP3, or more precisely MPEG-1 Audio Layer 3, is part of an audio-visual stan-
dard called MPEG. MPEG has evolved over the years, from MPEG-1 to MPEG-2,
and then to MPEG-4. The data on a DVD disc can be stored with either MPEG-
1 or MPEG-2, while the data on a bluray-disc can be stored with either MPEG-2
or MPEG-4. MP3 was developed by Philips, CCETT (Centre commun d’ï¿½tudes
de tï¿½lï¿½vision et tï¿½lï¿½communications), IRT (Institut fï¿½r Rundfunktechnik)
and Fraunhofer Society, and became an international standard in 1991. Virtually all
audio software and music players support this format. MP3 is just a sound format.
It leaves a substantial amount of freedom in the encoder, so that different encoders
can exploit properties of sound in various ways, in order to alter the sound in remov-
ing inaudible components therein. As a consequence there are many different MP3
encoders available, of varying quality. In particular, an encoder which works well for
higher bit rates (high quality sound) may not work so well for lower bit rates.

With MP3, the sound is split into frequency bands, each band corresponding to
a particular frequency range. In the simplest model, 32 frequency bands are used.
A frequency analysis of the sound, based on what is called a psycho-acoustic model,
is the basis for further transformation of these bands. The psycho-acoustic model
computes the significance of each band for the human perception of the sound.
When we hear a sound, there is a mechanical stimulation of the ear drum, and the
amount of stimulus is directly related to the size of the sample values of the digital
sound. The movement of the ear drum is then converted to electric impulses that
travel to the brain where they are perceived as sound. The perception process uses a
transformation of the sound so that a steady oscillation in air pressure is perceived
as a sound with a fixed frequency. In this process certain kinds of perturbations
of the sound are hardly noticed by the brain, and this is exploited in lossy audio
compression.

More precisely, when the psycho-acoustic model is applied to the frequency con-
tent resulting from our frequency analysis, scale factors and masking thresholds are
assigned for each band. The computed masking thresholds have to do with a phe-
nomenon called masking. A simple example of this is that a loud sound will make
a simultaneous low sound inaudible. For compression this means that if certain
frequencies of a signal are very prominent, most of the other frequencies can be re-
moved, even when they are quite large. If the sounds are below the masking thresh-
old, it is simply ommited by the encoder, since the model says that the sound should
be inaudible.

Masking effects are just one example of what is called psycho-acoustic effects,
and all such effects can be taken into account in a psycho-acoustic model. Another
obvious such effect regards computing the scale factors: the human auditory sys-
tem can only perceive frequencies in the range 20 Hz – 20 000 Hz. An obvious way
to do compression is therefore to remove frequencies outside this range, although
there are indications that these frequencies may influence the listening experience
inaudibly. The computed scaling factors tell the encoder about the precision to be
used for each frequency band: If the model decides that one band is very important
for our perception of the sound, it assigns a big scale factor to it, so that more effort
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is put into encoding it by the encoder (i.e. it uses more bits to encode this band).
Using appropriate scale factors and masking thresholds provide compression,

since bits used to encode the sound are spent on parts important for our perception.
Developing a useful psycho-acoustic model requires detailed knowledge of human
perception of sound. Different MP3 encoders use different such models, so they
may produce very different results, worse or better.

The information remaining after frequency analysis and using a psycho-acoustic
model is coded efficiently with (a variant of) Huffman coding. MP3 supports bit
rates from 32 to 320 kb/s and the sampling rates 32, 44.1, and 48 kHz. The format
also supports variable bit rates (the bit rate varies in different parts of the file). An
MP3 encoder also stores metadata about the sound, such as the title of the audio
piece, album and artist name and other relevant data.

MP3 too has evolved in the same way as MPEG, from MP1 to MP2, and to MP3,
each one more sophisticated than the other, providing better compression. MP3 is
not the latest development of audio coding in the MPEG family: AAC (Advanced Au-
dio Coding) is presented as the successor of MP3 by its principal developer, Fraun-
hofer Society, and can achieve better quality than MP3 at the same bit rate, particu-
larly for bit rates below 192 kb/s. AAC became well known in April 2003 when Apple
introduced this format (at 128 kb/s) as the standard format for their iTunes Music
Store and iPod music players. AAC is also supported by many other music players,
including the most popular mobile phones.

The technologies behind AAC and MP3 are very similar. AAC supports more
sample rates (from 8 kHz to 96 kHz) and up to 48 channels. AAC uses the same
transformation as MP3, but AAC processes 1 024 samples at a time. AAC also uses
much more sophisticated processing of frequencies above 16 kHz and has a number
of other enhancements over MP3. AAC, as MP3, uses Huffman coding for efficient
coding of the transformed values. Tests seem quite conclusive that AAC is better
than MP3 for low bit rates (typically below 192 kb/s), but for higher rates it is not
so easy to differentiate between the two formats. As for MP3 (and the other formats
mentioned here), the quality of an AAC file depends crucially on the quality of the
encoding program.

There are a number of variants of AAC, in particular AAC Low Delay (AAC-LD).
This format was designed for use in two-way communication over a network, for ex-
ample the internet. For this kind of application, the encoding (and decoding) must
be fast to avoid delays (a delay of at most 20 ms can be tolerated).

Summary

We discussed the basic question of what is sound is, and concluded that sound could
be modeled as a sum of frequency components. If the function was periodic we
could define its Fourier series, which can be thought of as an approximation scheme
for periodic functions using finite-dimensional spaces of trigonometric functions.
We established the basic properties of Fourier series, and some duality relationships
between the function and its Fourier series. We have also computed the Fourier se-
ries of the square wave and the triangle wave, and we saw that we could speed up the
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convergence of the Fourier series by instead considering the symmetric extension of
the function.

We also discussed the MP3 standard for compression of sound, and its relation to
a psychoacoutic model which describes how the human auditory system perceives
sound. There exist a wide variety of documents on this standard. In [24], an overview
is given, which, although written in a signal processing friendly language and repre-
senting most relevant theory such as for the psychoacoutic model, does not dig into
all the details.

we also defined analog filters, which were operations which operate on contin-
uous sound, without any assumption on periodicity. In signal processing literature
onde defines the Continuous-time Fourier transform, or CTFT. We will not use this
concept in this book. We have instead disguised this concept as the frequency re-
sponse of an analog filter. To be more precise: in the literature, the CTFT of g is
nothing but the frequency response of an analog filter with g as convolution kernel.
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Chapter 2
Digital sound and Discrete
Fourier analysis

In Chapter 1 we saw how a periodic function can be decomposed into a linear com-
bination of sines and cosines, or equivalently, a linear combination of complex ex-
ponential functions. This kind of decomposition is, however, not very convenient
from a computational point of view. First of all, the coefficients are given by inte-
grals that in most cases cannot be evaluated exactly, so some kind of numerical in-
tegration technique needs to be applied. Secondly, functions are defined for all time
instances. On computers and various kinds of media players, however, the sound is
digital, meaning that it is represented by a large number of function values, and not
by a function defined for all time instances.

In this chapter our starting point is simply a vector which represents the sound
values, rather than a function f (t ). We start by seeing how we can make use of this
on a computer, either by playing it as a sound, or performing simple operations on
it. After this we continue by decomposing vectors in terms of linear combinations of
vectors built from complex exponentials. As before it turns out that this is simplest
when we assume that the values in the vector repeat periodically. Then a vector of
finite dimension can be used to represent all sound values, and a transformation
to the frequency domain, where operations which change the sound can easily be
made, simply amounts to multiplying the vector by a matrix. This transformation
is called the Discrete Fourier transform, and we will see how we can implement this
efficiently. It turns out that these algorithms can also be used for computing approx-
imations to the Fourier series, and for sampling a sound in order to create a vector
of sound data.

The examples in this chapter and the next chapter can be run from the notebook
notebook_digitalsound.m.
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2.1 Digital sound and simple operations on digital sound

We start by defining what a digital sound is and by establishing some notation and
terminology.

Definition 2.1 (Digital sound). A digital sound is a sequence x = {xi }N−1
i=0 that

corresponds to measurements of the air pressure of a sound f , recorded at a fixed
rate of fs (the sampling frequency or sampling rate) measurements per second,
i.e.,

xk = f (k/ fs ), for k = 0, 1; . . . , N .

The measurements are often referred to as samples. The time between successive
measurements is called the sampling period and is usually denoted Ts . The length
of the vector is usually assumed to be N , and it is indexed from 0 to N − 1. If
the sound is in stereo there will be two arrays x1 and x2, one for each channel.
Measuring the sound is also referred to as sampling the sound, or analog to digital
(AD) conversion.

Note that this indexing convention for vectors is not standard in mathematics,
where vector indices start at 1, as they do in Matlab. In most cases, a digital sound is
sampled from an analog (continuous) audio signal. This is usually done with a tech-
nique called Pulse Code Modulation (PCM). The audio signal is sampled at regular
intervals and the sampled values stored in a suitable number format. Both the sam-
pling frequency, and the accuracy and number format used for storing the samples,
may vary for different kinds of audio, and both influence the quality of the result-
ing sound. For simplicity the quality is often measured by the number of bits per
second, i.e., the product of the sampling rate and the number of bits (binary digits)
used to store each sample. This is also referred to as the bit rate. For the computer
to be able to play a digital sound, samples must be stored in a file or in memory on
a computer. To do this efficiently, digital sound formats are used. A couple of them
are described in the examples below.
Example 2.2. In the classical CD-format the audio signal is sampled 44 100 times
per second and the samples stored as 16-bit integers. This works well for music
with a reasonably uniform dynamic range, but is problematic when the range varies.
Suppose for example that a piece of music has a very loud passage. In this passage
the samples will typically make use of almost the full range of integer values, from
−215 −1 to 215. When the music enters a more quiet passage the sample values will
necessarily become much smaller and perhaps only vary in the range −1000 to 1000,
say. Since 210 = 1024 this means that in the quiet passage the music would only be
represented with 10-bit samples. This problem can be avoided by using a floating-
point format instead, but very few audio formats appear to do this.

The bit rate for CD-quality stereo sound is 44100× 2× 16 bits/s = 1411.2 kb/s.
This quality measure is particularly popular for lossy audio formats where the un-
compressed audio usually is the same (CD-quality). However, it should be remem-
bered that even two audio files in the same file format and with the same bit rate
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may be of very different quality because the encoding programs may be of different
quality. ♣

This value 44 100 for the sampling rate isnot coincidental, and we will return to
this later.
Example 2.3. For telephony it is common to sample the sound 8000 times per sec-
ond and represent each sample value as a 13-bit integer. These integers are then
converted to a kind of 8-bit floating-point format with a 4-bit significand. Telephony
therefore generates a bit rate of 64 000 bits per second, i.e. 64 kb/s. ♣

Newer formats with higher quality are available. Music is distributed in various
formats on DVDs (DVD-video, DVD-audio, Super Audio CD) with sampling rates up
to 192 000 and up to 24 bits per sample. These formats also support surround sound
(up to seven channels in contrast to the two stereo channels on a CD). In the follow-
ing we will assume all sound to be digital. Later we will return to how we reconstruct
audible sound from digital sound.

Simple operations and computations with digital sound can be done in any pro-
gramming environment. Let us take a look at how these. From Definition 2.1, digital
sound is just an array of sample values x = (xi )N−1

i=0 , together with the sample rate
fs . Performing operations on the sound therefore amounts to doing the appropriate
computations with the sample values and the sample rate. The most basic operation
we can perform on a sound is simply playing it.

2.1.1 Playing a sound

You may already have listened to pure tones, square waves and triangle waves in
the last section. The corresponding sound files were generated in a way we will de-
scribe shortly, placed in a directory available on the internet, and linked to from
these notes. A program on your computer was able to play these files when you
clicked on them. Let us take a closer look at the different steps here. You will need
these steps in Exercise 3, where you will be asked to implement a function which
plays a pure sound with a given frequency on your computer.

First we need to know how we can obtain the samples of a pure tone. The follow-
ing code does this when we have defined the variables f for its frequency, antsec
for its length in seconds, and fs for the sampling rate.

% Create samples of a pure tone
t = linspace(0, antsec, fs*antsec);
x = sin(2*pi*f*t);

Code will be displayed in this way throughout these notes. We will mostly use the
value 44100 for fs, to abide to the sampling rate used on CD’s. We also need a func-
tion to help us listen to the sound samples. We have the two functions

playblocking(playerobj)
playblocking(playerobj, [start stop])

These simply play the audio segment encapsulated by the objectplayerobj. playblocking
means that the method playing the sound will block until it has finished playing. We
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will have use for this functionality later on, since we may play sounds in successive
order. With the first function the entire audio segment is played. With the second
function the playback starts at sample start, and ends at sample stop. The mys-
terious playerobj object above can be obtained from the sound samples (repre-
sented by a vector x) and the sampling rate (fs) by the function:

playerobj = audioplayer(x, fs)

This function basically sends the array of sound samples and sample rate to the
sound card, which uses some method for reconstructing the sound to an analog
sound signal. This analog signal is then sent to the loudspeakers and we hear the
sound.

Fact 2.4. The basic command in a programming environment that handles
sound takes as input an array of sound samples x and a sample rate s, and plays
the corresponding sound through the computer’s loudspeakers.

The sound samples can have different data types. We will always assume that
they are of type double. The computer requires that they have values between −1
and 1 (i.e. these represent the range of numbers which can be played through the
sound card of the computer). Also, x can actually be a matrix: Each column in the
matrix represents a sound channel. Sounds we generate on our own from a mathe-
matical function (as for the pure tone above) will typically have only one channel, so
that x has only one column. If x originates from a stereo sound file, it will have two
columns.

You can create x on your own, either by filling it with values from a mathematical
function as we did for the pure tone above, or filling in with samples from a sound
file. To do this from a file in the wav-format named filename, simply write

[x, fs] = audioread(filename)

The wav-format format was developed by Microsoft and IBM, and is one of the most
common file formats for CD-quality audio. It uses a 32-bit integer to specify the file
size at the beginning of the file, which means that a WAV-file cannot be larger than
4 GB. In addition to filling in the sound samples in the vector x, this function also
returns the sampling rate fs used in the file. The function

audiowrite(filename, x, fs)

can similarly be used to write the data stored in the vector x to the wav-file by the
name filename. As an example, we can listen to and write the pure tone above with
the help of the following code:
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% Play the samples of the pure tone, and write them to file
playerobj = audioplayer(x, fs);
playblocking(playerobj);
audiowrite(’puretone440.wav’, x, fs);

The sound file for the pure tone embedded into this document was created in this
way. In the same way we can listen to the square wave with the help of the following
code:

% Listen to the square wave
samplesperperiod=round(fs/f);
oneperiod = [ones(1,round(samplesperperiod/2)) ...

-ones(1,round(samplesperperiod/2))];
x = zeros(1, antsec*f*length(oneperiod));
x=repmat(oneperiod,1,antsec*f);
playerobj=audioplayer(x, fs);
playblocking(playerobj);

The code creates 440 copies of the square wave per second by first computing the
number of samples needed for one period when it is known that we should have a
total of 44100 samples per second, and then constructing the samples needed for
one period. In the same fashion we can listen to the triangle wave simply by replac-
ing the code for generating the samples for one period with the following:

oneperiod=[linspace(-1,1,round(samplesperperiod/2)) ...
linspace(1,-1,round(samplesperperiod/2))];

Instead of using the formula for the triangle wave, directly, we have used the function
linspace.

As an example of how to fill in the sound samples from a file, the code

% Read sound samples from our sample audio file
[x, fs] = audioread(’castanets.wav’);

reads the file castanets.wav, and stores the sound samples in the matrix x. In this
case there are two sound channels, so there are two columns in x. To listen to the
sound from only one channel, we can write

% Listen to sound from the second channel
playerobj=audioplayer(x(:, 2), fs);
playblocking(playerobj);

In the following we will usually not to do this, as it is possible to apply operations
to all channels simultaneously using the same simple syntax. audioread returns
sound samples with floating point precision.

It may be that some other environment gives you the play functionality on your
computer. Even if no environment on your computer supports suchplay-functionality
at all, you may still be able to play the result of your computations if there is support
for saving the sound in some standard format like mp3. The resulting file can then
be played by the standard audio player on your computer.
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Example 2.5 (Changing the sample rate). We can easily play back a sound with a
different sample rate than the standard one. If we in the code above instead wrote
fs=80000, the sound card will assume that the time distance between neighbouring
samples is half the time distance in the original. The result is that the sound takes
half as long, and the frequency of all tones is doubled. For voices the result is a
characteristic Donald Duck-like sound.

Conversely, the sound can be played with half the sample rate by settingfs=20000.
Then the length of the sound is doubled and all frequencies are halved. This results
in low pitch, roaring voices.

Fact 2.6. A digital sound can be played at normal, double and half sampling rate
by writing

antsec = 3;
fs = 44100;
f = 440;

% Create samples of a pure tone
t = linspace(0, antsec, fs*antsec);
x = sin(2*pi*f*t);

respectively.

The sample file castanets.wav played at double sampling rate sounds like this,
while it sounds like this when it is played with half the sampling rate. ♣
Example 2.7 (Playing the sound backwards). At times a popular game has been to
play music backwards to try and find secret messages. In the old days of analog
music on vinyl this was not so easy, but with digital sound it is quite simple; we just
need to reverse the samples. To do this we just loop through the array and put the
last samples first.

Fact 2.8. Let x = (xi )N−1
i=0 be the samples of a digital sound. Then the samples

y = (yi )N−1
i=0 of the reverse sound are given by

yi = xN−i−1, for i = 0,1, . . . N −1.

When we reverse the sound samples, we have to reverse the elements in both sound
channels. This can be performed as follows

% Play the sound backwards
N = size(x, 1);
z = x(N:(-1):1, :);

Performing this on our sample file you generate a sound which sounds like this. ♣
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Example 2.9 (Adding noise). To remove noise from recorded sound can be very chal-
lenging, but adding noise is simple. There are many kinds of noise, but one kind is
easily obtained by adding random numbers to the samples of a sound.

Fact 2.10. Let x be the samples of a digital sound of length N . A new sound z
with noise added can be obtained by adding a random number to each sample,

% Adding noise
z = x + c*(2*rand(size(x))-1);
z = z/max(abs(z));

Here rand is a function that returns random numbers in the interval [0,1], and c
is a constant (usually smaller than 1) that dampens the noise.

The effect of writing (2*rand(1,N)-1) above is that random numbers between −1
and 1 are returned instead of random numbers between 0 and 1. Note that we also
have scaled the sound samples so that they lie between -1 and 1 (as required by our
representation of sound), since the addition may lead to numbers which are outside
this range. Without this we may obtain an unrecognizable sound, as values outside
the legal range are changed.

Adding noise in this way will produce a general hissing noise similar to the noise
you hear on the radio when the reception is bad. As before you should add noise to
both channels. Note alse that the sound samples may be outside [−1,1] after adding
noise, so that you should scale the samples before writing them to file. The factor c is
important, if it is too large, the noise will simply drown the signal z : castanets.wav
with noise added with c = 0.4 sounds like this, while with c = 0.1 it sounds like this.
♣

In addition to the operations listed above, the most important operations on dig-
ital sound are digital filters. These are given a separate treatment in Chapter 3.

What you should have learnt in this section

Computer operations for reading, writing, and listening to sound. Construct sounds
such as pure tones, and the square and triangle waves, from mathematical formulas.
Comparing a sound with its Fourier series. Changing the sample rate, adding noise,
or playing a sound backwards.

Exercises for Section 2.1

1. Define the following sound signal

f (t ) =


0 0 ≤ t ≤ 4/440
2 440t−4

8 sin(2π440t ) 4/440 ≤ t ≤ 12/440
2sin(2π440t ) 12/440 ≤ t ≤ 20/440

This corresponds to the sound plotted in Figure 1.1(a), where the sound is unaudible
in the beginning, and increases linearly in loudness over time with a given frequency
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until maximum loudness is avchieved. Write a function which generates this sound,
and listen to it.

2. Find two constant a and b so that the function f (t ) = a sin(2π440t )+b sin(2π4400t )
resembles the plot from Figure 1.1(b) as closely as possible. Generate the samples of
this sound, and listen to it.

3. Let us write some code so that we can experiment with different pure sounds

a. Write a function play_pure_sound(f)which generates the samples over
a period of 3 seconds for a pure tone with frequency f , with sampling fre-
quency fs = 2.5 f (we will explain this value later).

b. Use the function play_pure_sound to listen to pure sounds of frequency
440Hz and 1500Hz, and verify that they are the same as the sounds you al-
ready have listened to in this section.

c. How high frequencies are you able to hear with the functionplay_pure_sound?
How low frequencies are you able to hear?

4. Write functions play_square and play_triangle which take T as input, and
which play the square wave of Example 1.11 and the triangle wave of Example 1.12,
respectively. In your code, let the samples of the waves be taken at a frequency of
44100 samples per second. Verify that you generate the same sounds as you played
in these examples when you set T = 1

440 .

5. Let us write programs so that we can listen to the Fourier approximations of the
square wave and the triangle wave.

a. Write functions play_square_fourier and play_triangle_fourier
which take T and N as input, and which play the order N Fourier approxima-
tion of the square wave and the triangle wave, respectively, for three seconds.
Verify that you can generate the sounds you played in examples 1.18 and 1.19.

b. For these Fourier approximations, how high must you choose N for them
to be indistuingishable from the square/triangle waves themselves? Also de-
scribe how the characteristics of the sound changes when n increases.

6. In this exercise we will experiment as in the first examples of this section.

a. Write a function play_with_different_fs which takes sound samples
and a sampling rate as input, and plays the sound samples of with the same
sample rate as the original file, then with twice the sample rate, and then
half the sample rate. You should start with reading the file into a matrix (as
explained in this section). When applied to the sample audio file, are the
sounds the same as those you heard in Example 2.5?

b. Write a function play_reverse which takes sound data and a sample
rate as input, and plays the sound samples backwards. When you run the
code on our sample audio file, is the sound the same as the one you heard in
Example 2.7?

48



0 10 20 30 40
0

0.5

1

1.5

2

(a) x

0 10 20 30 40
0

0.5

1

1.5

2

(b) The perodic extension of x

Figure 2.1: A vector and its periodic extension.

c. Write the new sound samples from b. to a new wav-file, as described
above, and listen to it with your favourite mediaplayer.

7. In this exercise, we will experiment with adding noise to a signal.

a. Write a function play_with_noise which takes sound data, sampling
rate, and the damping constant c as input, and plays the sound samples with
noise added as described above. Your code should add noise to both chan-
nels of the sound, and scale the sound samples so that they are between −1
and 1.

b. With your program, generate the two sounds played in Example 2.9, and
verify that they are the same as those you heard.

c. Listen to the sound samples with noise added for different values of c. For
which range of c is the noise audible?

2.2 Discrete Fourier analysis and the discrete Fourier
transform

In this section we will parallel the developments we did for Fourier series, assuming
instead that vectors (rather than functions) are involved. As with Fourier series we
will assume that the vector is periodic. This means that we can represent it with the
values from only the first period. In the following we will only work with these values,
but we will remined ourselves from time to time that the values actually come from
a periodic vector. As for functions, we will call denote the periodic vector as the
periodic extension of the finite vector. To illustrate this, we have in Figure 2.1 shown
a vector x in (a), and the periodic extension of x in (b). At the outset our vectors will
have real components, but since we use complex exponentials we must be able to
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work with complex vectors also. We therefore first need to define the standard inner
product and norm for complex vectors.

Definition 2.11. For complex vectors of length N the Euclidean inner product is
given by

〈x , y〉 =
N−1∑
k=0

xk yk . (2.1)

The associated norm is

‖x‖ =
√√√√N−1∑

k=0
|xk |2. (2.2)

In the previous chapter we saw that, using a Fourier series, a function with period
T could be approximated by linear combinations of the functions (the pure tones)
{e2πi nt/T }N

n=0. This can be generalised to vectors (digital sounds), but then the pure
tones must of course also be vectors.

Definition 2.12 (Discrete Fourier analysis). In Discrete Fourier analysis, a vec-
tor x = (x0, . . . , xN−1) is represented as a linear combination of the N vectors

φn = 1p
N

(
1,e2πi n/N ,e2πi 2n/N , . . . ,e2πi kn/N , . . . ,e2πi n(N−1)/N

)
.

These vectors are called the normalised complex exponentials, or the pure digital
tones of order N . n is also called frequency index. The whole collection FN =
{φn}N−1

n=0 is called the N -point Fourier basis.

Note that pure digital tones can be considered as samples of a pure tone, taken
uniformly over one period: If f (t ) = e2πi nt/T /

p
N is the pure tone with frequency

n/T , then f (kT /N ) = e2πi n(kT /N )/T /
p

N = e2πi nk/N /
p

N = φn . When mapping a
pure tone to a digital pure tone, the index n corresponds to frequency ν= n/T , and
N the number of samples takes over one period. Since T fs = N , where fs is the
sampling frequency, we have the following connection between frequency and fre-
quency index:

ν= n fs

N
and n = νN

fs
(2.3)

The following lemma shows that the vectors in the Fourier basis are orthonor-
mal, so they do indeed form a basis.

Lemma 2.13. The normalised complex exponentials {φn }N−1
n=0 of order N form an

orthonormal basis in RN .
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Proof: Let n1 and n2 be two distinct integers in the range [0, N − 1]. The inner
product ofφn1

andφn2
is then given by

〈φn1
,φn2

〉 = 1

N
〈e2πi n1k/N ,e2πi n2k/N 〉

= 1

N

N−1∑
k=0

e2πi n1k/N e−2πi n2k/N

= 1

N

N−1∑
k=0

e2πi (n1−n2)k/N

= 1

N

1−e2πi (n1−n2)

1−e2πi (n1−n2)/N

= 0.

In particular, this orthogonality means that the the complex exponentials form a
basis. Clearly also 〈φn ,φn〉 = 1, so that the N -point Fourier basis is in fact an or-
thonormal basis.

Note that the normalising factor 1p
N

was not present for pure tones in the pre-

vious chapter. Also, the normalising factor 1
T from the last chapter is not part of the

definition of the inner product in this chapter. These are small differences which
have to do with slightly different notation for functions and vectors, and which will
not cause confusion in what follows.

The focus in Discrete Fourier analysis is to change coordinates from the standard
basis to the Fourier basis, performing some operations on this “Fourier representa-
tion”, and then change coordinates back to the standard basis. Such operations are
of crucial importance, and in this section we study some of their basic properties.
We start with the following definition.

Definition 2.14 (Discrete Fourier Transform). We will denote the change of co-
ordinates matrix from the standard basis of RN to the Fourier basis FN by FN . We
will also call this the (N -point) Fourier matrix. The matrix

p
N FN is also called the

(N -point) discrete Fourier transform, or DFT. If x is a vector in RN , then y = DFTx
are called the DFT coefficients of x . (the DFT coefficients are thus the coordinates
in FN , scaled with

p
N ). The DFTx is sometimes written as x̂ .

Note that we define the Fourier matrix and the DFT as two different matrices,
the one being a scaled version of the other. The reason for this is that there are
different traditions in different fields. In pure mathematics, the Fourier matrix is
mostly used since it is, as we wil see, a unitary matrix. In signal processing, the
scaled version provided by the DFT is mostly used. We will normally write x for the
given vector in RN , and y for its DFT. In applied fields, the Fourier basis vectors are
also called synthesis vectors, since they can be used used to “synthesize” the vector x ,
with weights provided by the coordinates in the Fourier basis. To be more precise, we
have that the change of coordinates performed by the Fourier matrix can be written
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as

x = y0φ0 + y1φ1 +·· ·+ yN−1φN−1 =
(
φ0 φ1 · · · φN−1

)
y = F−1

N y , (2.4)

where we have used the inverse of the defining relation y = FN x , and that theφn are
the columns in F−1

N (this follows from the fact that F−1
N is the change of coordinates

matrix from the Fourier basis to the standard basis, and the Fourier basis vectors
are clearly the columns in this matrix). Equation (2.4) is also called the synthesis
equation.
Example 2.15. Let x be the vector of length N defined by xk = cos(2π5k/N ), and y
the vector of length N defined by yk = sin(2π7k/N ). Let us see how we can com-
pute FN

(
2x +3y

)
. By the definition of the Fourier matrix as a change of coordinates,

FN (φn) = en . We therefore get

FN
(
2x +3y

)= FN (2cos(2π5 ·/N )+3sin(2π7 ·/N ))

= FN (2
1

2
(e2πi 5·/N +e−2πi 5·/N )+3

1

2i
(e2πi 7·/N −e−2πi 7·/N ))

= FN (
p

Nφ5 +
p

NφN−5 − 3i

2

p
N (φ7 −φN−7))

=
p

N (FN (φ5)+FN (φN−5)− 3i

2
FNφ7 + 3i

2
FNφN−7)

=
p

N e5 +
p

N eN−5 − 3i

2

p
N e7 + 3i

2

p
N eN−7.

♣
Let us find an expression for the matrix FN . From Lemma 2.13 we know that the

columns of F−1
N are orthonormal. If the matrix was real, it would have been called

orthogonal, and the inverse matrix could have been obtained by transposing. F−1
N is

complex, however, and it is easy to see that the conjugation present in the definition
of the inner product (2.1), implies that the inverse of FN can be obtained if we also
conjugate, in addition to transpose, i.e. (FN )−1 = (FN )T . We call (A)T the conjugate
transpose of A, and denote this by AH . We thus have that (FN )−1 = (FN )H . Matrices
which satisfy A = AH are called unitary. For complex matrices, this is the parallel to
orthogonal matrices.

Theorem 2.16. The Fourier matrix FN is the unitary N × N -matrix with entries
given by

(FN )nk = 1p
N

e−2πi nk/N ,

for 0 ≤ n,k ≤ N −1.

Since the Fourier matrix is easily inverted, the DFT is also easily inverted. Let us
make the following definition.
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Definition 2.17 (IDFT). The matrix (FN )H /
p

N is the inverse of the matrix DFT =p
N FN . We call this inverse matrix the inverse discrete Fourier transform, or IDFT.

We can thus also view the IDFT as a change of coordinates (this time from the
Fourier basis to the standard basis), with a scaling of the coordinates by 1/

p
N at the

end. The IDFT is often called the reverse DFT. Similarly, the DFT is often called the
forward DFT.

That y = DFTx and x = IDFTy can also be expressed in component form as

yn =
N−1∑
k=0

xk e−2πi nk/N xk = 1

N

N−1∑
n=0

yne2πi nk/N (2.5)

In applied fields such as signal processing, it is more common to state the DFT and
IDFT in these component forms, rather than in the matrix forms y = DFTy and x =
IDFTy .

Let us now see how these formulas work out in practice by considering some
examples.
Example 2.18 (DFT on a square wave). Let us attempt to apply the DFT to a signal
x which is 1 on indices close to 0, and 0 elsewhere. Assume that

x−L = . . . = x−1 = x0 = x1 = . . . = xL = 1,

while all other values are 0. This is similar to a square wave, with some modifica-
tions: First of all we assume symmetry around 0, while the square wave of Exam-
ple 1.11 assumes antisymmetry around 0. Secondly the values of the square wave
are now 0 and 1, contrary to −1 and 1 before. Finally, we have a different proportion
of where the two values are assumed. Nevertheless, we will also refer to the current
digital sound as a square wave.

Since indices with the DFT are between 0 an N−1, and since x is assumed to have
period N , the indices [−L,L] where our signal is 1 translates to the indices [0,L] and
[N −L, N −1] (i.e., it is 1 on the first and last parts of the vector). Elsewhere our signal
is zero. Since

∑N−1
k=N−L e−2πi nk/N =∑−1

k=−L e−2πi nk/N (since e−2πi nk/N is periodic with
period N ), the DFT of x is

yn =
L∑

k=0
e−2πi nk/N +

N−1∑
k=N−L

e−2πi nk/N =
L∑

k=0
e−2πi nk/N +

−1∑
k=−L

e−2πi nk/N

=
L∑

k=−L
e−2πi nk/N = e2πi nL/N 1−e−2πi n(2L+1)/N

1−e−2πi n/N

= e2πi nL/N e−πi n(2L+1)/N eπi n/N eπi n(2L+1)/N −e−πi n(2L+1)/N

eπi n/N −e−πi n/N

= sin(πn(2L+1)/N )

sin(πn/N )
.

This computation does in fact also give us the IDFT of the same vector, since the
IDFT just requires a change of sign in all the exponents, in addition to the 1/N nor-
malizing factor. From this example we see that, in order to represent x in terms of
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frequency components, all components are actually needed. The situation would
have been easier if only a few frequencies were needed. ♣
Example 2.19. In most cases it is difficult to compute a DFT by hand, due to the
entries e−2πi nk/N in the matrices, which typically can not be represented exactly.
The DFT is therefore usually calculated on a computer only. However, in the case
N = 4 the calculations are quite simple. In this case the Fourier matrix takes the
form

F4 = 1

2


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 .

We now can compute the DFT of a vector like (1,2,3,4)T simply as

F4


1
2
3
4

= 1

2


1+2+3+4

1−2i −3+4i
1−2+3−4

1+2i −3−4i

=


5

−1+ i
−1

−1− i

 .

♣
Example 2.20 (Direct implementation of the DFT). The DFT can be implemented
very simply and directly by the code

function y = DFTImpl(x)
N = size(x, 1);
y = zeros(size(x));
for n = 1:N

D = exp(*2*pi*1i*(n-1)*(0:(N-1))/N);
y(n) = dot(D, x);

end

n has been replaced by n−1 in this code since n runs from 1 to N (array indices must
start at 1 in Matlab). In exercise 8 we will extend this to a general implementation we
will use later. Note that we do not allocate the entire matrix FN in this code, as this
quickly leads to out of memory situations, even for N of moderate size. Instead we
construct one row of FN at a time, and use use this to compute one entry in the out-
put. The method dot can be used here, since each entry in matrix multiplication can
be viewed as an inner product. It is likely that the dot function is more efficient than
using a for-loop, since PROGLANGUAGE may have an optimized way for comput-
ing this. Note that dot in Matlab conjugates the first components, contrary to what
we do in our definition of a complex inner product. This is why we have dropped a
sign in the exponent here. This can be rewritten to a direct implementation of the
IDFT also. We will look at this in the exercises, where we also make the method more
general, so that the DFT can be applied to a series of vectors at a time (it can then be
applied to all the channels in a sound in one call). Multiplying a full N ×N matrix
by a vector requires roughly N 2 arithmetic operations. The DFT algorithm above
will therefore take a long time when N becomes moderately large. It turns out that a
much more efficient algorithm exists for computing the DFT, which we will study at
the end of this chapter. PROGLANGUAGE also has a built-in implementation of the
DFT which uses such an efficient algorithm. ♣
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The DFT has properties which are very similar to those of Fourier series, as they
were listed in Theorem 1.29. The following theorem sums this up:

Theorem 2.21 (DFT properties). Let x be a real vector of length N . The DFT has
the following properties:

1. (x̂)N−n = (x̂)n for 0 ≤ n ≤ N −1.

2. If z is the vector with the components of x reversed so that zk = xN−k for
0 ≤ k ≤ N −1, then ẑ = x̂ . In particular,

(a) if xk = xN−k for all n (so x is symmetric), then x̂ is a real vector.

(b) if xk =−xN−k for all k (so x is antisymmetric), then x̂ is a purely imag-
inary vector.

3. If d is an integer and z is the vector with components zk = xk−d (the vector
x with its elements delayed by d), then (ẑ)n = e−2πi dn/N (x̂)n .

4. If d is an integer and z is the vector with components zk = e2πi dk/N xk , then
(ẑ)n = (x̂)n−d .

Proof: The methods used in the proof are very similar to those used in the proof
of Theorem 1.29. From the definition of the DFT we have

(x̂)N−n =
N−1∑
k=0

e−2πi k(N−n)/N xk =
N−1∑
k=0

e2πi kn/N xk =
N−1∑
k=0

e−2πi kn/N xk = (x̂)n

which proves property 1. To prove property 2, we write

(ẑ)n =
N−1∑
k=0

zk e−2πi kn/N =
N−1∑
k=0

xN−k e−2πi kn/N =
N∑

u=1
xue−2πi (N−u)n/N

=
N−1∑
u=0

xue2πi un/N =
N−1∑
u=0

xue−2πi un/N = (x̂)n .

If x is symmetric it follows that z = x , so that (x̂)n = (x̂)n . Therefore x must be real.
The case of antisymmetry follows similarly.

To prove property 3 we observe that

(ẑ)n =
N−1∑
k=0

xk−d e−2πi kn/N =
N−1∑
k=0

xk e−2πi (k+d)n/N

= e−2πi dn/N
N−1∑
k=0

xk e−2πi kn/N = e−2πi dn/N (x̂)n .

For the proof of property 4 we note that the DFT of z is

(ẑ)n =
N−1∑
k=0

e2πi dk/N xne−2πi kn/N =
N−1∑
k=0

xne−2πi (n−d)k/N = (x̂)n−d .
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This completes the proof.
These properties have similar interpretations as the ones listed in Theorem 1.29

for Fourier series. Property 1 says that we need to store only about one half of the
DFT coefficients, since the remaining coefficients can be obtained by conjugation.
In particular, when N is even, we only need to store y0, y1, . . . , yN /2. This also means
that, if we plot the (absolute value) of the DFT of a real vector, we will see a symme-
try around the index n = N /2. The theorem generalizes the properties from Theo-
rem 1.29, except for the last property where the signal had a point of symmetry. We
will delay the generalization of this property to later.
Example 2.22. To see how we can use the fourth property of Theorem 2.21, consider
a vector x = (x0, x1, x2, x3, x4, x5, x6, x7) with length N = 8, and assume that x is so that
F8(x) = (1,2,3,4,5,6,7,8). Consider the vector z with components zk = e2πi 2k/8xk .
Let us compute F8(z). Since multiplication of x with e2πi kd/N delays the output y =
FN (x) with d elements, setting d = 2, the F8(z) can be obtained by delaying F8(x) by
two elements, so that F8(z) = (7,8,1,2,3,4,5,6). It is straightforward to compute this
directly also:

(FN z)n =
N−1∑
k=0

zk e−2πi kn/N =
N−1∑
k=0

e2πi 2k/N xk e−2πi kn/N

=
N−1∑
k=0

xk e−2πi k(n−2)/N = (FN (x))n−2.

♣

What you should have learnt in this section

The definition of the Fourier basis and its orthonormality. The definition of the Dis-
crete Fourier Transfrom as a change of coordinates to the Fourier basis, its inverse,
and its unitarity. How to apply the DFT to a sum of sinusoids. Properties of the DFT,
such as conjugate symmetry when the vector is real, how it treats delayed vectors, or
vectors multiplied with a complex exponential.

Exercises for Section 2.2

1. Compute F4x when x = (2,3,4,5).

2. As in Example 2.19, state the exact cartesian form of the Fourier matrix for the
cases N = 6, N = 8, and N = 12.

3. We have a real vector x with length N , and define the vector z by delaying all ele-
ments in x with 5 cyclically, i.e. z5 = x0, z6 = x1,. . . ,zN−1 = xN−6, and z0 = xN−5,. . . ,z4 =
xN−1. For a given n, if |(FN x)n | = 2, what is then |(FN z)n |? Justify the answer.

4. Given a real vector x of length 8 where (F8(x))2 = 2− i , what is (F8(x))6?

5. Let x be the vector of length N where xk = cos2(2πk/N ). What is then FN x?

6. Let x be the vector with entries xk = ck . Show that the DFT of x is given by the
vector with components

yn = 1− cN

1− ce−2πi n/N
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for n = 0, . . . , N −1.

7. If x is complex, Write the DFT in terms of the DFT on real sequences. Hint: Split
into real and imaginary parts, and use linearity of the DFT.

8. Extend the code for the function DFTImpl in Example 2.20 so that

1. The function also takes a second parameter called forward. If this is true
the DFT is applied. If it is false, the IDFT is applied. If this parameter is not
present, then the forward transform is assumed.

2. If there is a second axis, the DFT/IDFT is applied along the first axis. This
ensures that, in the case of sound, the FFT is applied to each channel in the
sound when the enrire sound is used as input, as we are used to when applying
different operations to sound.

Also, write documentation for the code.

9. Assume that N is even.

a. Show that, if xk+N /2 = xk for all 0 ≤ k < N /2, then yn = 0 when n is odd.

b. Show that, if xk+N /2 =−xk for all 0 ≤ k < N /2, then yn = 0 when n is even.

c. Show also the converse statements in a. and b..

d. Also show the following:

1. xn = 0 for all odd n if and only if yk+N /2 = yk for all 0 ≤ k < N /2.

2. xn = 0 for all even n if and only if yk+N /2 =−yk for all 0 ≤ k < N /2.

10. Let x1, x2 be real vectors, and set x = x1 + i x2. Use Theorem 2.21 to show that

(FN (x1))k = 1

2

(
(FN (x))k + (FN (x))N−k

)
(FN (x2))k = 1

2i

(
(FN (x))k − (FN (x))N−k

)
This shows that, sometimes, one DFT can be used to compute two different DFT’s.

2.3 Connection between the DFT and Fourier series. Sam-
pling and the sampling theorem

So far we have focused on the DFT as a tool to rewrite a vector in terms of the Fourier
basis vectors. In practice, the given vector x will often be sampled from some real
data given by a function f (t ). We may then compare the frequency content of x
and f , and ask how they are related: What is the relationship between the Fourier
coefficients of f and the DFT-coefficients of x?
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In order to study this, assume for simplicity that f ∈ VM ,T for some M . This
means that f equals its Fourier approximation fM ,

f (t ) = fM (t ) =
M∑

n=−M
zne2πi nt/T , where zn = 1

T

∫ T

0
f (t )e−2πi nt/T d t . (2.6)

We here have changed our notation for the Fourier coefficients from yn to zn , in
order not to confuse them with the DFT coefficients. We recall that in order to rep-
resent the frequency n/T fully, we need the corresponding exponentials with both
positive and negative arguments, i.e., both e2πi nt/T and e−2πi nt/T .

Fact 2.23. Suppose f is given by its Fourier series (2.6). Then the total frequency
content for the frequency n/T is given by the two coefficients zn and z−n .

We have the following connection between the Fourier coefficients of f and the
DFT of the samples of f .

Proposition 2.24 (Relation between Fourier coefficients and DFT coefficients).
Let N > 2M , f ∈ VM ,T , and let x = { f (kT /N )}N−1

k=0 be N uniform samples from f
over [0,T ]. The Fourier coefficients zn of f can be computed from

(z0, z1, . . . , zM , 0, . . . ,0︸ ︷︷ ︸
N−(2M+1)

, z−M , z−M+1, . . . , z−1) = 1

N
DFTN x . (2.7)

In particular, the total contribution in f from frequency n/T , for 0 ≤ n ≤ M , is
given by yn and yN−n , where y is the DFT of x .

Proof: Let x and y be as defined, so that

xk = 1

N

N−1∑
n=0

yne2πi nk/N . (2.8)

Inserting the sample points t = kT /N into the Fourier series, we must have that

xk = f (kT /N ) =
M∑

n=−M
zne2πi nk/N =

−1∑
n=−M

zne2πi nk/N +
M∑

n=0
zne2πi nk/N

=
N−1∑

n=N−M
zn−N e2πi (n−N )k/N +

M∑
n=0

zne2πi nk/N

=
M∑

n=0
zne2πi nk/N +

N−1∑
n=N−M

zn−N e2πi nk/N .

This states that x = N IDFTN (z0, z1, . . . , zM , 0, . . . ,0︸ ︷︷ ︸
N−(2M+1)

, z−M , z−M+1, . . . , z−1). Equation (2.7)

follows by applying the DFT to both sides. We also see that zn = yn/N and z−n =
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(a) How the samples are picked from an underlying
continuous time function
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(b) The samples on their own

Figure 2.2: An example of sampling.

y2M+1−n/N = yN−n/N , when y is the DFT of x . It now also follows immediately that
the frequency content in f for the frequency n/T is given by yn and yN−n . This
completes the proof.

In proposition 2.24 we take N samples over [0,T ], i.e. we sample at rate fs = N /T
samples per second. When |n| ≤ M , a pure sound with frequency ν = n/T is then
seen to correspond to the DFT indices n and N −n. Since T = N / fs , ν = n/T can
also be written as ν= n fs /N . Moreover, the highest frequencies in proposition 2.24
are those close to ν = M/T , which correspond to DFT indices close to N − M and
M , which are the nonzero frequencies closest to N /2. DFT index N /2 corresponds
to the frequency N /(2T ) = fs /2, which corresponds to the highest frequency we can
reconstruct from samples for any M . Similarly, the lowest frequencies are those close
to ν = 0, which correspond to DFT indices close to 0 and N . Let us summarize this
as follows.

Observation 2.25 (Connection between DFT index and frequency). Assume
that x are N samples of a sound taken at sampling rate fs samples per second,
and let y be the DFT of x . Then the DFT indices n and N −n give the frequency
contribution at frequency ν = n fs /N . Moreover, the low frequencies in x corre-
spond to the yn with n near 0 and N , while the high frequencies in x correspond
to the yn with n near N /2.

The theorem says that any f ∈VM ,T can be reconstructed from its samples (since
we can write down its Fourier series), as long as N > 2M . That f ∈VM ,T is important.
From Figure 2.2 it is clear that information is lost in (b) when we discard everything
but the sample values from (a). Here the function is f (t ) = sin(2π8t ) ∈ V8,1, so that
we need to choose N so that N > 2M = 16 samples. Here N = 23 samples were taken,
so that reconstruction from the samples is possible. That the condition N < 2M is
also necessary can easily be observed in Figure 2.3. In (b) we have plotted sin(2π4t ) ∈
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(a) Sampling sin(2πt ) with two points
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(b) Sampling sin(2π4t ) with eight points

Figure 2.3: Sampling two different pure tones.

V4,1, with N = 8 sample points taken uniformly from [0,1]. Here M = 4, so that we
require 2M + 1 = 9 sample points, according to proposition 2.24. Clearly there is
an infinite number of possible functions in VM ,T passing through the sample points
(which are all zero): Any f (t ) = c sin(2π4t ) will do. In (a) we consider one period of
sin(2πt ). Since this is in VM ,T = V1,1, reconstruction should be possible if we have
N ≥ 2M + 1 = 3 samples. Four sample points, as seen in (a), is thus be enough to
secure reconstruct.

The special case N = 2M +1 is interesting. No zeros are then inserted in the vec-
tor in 2.7. Since the DFT is one-to-one, this means that there is a one-to-one corre-
spondence between sample values and functions in VM ,T (i.e. Fourier series), i.e. we
can always find a unique interpolant in VM ,T from N = 2M+1 samples. In Exercise 3
you will asked to write code where you start with a given function f , Take N = 2M+1
samples, and plot the interpolant from VM ,T against f . Increasing M should give an
interpolant which is a better approximation to f , and if f itself resides in some VM ,T

for some M , we should obtain equalty when we choose M big enough. We have in
elementary calculus courses seen how to determine a polynomial of degree N − 1
that interpolates a set of N data points, and such polynomials are called interpolat-
ing polynomials. In mathematics many other classes than polynomials exist which
are aso useful for interpolation, and the Fourier basis is just one example.

Besides reconstructing a function from its samples, proposition 2.24 also en-
ables us to approximate functions in a simple way. To elaborate on this, recall that
the Fourier series approximation fM is a best approximation to f from VM ,T . We
usually can’t compute fM exactly, however, since this requires us to compute the
Fourier integrals. We could instead form the samples x of f , and apply proposi-
tion 2.24. If M is high, fM is a good approximation to f , so that the samples of fM

are a good approximation to x . By continuity of the DFT, it follows that y = DFTN x
is a good approximation to the DFT of the samples of fM , so that

f̃ (t ) =
N−1∑
n=0

yne2πi nt/T (2.9)
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f //

��

f̃

x
DFTN // y

OO

Figure 2.4: How we can interpolate f from VM ,T with help of the DFT. The left vertical
arrow represents sampling. The right vertical arrow represents interpolation, i.e.
computing Equation (2.9).

is a good approximation to fM , and therefore also to f . We have illustrated this in
Figure 2.4. The new function f̃ has the same values as f in the sample points. This is
usually not the case for fM , so that f̃ and fM are different approximations to f . Let
us summarize as follows.

Idea 2.26. The function f̃ resulting from sampling, taking the DFT, and interpo-
lation, as shown in Figure 2.4, also gives an approximation to f . f̃ is a worse ap-
proximation in the mean square sense (since fM is the best such), but it is much
more useful since it avoids evaluation of the Fourier integrals, depends only on
the samples, and is easily computed.

The condition N > 2M in proposition 2.24 can also be written as N /T > 2M/T .
The left side is now the sampling rate fs , while the right side is the double of the
highest frequency in f . The result can therefore also be restated as follows

Proposition 2.27. Any f ∈ VM ,T can be reconstructed uniquely from a uniform
set of samples { f (kT /N )}N−1

k=0 , as long as fs > 2|ν|, where ν denotes the highest
frequency in f .

We also refer to fs = 2|ν| as the critical sampling rate, since it is the minimum
sampling rate we need in order to reconstruct f from its samples. If fs is substan-
tially larger than 2|ν|we say that f is oversampled, since we have takes more samples
than we really need. Similarly we say that f is undersampled if fs is smaller than 2|ν|,
since we have not taken enough samples in order to reconstruct f . Clearly proposi-
tion 2.24 gives one formula for the reconstruction. In the literature another formula
can be found, which we now will deduce. This alternative version of Theorem 2.24
is also called the sampling theorem. We start by substituting N = T /Ts (i.e. T = N Ts ,
with Ts being the sampling period) in the Fourier series for f :

f (kTs ) =
M∑

n=−M
zne2πi nk/N −M ≤ k ≤ M .
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Equation (2.7) said that the Fourier coefficients could be found from the samples
from

(z0, z1, . . . , zM , 0, . . . ,0︸ ︷︷ ︸
N−(2M+1)

, z−M , z−M+1, . . . , z−1) = 1

N
DFTN x .

By delaying the n index with −M , this can also be written as

zn = 1

N

N−1∑
k=0

f (kTs )e−2πi nk/N = 1

N

M∑
k=−M

f (kTs )e−2πi nk/N , −M ≤ n ≤ M .

Inserting this in the reconstruction formula we get

f (t ) = 1

N

M∑
n=−M

M∑
k=−M

f (kTs )e−2πi nk/N e2πi nt/T

=
M∑

k=−M

1

N

(
M∑

n=−M
f (kTs )e2πi n(t/T−k/N )

)

=
M∑

k=−M

1

N
e−2πi M(t/T−k/N ) 1−e2πi N (t/T−k/N )

1−e2πi (t/T−k/N )
f (kTs )

=
M∑

k=−M

1

N

sin(π(t −kTs )/Ts )

sin(π(t −kTs )/T )
f (kTs )

Let us summarize our findings as follows:

Theorem 2.28. (Sampling theorem and the ideal interpolation formula for pe-
riodic functions) Let f be a periodic function with period T , and assume that f
has no frequencies higher than νHz. Then f can be reconstructed exactly from
its samples f (−MTs ), . . . , f (MTs ) (where Ts is the sampling period, N = T

Ts
is the

number of samples per period, and M = 2N +1) when the sampling rate fs = 1
Ts

is bigger than 2ν. Moreover, the reconstruction can be performed through the
formula

f (t ) =
M∑

k=−M
f (kTs )

1

N

sin(π(t −kTs )/Ts )

sin(π(t −kTs )/T )
. (2.10)

Formula (2.11) is also called the ideal interpolation formula for periodic func-
tions. Such formulas, where one reconstructs a function based on a weighted sum
of the sample values, are more generally called interpolation formulas. The function
1
N

sin(π(t−kTs )/Ts )
sin(π(t−kTs )/T ) is also called an interpolation kernel. Note that f itself may not be

equal to a finite Fourier series, and reconstruction is in general not possible then.
The ideal interpolation formula can in such cases still be used, but the result we
obtain may be different from f (t ).

It turns out that the interpolation formula above can be rewritten without the de-
pendence on T and N , i.e. so that the interpolation formula is valid for all numbers
of samples. This formula is what is usually listed in the literature:
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Theorem 2.29. (Sampling theorem and the ideal interpolation formula for pe-
riodic functions, general version) Assume that f is periodic with period T , and
has no frequencies higher than νHz. Then f can be reconstructed exactly from
its samples . . . , f (−2Ts ), f (−Ts ), f (0), f (Ts ), f (2Ts ), . . . when T is a multiple of Ts ,
and when the sampling rate is bigger than 2ν. Moreover, the reconstruction can
be performed through the formula

f (t ) =
∞∑

k=−∞
f (kTs )

sin(π(t −kTs )/Ts )

π(t −kTs )/Ts
. (2.11)

Proof: Note first that f can also be viewed as a function with period sT for any
integer s > 1. Writing sT for T , and sN for N in the previous interpolation formula,
we get

f (t ) =
sM∑

k=−sM
f (kTs )

1

sN

sin(π(t −kTs )/Ts )

sin(π(t −kTs )/(sT ))

=
r M∑

k=−r M
f (kTs )

1

sN

sin(π(t −kTs )/Ts )

sin(π(t −kTs )/(sT ))

+ ∑
r M<|k|≤sM

f (kTs )
1

sN

sin(π(t −kTs )/Ts )

sin(π(t −kTs )/(sT ))
, (2.12)

where we have split the summation further (r is a number smaller than s). Note that
lims→∞ sN sin(π(t −kTs )/(sT )) = π(t −kTs )/Ts . Thus if we let s →∞ while keeping
r fixed, the first sum above converges to

r M∑
k=−r M

f (kTs )
sin(π(t −kTs )/Ts )

π(t −kTs )/Ts
.

The second sum we denote by

εr,s =
∑

r M<|k|≤sM
f (kTs )

1

sN

sin(π(t −kTs )/Ts )

sin(π(t −kTs )/(sT ))
.

The numerator here turns the inner sum into an alternating series, and the denom-
inator varies over an N s-subinterval partition of an interval of length π. This can be
bounded in terms of the largest term, which is the k so that t −kTs is closest to zero.
Choose r at the outset so that |t | + qTs ≤ r Ts , where q is an integer. Then we have
that the denominator is larger than sN sin(πqTs /(sT )) = sN sin(πq/(N s)) ≥πq/2, so
that the term is bounded by 2 f (kTs )/(πq). If we rewrite the sum as

εr,s =
N−1∑
k=0

∑
p

f ((pN +k)Ts )
1

sN

sin(π(t − (pN +k)Ts )/Ts )

sin(π(t − (pN +k)Ts )/(sT ))

=
N−1∑
k=0

f (kTs )
∑
p

1

sN

sin(π(t − (pN +k)Ts )/Ts )

sin(π(t − (pN +k)Ts )/(sT ))
,

63



We see that this can be bounded by
∑N−1

k=0 2 f (kTs )/(πq). After taking limits as s →∞
in Equation (2.12) we get that∣∣∣∣∣ f (t )−

r M∑
k=−r M

f (kTs )
sin(π(t −kTs )/Ts )

π(t −kTs )/Ts

∣∣∣∣∣= | lim
s→∞εr,s | ≤

N−1∑
k=0

2| f (kTs )|
πq

.

If we let r →∞ we see that q →∞ also, and we obtain that

f (t ) =
∞∑

k=−∞
f (kTs )

sin(π(t −kTs )/Ts )

π(t −kTs )/Ts
.

The proof follows.
In the literature one actually shows that this formula is valid also for functions

which are not periodic.
The DFT is extremely useful for operations on sound. We will concentrate on two

such operations. The first one is adjustment of frequencies in sound, the second is
compresson of sound.
Example 2.30 (Using the DFT to adjust frequencies in sound). Since the DFT coef-
ficients represent the contribution in a sound at given frequencies, we can listen to
the different frequencies of a sound by adjusting them. Let us see how we can lis-
ten to either the lower or the higher frequencies only. Observation 2.25 says that the
2L+1 lowest frequencies correspond to the DFT-indices [0,L]∪ [N −L, N −1], while
the 2L +1 highest frequencies coorespond to DFT-indices [N /2−L, N /2+L] (if we
assume that N is even). In Matlab we need to add 1 to these indices to obtain the
Matlab indices into the vectors. We can now perform a DFT, eliminate these low or
high frequencies, and perform an inverse DFT, to recover the sound signal where
these frequencies have been eliminated. With the help of the DFT implementation
from Example 2.20, all this can be achieved for zeroing out the highest frequencies
with the following code:

% Zero out higher frequencies
y = fft(x);
y((L+2):(N-L), :) = zeros(N-(2*L+1), size(y,2));
newx = ifft(y);

Let us test this on the sound samples in castanets.wav. As a first attempt, let us
split the sound samples into small blocks of size N = 32, and zero out frequencies as
described for each block. This should certainly be more efficient than applying the
DFT to the entire sound, since it corresponds to applying a sparse block matrix to
the entire sound, rather than the full DFT matrix1 You will be spared the details for
actually splitting the sound file into blocks: you can find the function playDFT(L,
lower) which performs this splitting, sets frequency components to 0 except the
described 2L+1 frequency components, and plays the resulting sound. The second
parameter lower states if the highest or the lowest frequency components should
be kept. If you try this for L = 7 (i.e. we keep only 15 of the DFT coefficients) for the

1We will shortly see, however, that efficient algorithms for the DFT exist, so that this problem is not so
big after all.
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lower frequencies, the result sounds like this. You can hear the disturbance in the
sound, but we have not lost that much even if more than half the DFT coefficients
are dropped. If we instead try L = 3 the result will sound like this. The quality is much
poorer now. However we can still recognize the song, and this suggests that most of
the frequency information is contained in the lower frequencies. If we instead use
playDFT to listen to the higher frequencies, for L = 7 the result now sounds like
this, and for L = 3 the result sounds like this. Both sounds are quite unrecognizable,
confirming that most information is contained in the lower frequencies. ♣

Note that there may be a problem in the previous example: when we restrict to
the values in a given block, we actually look at a different signal. The new signal
repeats the values in the block in periods, while the old signal consists of one much
bigger block. What are the differences in the frequency representations of the two
signals?

Assume that the entire sound has length M . The frequency representation of
this is computed as an M-point DFT (the signal is actually repeated with period M),
and we write the sound samples as a sum of frequencies: xk = 1

M

∑M−1
n=0 yne2πi kn/M .

Let us consider the effect of restricting to a block for each of the contributing pure
tones e2πi kn0/M , 0 ≤ n0 ≤ M −1. When we restrict this to a block of size N , we get the

signal
{
e2πi kn0/M

}N−1
k=0 . Depending on n0, this may not be a Fourier basis vector! Its

N -point DFT gives us its frequency representation, and the absolute value of this is

|yn | =
∣∣∣∣∣N−1∑

k=0
e2πi kn0/M e−2πi kn/N

∣∣∣∣∣=
∣∣∣∣∣N−1∑

k=0
e2πi k(n0/M−n/N )

∣∣∣∣∣
=

∣∣∣∣1−e2πi N (n0/M−n/N )

1−e2πi (n0/M−n/N )

∣∣∣∣= ∣∣∣∣sin(πN (n0/M −n/N ))

sin(π(n0/M −n/N ))

∣∣∣∣ . (2.13)

If n0 = kM/N , this gives yk = N , and yn = 0 when n 6= k. Thus, splitting the signal
into blocks gives another pure tone when n0 is a multiplum of M/N . When n0 is
different from this the situation is different. Let us set M = 1000, n0 = 1, and ex-
periment with different values of N . Figure 2.5 shows the yn values for different
values of N . We see that the frequency representation is now very different, and that
many frequencies contribute. The explanation is that the pure tone is not a pure
tone when N = 64 and N = 256, since at this scale such frequencies are too high to
be represented exactly. The closest pure tone in frequency is n = 0, and we see that
this has the biggest contribution, but other frequencies also contribute. The other
frequencies contribute much more when N = 256, as can be seen from the peak in
the closest frequency n = 0. In conclusion, when we split into blocks, the frequency
representation may change in an undesirable way. This is a common problem in
signal processing theory, that one in practice needs to restrict to smaller segments
of samples, but that this restriction may have undesired effects.

Another problem when we restrict to a shorter periodic signal is that we may
obtain discontinuities at the boundaries between the new periods, even if there were
no discontinuities in the original signal. And, as we know from the square wave,
discontinuities introduce undesired frequencies. We have already mentioned that
symmetric extensions may be used to remedy this.
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Figure 2.5: The frequency representation obtained when restricting to a block of size
N of the signal.

The MP3 standard also applies a DFT to the sound data. In its simplest form it
applies a 512 point DFT. There are some differences to how this is done when com-
pared to Example 2.30, however. In our example we split the sound into disjoint
blocks, and applied a DFT to each of them. The MP3 standard actually splits the
sound into blocks which overlap, as this creates a more continuous frequency rep-
resentation. Another difference is that the MP3 standard applies a window to the
sound samples, and the effect of this is that the new signal has a frequency repre-
sentation which is closer to the original one, when compared to the signal obtained
by using the block values unchanged as above. We will go into details on this in
Section 3.3.1.
Example 2.31. We can achieve compression of a sound by setting small DFT coef-
ficients which to zero. The idea is that frequencies with small values at the corre-
sponding frequency indices contribute little to our perception of the sound, so that
they can be discarded. As a result we obtain a sound with less frequency compo-
nents, which is thus more suitable for compression. To test this in practice, we first
need to set a threshold, which decides what frequencies whould be kept or not. The
following code then sets frequencies below the threshold to zero:

% Zero out small DFT coefficients
y = fft(x);
y = (abs(y) >= threshold).*y;
newx = ifft(y);

In this code 1 represents a value of true in the logical expression which is evaluated,
0 represents false. The value is 1 if and only if the absolute value of the corresponing
element is greater than or equal to threshold. As in the previous example, we can
apply this code to small blocks of the signal at a time, and listen to the result by play-
ing it. We have implemented a function playDFTthreshold(threshold) which
splits our sample audio file into blocks of the same size as above, applies the code
above with the given threshold, and plays the result. The code also write sto the dis-
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(d) The sound has been reconstructed from the
DCT coefficients from (c).

Figure 2.6: Experimenting with the DFT on a small part (512 sound samples) of a
song.

play how large percentage of the DFT indices were set to 0. If you run this function
with threshold equal to 0.02, the result sounds like this, and the function says that
about 74.1% of the DFT indices were set to zero. You can clearly hear the disturbance
in the sound, but we have not lost that much. If we instead try threshold equal to
0.1, the result will sound like this, and the function says that about 93.5% of the DFT
indices were set to zero. The quality is much poorer now, even if we still can recog-
nize the song. This suggests that most of the frequency information is contained in
frequencies with the highest values. In figure 2.6 we have illustrated this principle
for compression. The samples of the sound are shown in (a) and (the absolute value
of) the DFT in (b). In (c) all values of the DFT with absolute value smaller than 0.02
have been set to zero. The sound is then reconstructed with the IDFT, and the re-
sult shown in (d). The two signals in (a) and (d) visually look almost the same even
though the signal in (d) can be represented with less than 10 % of the information
present in (a).

Note that using a neglection threshold in this way is too simple in practice: The
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neglection threshold in general should depend on the frequency, since the human
auditory system is more sensitive to certain frequency information. ♣
Example 2.32. The previous example is a rather simple procedure to obtain com-
pression. The disadvantage with it is that it only affects small frequencies. A more
neutral way to obtain compresion is to let each DFT index occupy a certain number
of bits. This provides us with compression if this number of bits is less than what ac-
tually is used to represent the sound. This is closer to what modern audio standards
do. Let us say that we would like to use only n bits (keeping the bit used for the sign
out of this). We can then use the following code to quantize the DFT-coefficients in
one block:

% Quantize DFT coefficients
y = fft(x);
y = y/2^n;
y = round(y);
y = y*2^n;
newx = ifft(y);

If we replace the code from the previous examples, we hear similar effect to the
sound. This quantization procedure is also too simple, however, since since the hu-
man auditory system is more sensitive to certain frequency information, and should
thus allocate a higher number of bits for such frequencies. Modern audio standards
take this into account, but we will not go into details on this. ♣

What you should have learnt in this section

Translation between DFT index and frequency. In particular DFT indices for high
and low frequencies. How one can use the DFT to adjust frequencies in sound.

Exercises for Section 2.3

1. Explain what the code below does, line by line:

% Exercise 2.3.1
[x, fs] = audioread(’castanets.wav’);
N = size(x, 1);
y = fft(x);
y((round(N/4)+1):(round(N/4)+N/2), :) = zeros(N/2, size(y,2));
newx = abs(ifft(y));
newx = newx/max(max(newx));
playerobj = audioplayer(newx,fs);
playblocking(playerobj)

Comment in particular why we adjust the sound samples by dividing with the maxi-
mum value of the sound samples. What changes in the sound do you expect to hear?

2. In the code from the previous exercise it turns out that fs = 44100Hz. Which
frequencies in the sound file will be changed on the line where we zero out some of
the DFT coefficients?

3. Implement code where you do the following:
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1. at the top you define the function f (x) = cos6(x), and M = 3,

2. compute the unique interpolant from VM ,T (i.e. by taking N = 2M +1 samples
over one period), as guaranteed by Theorem 2.24,

3. plot the interpolant againts f over one period.

Finally run the code also for M = 4, M = 5, and M = 6. Explain why the plots coincide
for M = 6, but not for M < 6. Does increasing M above M = 6 have any effect on the
plots?

2.4 The Fast Fourier Transform (FFT)

The main application of the DFT is as a tool to compute frequency information in
large datasets. Since this is so useful in many areas, it is of vital importance that the
DFT can be computed with efficient algorithms. The straightforward implementa-
tion of the DFT with matrix multiplication we looked at is not efficient for large data
sets. However, it turns out that the DFT matrix may be factored in a way that leads
to much more efficient algorithms, and this is the topic of the present section. We
will discuss the most widely used implementation of the DFT, usually referred to as
the Fast Fourier Transform (FFT). The FFT has been stated as one of the ten most
important inventions of the 20’th century, and its invention made the DFT compu-
tationally feasible in many fields. The FFT is for instance used much in real time pro-
cessing, such as processing and compression of sound, images, and video. The MP3
standard uses the FFT to find frequency components in sound, and matches this in-
formation with a psychoachoustic model, in order to find the best way to compress
the data.

Let us start with the most basic FFT algorithm, which applies for a general com-
plex input vector x , with length N being an even number.

Theorem 2.33 (FFT algorithm when N is even). Let y = DFTN x be the N -point
DFT of x , with N an even number, and let DN /2 be the (N /2)× (N /2)-diagonal
matrix with entries (DN /2)n,n = e−2πi n/N for 0 ≤ n < N /2. The we have that

(y0, y1, . . . , yN /2−1) = DFTN /2x (e) +DN /2DFTN /2x (o) (2.14)

(yN /2, yN /2+1, . . . , yN−1) = DFTN /2x (e) −DN /2DFTN /2x (o) (2.15)

where x (e), x (o) ∈ RN /2 are the vectors consisting of the even- and odd-indexed
entries of x , respectively, i.e.

x (e) = (x0, x2, . . . , xN−2) x (o) = (x1, x3, . . . , xN−1).

Put differently, the formulas (2.14)–(2.15) reduce the computation of an N -point
DFT to two N /2-point DFT’s. It turns out that this is the basic fact which speeds up
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computations considerably. It is important to note that we first should compute that
the same term DN /2DFTN /2x (o) appears in both formulas above. It is thus important
that this is computed only once, and then inserted in both equations. Let us first
check that these formulas are correct.

Proof: Suppose first that 0 ≤ n ≤ N /2− 1. We start by splitting the sum in the
expression for the DFT into even and odd indices,

yn =
N−1∑
k=0

xk e−2πi nk/N =
N /2−1∑

k=0
x2k e−2πi n2k/N +

N /2−1∑
k=0

x2k+1e−2πi n(2k+1)/N

=
N /2−1∑

k=0
x2k e−2πi nk/(N /2) +e−2πi n/N

N /2−1∑
k=0

x2k+1e−2πi nk/(N /2)

= (
DFTN /2x (e))

n +e−2πi n/N (
DFTN /2x (o))

n ,

where we have substituted x (e) and x (o) as in the text of the theorem, and recognized
the N /2-point DFT in two places. Assembling this for 0 ≤ n < N /2 we obtain Equa-
tion (2.14). For the second half of the DFT coefficients, i.e. {yN /2+n}0≤n≤N /2−1, we
similarly have

yN /2+n =
N−1∑
k=0

xk e−2πi (N /2+n)k/N =
N−1∑
k=0

xk e−πi k e−2πi nk/N

=
N /2−1∑

k=0
x2k e−2πi n2k/N −

N /2−1∑
k=0

x2k+1e−2πi n(2k+1)/N

=
N /2−1∑

k=0
x2k e−2πi nk/(N /2) −e−2πi n/N

N /2−1∑
k=0

x2k+1e−2πi nk/(N /2)

= (
DFTN /2x (e))

n −e−2πi n/N (
DFTN /2x (o))

n .

Equation (2.15) now follows similarly.
Note that an algorithm for the IDFT can be deduced in exactly the same way. All

we need to change is the sign in the exponents of the Fourier matrix. In addition we
need to divide by 1/N at the end. If we do this we get the following result, which we
call the IFFT algorithm.

Theorem 2.34 (IFFT algorithm when N is even). Let N be an even number, and
let DFT−

N = DFTN i.e. the matrix with entries e2πi kn/N . Let x̃ = DFT−
N y . Then we

have that

(x̃0, x̃1, . . . , x̃N /2−1) = (DFT−
N /2)H y (e) +DN /2(DFT−

N /2)H y (o) (2.16)

(x̃N /2, x̃N /2+1, . . . , x̃N−1) = (DFT−
N /2)H y (e) −DN /2(DFT−

N /2)H y (o) (2.17)

where y (e), y (o) ∈RN /2 are the vectors

y (e) = (y0, y2, . . . , yN−2) y (o) = (y1, y3, . . . , yN−1).

Moreover, x = IDFTN y can be computed from x = x̃/N = DFT−
N y/N
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It turns out that these theorems can be interpreted as matrix factorizations. For
this we need to define the concept of a block matrix.

Definition 2.35. Let m0, . . . , mr−1 and n0, . . . , ns−1 be integers, and let A(i , j ) be
an mi ×n j -matrix for i = 0, . . . , r −1 and j = 0, . . . , s −1. The notation

A =


A(0,0) A(0,1) · · · A(0,s−1)

A(1,0) A(1,1) · · · A(1,s−1)

...
...

. . .
...

A(r−1,0) A(r−1,1) · · · A(r−1,s−1)


denotes the (m0 +m1 + . . .+mr−1)× (n0 +n1 + . . .+ns−1)-matrix where the matrix
entries occur as in the A(i , j ) matrices, in the way they are ordered. When A is
written in this way it is referred to as a block matrix.

Clearly, using equations (2.14)-(2.15), the DFT matrix can be factorized using
block matrix notation as

(y0, y1, . . . , yN /2−1) = (
DFTN /2 DN /2DFTN /2

)(x (e)

x (o)

)
(yN /2, yN /2+1, . . . , yN−1) = (

DFTN /2 −DN /2DFTN /2
)(x (e)

x (o)

)
.

Combining these, noting that(
DFTN /2 DN /2DFTN /2

DFTN /2 −DN /2DFTN /2

)
=

(
I DN /2

I −DN /2

)(
DFTN /2 0

0 DFTN /2

)
,

we obtain the following factorisations:

Theorem 2.36 (DFT and IDFT matrix factorizations). We have that

DFTN x =
(

I DN /2

I −DN /2

)(
DFTN /2 0

0 DFTN /2

)(
x (e)

x (o)

)

IDFTN y = 1

N

(
I DN /2

I −DN /2

)(
DFT−

N /2 0
0 DFT−

N /2

)(
y (e)

y (o)

)
(2.18)

We will shortly see why the these factorizations reduce the number of arithmetic
operations we need to do, but first let us consider how to implement them. First of
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all, note that we can apply the FFT factorizations again to FN /2 to obtain

DFTN x =
(

I DN /2

I −DN /2

)
I DN /4 0 0
I −DN /4 0 0
0 0 I DN /4

0 0 I −DN /4

×


DFTN /4 0 0 0
0 DFTN /4 0 0
0 0 DFTN /4 0
0 0 0 DFTN /4




x (ee)

x (eo)

x (oe)

x (oo)


where the vectors x (e) and x (o) have been further split into even- and odd-indexed
entries. Clearly, if this factorization is repeated, we obtain a factorization

DFTN =
log2 N∏

k=1



I DN /2k 0 0 · · · 0 0
I −DN /2k 0 0 · · · 0 0
0 0 I DN /2k · · · 0 0
0 0 I −DN /2k · · · 0 0
...

...
...

...
... 0 0

0 0 0 0 · · · I DN /2k

0 0 0 0 · · · I −DN /2k


P. (2.19)

The factorization has been repated until we have a final diagonal matrix with DFT1

on the diagonal, but clearly DFT1 = 1, so we do not need any DFT-matrices in the
final factorization. Note that all matrices in this factorization are sparse. A factor-
ization into a product of sparse matrices is the the key to many efficient algorithms
in linear algebra, such as the computation of eigenvalues amd eigenvectors. When
we later compute the number of arithmetic operations in this factorization, we will
see that this is the case also here.

In Equation (2.19), P is a permutation matrix which secures that the even-indexed
entries come first. Since the even-indexed entries have 0 as the the last bit, this is the
same as letting the last bit become the first bit. Since we here recursively place even-
indexed entries first, it is not too difficult to see that P permutes the elements of x
by performing a bit-reversal of the indices, i.e.

P (e i ) = e j i = d1d2 . . .dn j = dndn−1 . . .d1,

where we have used the bit representations of i and j . Since P 2 = I , a bit-reversal can
be computed very efficiently, and performed in-place, i.e. so that the result ends up
in same vector x , so that we do not need to allocate any memory in this operation.
We will use an existing function called bitreverse to perfom in-place bit-reversal.
In exercise 10 we will go through this implementation.

Matrix multiplication is usually not done in-place, i.e. when we compute y = Ax ,
different memory is allocated for x and y . For certain simple matrices, however, ma-
trix multiplication can also be done in-place, so that the output can be written into
the same memory (x) used by the input. It turns out that the matrices in factoriza-
tion 2.19 are of this kind, so that the entire FFT can be computed in-place. We will
have more to say on this in the exercises.
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In a practical algorithm, it is smart to perform the bit-reversal first, since the
matrices in the factorization (2.19) are block diagonal, so that the different blocks in
each matrix can be applied in parallel to P x (the bit-reversed version of x). We can
thus exploit the parallel processing capabilities of the computer. It turns out that this
bit-reversal is useful for other similar factorizations of the DFT as well. We will also
look at other such factorizations, and we will therefore split the computation of the
DFT as follows: First a general function is applied, which is responsible for the bit-
reversal of the input vector x . Then the matrices in the factorization (2.19) is applied
in a “kernel FFT function” (and we will have many such kernels), which assumes that
the input has been bit-reversed. A simple implementation of the general function
can be as follows.

function y = FFTImpl(x, FFTKernel)
x = bitreverse(x);
y = FFTKernel(x);

A simple implementation of the kernel FFT function, based on the first FFT algo-
rithm we stated, can be as follows.

function y = FFTKernelStandard(x)
N = size(x, 1);
if N == 1

y = x;
else

xe = FFTKernelStandard(x(1:(N/2)));
xo = FFTKernelStandard(x((N/2+1):N));
D = exp(-2*pi*1j*(0:(N/2-1))’/N);
xo = xo.*D;
y = [ xe + xo; xe - xo];

end

Note that, although computations can be performed in-place, this Matlab imple-
mentation does not, since return values and parameters to functions are copied in
Matlab. In exercise 1 we will extend these to the general implementations we will
use later. We can now run the FFT by combining the general function and the kernel
as follows:

y = FFTImpl(x, @FFTKernelStandard);

Note that FFTKernelStandard is recursive; it calls itself. If this is your first en-
counter with a recursive program, it is worth running through the code manually
for a given value of N , such as N = 4.

Immediately we see from factorization (2.19) two possible implementations for a
kernel. First, as we did, we can apply the FFT recursively. A second way is to, instead
of using recursive function calls, use a for-loop where we at each stage in the loop
compute the product with one matrix in factorization (2.19), from right to left. Inside
this loop there must be another for-loop, where the different blocks in this matrix are
applied. We will establish this non-recursive implementation in exercise 8, and see
that this leads to a more efficient algorithm.
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Matlab has built-in functions for computing the DFT and the IDFT using the
FFT algorithm. The functions are called fft and ifft. These functions make no
assumption about the length of the vector, i.e. it may not be of even length. The im-
plementation may however check if the length of the vector is 2r , and in those cases
variants of the algorithm discussed here can be used. In general, fast algorithms
exist when the vector length N can be factored as a product of small integers.

2.4.1 Reduction in the number of multiplications with the FFT

Now we will explain why the FFT and IFFT factorizations reduce the number of
arithmetic operations when compared to direct DFT and IDFT implementations.
We will assume that x ∈ RN with N a power of 2, so that the FFT algorithm can be
used recursively, all the way down to vectors of length 1. In many settings this power
of 2 assumption can be done. As an example, in compression of sound, one restricts
processing to a certain block of the sound data, since the entire sound is too big to be
processed in one piece. One then has a freedom to how big these blocks are made,
and for optimal speed one often uses blocks of length 2r with r some integer in the
range 5–10. At the end of this section we will explain how the more general FFT can
be computed when N is not a power of 2.

We first need some terminology for how we count the number of operations of a
given type in an algorithm. In particular we are interested in the limiting behaviour
when N becomes large, which is the motivation for the following definition.

Definition 2.37 (Order of an algorithm). Let RN be the number of operations of
a given type (such as multiplication or addition) in an algorithm, where N de-
scribes the dimension of the data (such as the size of the matrix or length of the
vector), and let f be a positive function. The algorithm is said to be of order N ,
also written O( f (N )), if the number of operations grows as f (N ) for large N , or
more precisely, if

lim
N→∞

RN

f (N )
= 1.

In some situations we may count the number of operations exactly, but we will
also see that it may be easier to obtain the order of the algorithm, since the number
of operations may have a simpler expression in the limit. Let us see how we can use
this terminology to describe the complexity of the FFT algorithm. Let MN and AN

denote the number of real multiplications and real additions, respectively, required
by the FFT algorithm. Once the FFT’s of order N /2 have been computed (MN /2 real
multiplications and AN /2 real additions are needed for this), it is clear from equa-
tions (2.14)-(2.15) that an additional N complex additions, and an additional N /2
complex multiplications, are required. Since one complex multiplication requires 4
real multiplications and 2 real additions, and one complex addition requires two
real additions, we see that we require an additional 2N real multiplications, and
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2N +N = 3N real additions. This means that we have the difference equations

MN = 2MN /2 +2N AN = 2AN /2 +3N . (2.20)

Note that e−2πi /N may be computed once and for all and outside the algorithm, and
this is the reason why we have not counted these operations.

The following example shows how the difference equations (2.20) can be solved.
It is not too difficult to argue that MN = O(2N log2 N ) and AN = O(3N log2), by not-
ing that there are log2 N levels in the FFT, with 2N real multiplications and real 3N
additions at each level. But for N = 2 and N = 4 we may actually avoid some multi-
plications, so we should solve these equations by stating initial conditions carefully,
in order to obtain exact operation counts. In practice, and as we will see later, one
often has more involved equations than (2.20), for which the solution can not be
seen directly, so that one needs to apply systematic mathematical methods instead,
such as in the example below.
Example 2.38. To use standard solution methods for difference equations to equa-
tions (2.20), we first need to write them in a standard form. Assuming that AN

and MN are powers of 2, we set N = 2r and xr = M2r , or xr = A2r . The differ-
ence equations can then be rewritten as xr = 2xr−1 +2 ·2r for multiplications, and
xr = 2xr−1 +3 ·2r for additions, and again be rewritten in the standard forms

xr+1 −2xr = 4 ·2r xr+1 −2xr = 6 ·2r .

The homogeneous equation xr+1 −2xr = 0 has the general solution xh
r =C 2r . Since

the base in the power on the right hand side equals the root in the homogeneous
equation, we should in each case guess for a particular solution on the form (xp )r =
Ar 2r . If we do this we find that the first equation has particular solution (xp )r =
2r 2r , while the second has particular solution (xp )r = 3r 2r . The general solutions
are thus on the form xr = 2r 2r +C 2r , for multiplications, and xr = 3r 2r +C 2r for
additions.

Now let us state initial conditions for the number of additions and multiplica-
tions. Since multiplications can be avoided completely for N = 1, 2, and 4, we
can use M4 = x2 = 0 as initial value. This gives, xr = 2r 2r − 4 · 2r , so that MN =
2N log2 N −4N .

For additions we can use A1 = x0 = 0 as initial value, which gives xr = 3r 2r , so
that AN = 3N log2 N .

Our FFT algorithm thus requires slightly more additions than multiplications.
FFT algorithms are often characterized by their operation count,i.e. the total number
of real additions and real multiplications, i.e. RN = MN + AN . We see that RN =
5N log2 N − 4N . In practice we can write this as a bit fewer multiplications, since
e−2πi n/N can take the values 1 and −i , and in these cases there is need to multiply.

Finally, clearly our FFT algorithm is O(5N log2 N ), since limN→∞
5N log2 N−4N

5N log2 N = 1.

♣
It is straightforward to show that the IFFT implementation requires the same

operation count as the FFT agorithm.
In contrast, the direct implementation of the DFT requires N 2 complex multi-

plications and N (N −1) complex additions. This results in 4N 2 real multiplications
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and 2N 2 + 2N (N − 1) = 4N 2 − 2N real additions. The total operation count is thus
8N 2−2N . In other words, the FFT and IFFT significantly reduce the number of arith-
metic operations. In Exercise 9 we present another algorithm, called the Split-radix
algorithm, which reduces the number of operations even further. Let us summarize
our findings as follows.

Theorem 2.39 (Number of operations in the FFT and IFFT algorithms). The N -
point FFT and IFFT algorithms both require O(2N log2 N ) real multiplications and
O(3N log2 N ) real additions. In comparison, the number of real multiplications
and real additions required by direct implementations of the N -point DFT and
IDFT are O(8N 2).

Often we apply the DFT for real data, so we would like to have FFT-algorithms
tailored to this, with reduced complexity (since real data has half the dimension of
general complex data). By some it has been argued that one can find improved FFT
algorithms when one assumes that the data is real. In exercises 6 and 7 we address
this issue, and conclude that there is little to gain from assuming real input: The
general algorithm for complex input can be used also to address real input.

Another reason why the FFT is efficient is that, since the FFT splits the calcu-
lation of the DFT into computing two DFT’s of half the size, the FFT is well suited
for parallel computing: the two smaller FFT’s can be performed independently of
one another, for instance in two different computing cores on the same computer.
Besides reducing the number of arithmetic operations, FFT implementation can
also apply several programming tricks to speed up computation, see for instance
http://cnx.org/content/m12021/latest/ for an overview.

2.4.2 The FFT when N = N1N2

Applying an FFT to a vector of length 2n is by far the most common thing to do. It
turns out, however, that the idea behind the algorithm easily carries over to the case
when N is any composite number, i.e. when N = N1N2. This make the FFT useful
also in settings where we have a dictated number of elements in x , which is not an
even number. The approach we will present in this section will help us as long as N
is not a prime number. The case when N is a prime number needs other techniques.

So, assume that N = N1N2. Any time-index k can be written uniquely on the
form N1k+p, with 0 ≤ k < N2, and 0 ≤ p < N1. We will make the following definition.

Definition 2.40 (Polyphase components of a vector). Let x ∈ RN1N2 . We denote
by x (p) the vector in RN2 with entries (x (p))k = xN1k+p . x (p) is also called the p’th
polyphase component of x .

The previous vectors x (e) and x (o) can be seen as special cases of polyphase com-
ponents. Polyphase components will also be useful later (see Chapter 8). Using the
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polyphase notation, we can write

DFTN x =
N−1∑
k=0

xk e−2πi nk/N =
N1−1∑
p=0

N2−1∑
k=0

(x (p))k e−2πi n(N1k+p)/N

=
N1−1∑
p=0

e−2πi np/N
N2−1∑
k=0

(x (p))k e−2πi nk/N2

Similarly, any frequency index n can be written uniquely on the form N2q +n, with
0 ≤ q < N1, and 0 ≤ n < N2, so that the DFT can also be written as

N1−1∑
p=0

e−2πi (N2q+n)p/N
N2−1∑
k=0

(x (p))k e−2πi (N2q+n)k/N2

=
N1−1∑
p=0

e−2πi qp/N1 e−2πi np/N
N2−1∑
k=0

(x (p))k e−2πi nk/N2 .

Now, if X is the N2 × N1-matrix X where the p’th column is x (p), we recognize
the inner sum

∑N2−1
k=0 (x (p))k e−2πi nk/N2 as matrix multipication with DFTN2 and X , so

that this can be written as (DFTN2 X )n,p . The entire sum can thus be written as

N1−1∑
p=0

e−2πi qp/N1 e−2πi np/N (DFTN2 X )n,p .

Now, define Y as the matrix where X is multiplied componentwise with the matrix
with (n, p)-component e−2πi np/N . The entire sum can then be written as

N1−1∑
p=0

e−2πi qp/N1 Yn,p = (Y FN1 )n,q

This means that the sum can be written as component (n, q) in the matrix Y FN1 .
Clearly Y FN1 is the matrix where the DFT is applied to all rows of Y . We have thus
shown that component N2q +n of FN x equals (Y FN1 )n,q . This means that FN x can
be obtained by stacking the columns of Y FN1 on top of oneanother. We can thus
summarize our procedure as follows, which gives a recipe for splitting an FFT into
smaller FFT’s when N is not a prime number.

Theorem 2.41 (FFT algorithm when N is composite). When N = N1N2, the FFT
of a vector x can be computed as follows

1. Form the N2 ×N1-matrix X , where the p’th column is x (p).

2. Perform the DFT on all the columns in X , i.e. compute FN2 X .

3. Multiply element (n, p) in the resulting matrix with e−2πi np/N (these are
called twiddle factors), to obtain matrix Y .

4. Perform the DFT on all the rows in the resulting matrix, i.e. compute Y FN1 .

5. Form the vector where the columns of the resulting matrix are stacked on
top of oneanother.
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From the algorithm one easily deduces how the IDFT can be computed also: All
steps are invertible, and can be performed by IFFT or multiplication. We thus only
need to perform the inverse steps in reverse order.

But what about the case when N is a prime number? Rader’s algorithm [29] han-
dles this case by expressing a DFT with N a prime number in terms of DFT’s of length
N −1 (which is not a prime number). Our previous scenario can then be followed,
but stops quickly again if N −1 has prime factors of high order. Since there are some
computational penalties in applying Rader’s algorithm, it may be inefficient some
cases. Winograd’s FFT algorithm [39] extends Rader’s algorithm to work for the case
when N = pr . This algorithm tends to reduce the number of multiplications, at the
price of an increased number of additions. It is difficult to program, and is rarely
used in practice.

What you should have learnt in this section

How the FFT algorithm works by splitting into two FFT’s of half the length. Simple
FFT implementation. Reduction in the number of operations with the FFT.

Exercises for Section 2.4

1. Recall that, in exercise 8 in section 2.2, we extended the direct DFT implementa-
tion so that it accepted a second parameter telling us if the forward or reverse trans-
form should be applied. Extend the general function and the standard kernel in the
same way. Again, the forward transform should be used if the forward parameter
is not present. Assume also that the kernel accepts only one-dimensional data, and
that the general function applies the kernel to each column in the input if the input
is two-dimensional (so that the FFT can be applied to all channels in a sound with
only one call). The signatures for our methods should thus be changed as follows:

function y = FFTImpl(x, FFTKernel, forward)
function y = FFTKernelStandard(x, forward)

It should be straightforward to make the modifications for the reverse transform by
consulting the second part of Theorem 2.36. For simplicity, let FFTImpl take care
of the additional division with N we need to do in case of the IDFT. In the following
we will assume these signatures for the FFT implementation and the corresponding
kernels.

2. In this exercise we will compare different methods for computing the DFT.

a. Write code which compares the execution times for an N -point DFT for
the following three cases: Direct implementation of the DFT (as in Exam-
ple 2.20), the FFT implementation used in this chapter, and the built-in fft-
function. Your code should use the sample audio file castanets.wav, apply
the different DFT implementations to the first N = 2r samples of the file for
r = 4 to r = 12, store the execution times in a vector, and plot these. You can
use the functions tic and toc to measure the execution time.
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b. A problem for large N is that there is such a big difference in the exe-
cution times between the two implementations. We can address this by us-
ing a loglog-plot instead. Plot N against execution times using the function
loglog. How should the fact that the number of arithmetic operations are
8N 2 and 5N log2 N be reflected in the plot?

c. It seems that the built-in FFT is much faster than our own FFT implemen-
tation, even though they may use similar algorithms. Try to explain what can
be the cause of this.

3. Let x1 = (1,3,5,7) and x2 = (2,4,6,8). Compute DFT4x1 and DFT4x2. Explain
how you can compute DFT8(1,2,3,4,5,6,7,8) based on these computations (you
don’t need to perform the actual computation). What are the benefits of this ap-
proach?

4. When N is composite, there are a couple of results we can state regarding polyphase
components.

a. Assume that N = N1N2, and that x ∈ RN satisfies xk+r N1 = xk for all k,r ,
i.e. x has period N1. Show that yn = 0 for all n which are not multiplums of
N2.

b. Assume that N = N1N2, and that x (p) = 0 for p 6= 0. Show that the polyphase
components y (p) of y = DFTN x are constant vectors for all p.

5. When we wrote down the difference equation for the number of multiplications
in the FFT algorithm, you could argue that some multiplications were not counted.
Which multiplications in the FFT algorithm were not counted when writing down
this difference equation? Do you have a suggestion to why these multiplications
were not counted?

6. (Adapting the FFT algorithm to real data, first approach). In this exercise we
will look at a first approach to how we can adapt an FFT algorithm to real input x .
We start by noting that (2.14) can be rewritten as

(y0, y1, . . . , yN /2−1) = DFTN /2
(
x (e) +DN /2DFTN /2x (o)) .

a. Explain from this formula that, when x is real, performing a DFT of even
length N is equivalent to performing a DFT of length N /2 on complex input.

b. Explain why yN /2 must be handled explicity when you use the approach
in a. on real data, and explain that you can use the formula

yN /2 =
N /2−1∑

k=0

(
(x (e))k − (x (o))k

)
to find yN /2 (note that this formula does not use complex arithmetic).

c. Explain that this approach leads to an FFT algorithm for real data which
has half the operation count for complex input. This harmonizes with the
fact that real data has half the dimension of complex data.
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7. (Adapting the FFT algorithm to real data, second approach). In this exercise we
will look at a second approach to how we can adapt an FFT algorithm to real input
x . We will now instead rewrite Equation (2.14) for indices n and N /2−n as

yn = (DFTN /2x (e))n +e−2πi n/N (DFTN /2x (o))n

yN /2−n = (DFTN /2x (e))N /2−n +e−2πi (N /2−n)/N (DFTN /2x (o))N /2−n

= (DFTN /2x (e))N /2−n −e2πi n/N (DFTN /2x (o))n

= (DFTN /2x (e))n −e−2πi n/N (DFTN /2x (o))n .

We see here that, if we have computed the terms in yn (which needs an additional 4
real multiplications, since e−2πi n/N and (DFTN /2x (o))n are complex), no further mul-
tiplications are needed in order to compute yN /2−n , since its compression simply
conjugates these terms before adding them. Again yN /2 must be handled explicity
with this approach. For this we can use the formula

yN /2 = (DFTN /2x (e))0 − (DN /2DFTN /2x (o))0

instead.

a. Conclude from this that an FFT algorithm adapted to real data at each
step requires N /4 complex additions and N /2 additions. Conclude from this
as before that an algorithm based on real data requires MN = O(N log2 N )
multiplications and AN = O

( 3
2 N log2 N

)
additions (i.e. again we obtain half

the operation count of complext input).

b. Find an IFFT algorithm adapted to vectors y which have conjugate sym-
metry, which has the same operation count we found above.
Hint: Consider the vectors yn + yN /2−n and e2πi n/N (yn − yN /2−n). From the
equations above, how can these be used in an IFFT?

8 (Non-recursive FFT algorithm). Use factorization (2.19) to write a kernel func-
tion FFTKernelNonrec for a non-recursive FFT implementation. In your code, per-
form the matrix multiplications in factorization (2.19) from right to left in an (outer)
for-loop. For each matrix loop through the different blocks on the diagonal in an
(inner) for-loop. Make sure you have the right number of blocks on the diagonal,

each block being on the form

(
I DN /2k

I −DN /2k

)
. It may be a good idea to start by im-

plementing multiplication with such a simple matrix first as these are the building
blocks in the algorithm (aslo attempt to do this so that everything is computed in-
place). Also compare the execution times with our original FFT algorithm, as we did
in Exercise 2, and try to explain what you see in this comparison.

9 (The Split-radix FFT algorithm). In this exercise we will develop a variant of the
FFT algorithm called the split-radix FFT algorithm, which until recently held the
record for the lowest operation count for any FFT algorithm.
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We start by splitting the rightmost DFTN /2 in Equation (2.18) by using Equa-
tion (2.18) again, to obtain

DFTN x =

DFTN /2 DN /2

(
DFTN /4 DN /4DFTN /4

DFTN /4 −DN /4DFTN /4

)
DFTN /2 −DN /2

(
DFTN /4 DN /4DFTN /4

DFTN /4 −DN /4DFTN /4

)


 x (e)

x (oe)

x (oo)

 . (2.21)

a. Let GN /4 be the (N /4)× (N /4) diagonal matrix with e−2πi n/N on the diag-

onal. Show that DN /2 =
(
GN /4 0

0 −iGN /4

)
.

b. Let HN /4 be the (N /4)× (N /4) diagonal matrix GD/4DN /4. Verify the fol-
lowing rewriting of Equation (2.21):

DFTN x =

DFTN /2

(
GN /4DFTN /4 HN /4DFTN /4

−iGN /4DFTN /4 i HN /4DFTN /4

)
DFTN /2

(−GN /4DFTN /4 −HN /4DFTN /4

iGN /4DFTN /4 −i HN /4DFTN /4

)


 x (e)

x (oe)

x (oo)



=


I 0 GN /4 HN /4

0 I −iGN /4 i HN /4

I 0 −GN /4 −HN /4

0 I iGN /4 −i HN /4


DFTN /2 0 0

0 DFTN /4 0
0 0 DFTN /4

 x (e)

x (oe)

x (oo)



=

DFTN /2x (e) +
(

GN /4DFTN /4x (oe) +HN /4DFTN /4x (oo)

i
(
HN /4DFTN /4x (oe) −GN /4DFTN /4x (oo)

))
DFTN /2x (e) −

(
GN /4DFTN /4x (oe) +HN /4DFTN /4x (oo)

i
(
HN /4DFTN /4x (oe) −GN /4DFTN /4x (oo)

))


c. Explain from the above expression why, once the three FFT’s above have
been computed, the rest can be computed with N /2 complex multiplications,
and 2×N /4+N = 3N /2 complex additions. This is equivalent to 2N real mul-
tiplications and N +3N = 4N real additions.
Hint: It is important that GN /4DFTN /4x (oe) and HN /4DFTN /4x (oo) are com-
puted first, and the sum and difference of these two afterwards.

d. Due to what we just showed, our new algorithm leads to real multiplica-
tion and addition counts which satisfy

MN = MN /2 +2MN /4 +2N AN = AN /2 +2AN /4 +4N

Find the general solutions to these difference equations and conclude from
these that MN =O

( 4
3 N log2 N

)
, and AN =O

( 8
3 N log2 N

)
. The operation count

is thus O
(
4N log2 N

)
, which is a reduction of N log2 N from the FFT algo-

rithm.

e. Write an FFT kernel function FFTKernelSplitradix for the split-radix
algorithm (again this should handle both the forward and reverse transforms).
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Are there more or less recursive function calls in this function than in the orig-
inal FFT algorithm? Also compare the execution times with our original FFT
algorithm, as we did in Exercise 2. Try to explain what you see in this com-
parison.

By carefully examining the algorithm we have developed, one can reduce the oper-
ation count to 4N log2 N −6N +8. This does not reduce the order of the algorithm,
but for small N (which often is the case in applications) this reduces the number
of operations considerably, since 6N is large compared to 4N log2 N for small N . In
addition to having a lower number of operations than the FFT algorithm of Theo-
rem 2.34, a bigger percentage of the operations are additions for our new algorithm:
there are now twice as many additions than multiplications. Since multiplications
may be more time-consuming than additions (depending on how the CPU com-
putes floating-point arithmetic), this can be a big advantage.

10. In this exercise we will make some considerations which will help us explain
the code for bit-reversal. This is perhaps not a mathematically challenging exer-
cise, but neverthesless a good exercise in how to think when developing an efficient
algorithm. We will use the notation i for an index, and j for its bit-reverse. If we
bit-reverse k bits, we will write N = 2k for the number of possible indices.

a. Consider the following code

j = 0;
for i = 0:(N-1)

j
m = N/2;
while (m >= 1 && j >= m)

j = j - m;
m = m/2;

end
j = j + m;

end

Explain that the code prints all numbers in [0, N −1] in bit-reversed order (i.e.
j ). Verify this by running the program, and writing down the bits for all num-
bers for, say N = 16. In particular explain the decrements and increments
made to the variable j . The code above thus produces pairs of numbers (i , j ),
where j is the bit-reverse of i . As can be seen, bitreverse applies similar
code, and then swaps the values xi and x j in x , as it should.

Since bit-reverse is its own inverse (i.e. P 2 = I ), it can be performed by swapping
elements i and j . One way to secure that bit-reverse is done only once, is to perform
it only when j > i . You see that bitreverse includes this check.

b. Explain that N − j −1 is the bit-reverse of N −i −1. Due to this, when i , j <
N /2, we have that N − i −1, N − j − l ≥ N /2, and that bitreversal can swap
them. Moreover, all swaps where i , j ≥ N /2 can be performed immdiately
when pairs where i , j < N /2 are encountered. Explain also that j < N /2 if
and only if i is even. In the code you can see that the swaps (i , j ) and (N − i −
1, N − j −1) are performed together when i is even, due to this.
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c. Assume that i < N /2 is odd. Explain that j ≥ N /2, so that j > i . This says
that when i < N /2 is odd, we can always swap i and j (this is the last swap
performed in the code). All swaps where 0 ≤ j < N /2 and N /2 ≤ j < N can be
performed in this way.

In bitreversal, you can see that the bit-reversal of 2r and 2r +1 are handled to-
gether (i.e. i is increased with 2 in the for-loop). The effect of this is that the number
of if-tests can be reduced, due to the observations from b) and c).

Summary

We defined digital sound, and demonstrated how we could perform simple opera-
tions on digital sound such as adding noise, playing at different rates e.t.c.. Digital
sound could be obtained by sampling the sounds from the previous chapter. We
considered the analog of Fourier series for digital sound, which is called the Discrete
Fourier Transform, and looked at its properties and its relation to Fourier series. We
also saw that the sampling theorem guaranteed that there is no loss in considering
the samples of a function, as long as the sampling rate is high enough compared to
the highest frequency in the sound.

We obtained an implementation of the DFT, called the FFT, which is more effi-
cient in terms of the number of arithmetic operations than a direct implementation
of the DFT. The FFT has been cited as one of the ten most important algorithms of
the 20’th century [4]. The original paper [6] by Cooley and Tukey dates back to 1965,
and handles the case when N is composite. In the literature, one has been interested
in the FFT algorithms where the number of (real) addititions and multiplications
(combined) is as low as possible. This number is also called the flop count. The pre-
sentation in this book thus differs from the literature in that we mostly count only
the number of multiplications. The split radix algorithm [40, 10], which we reviewed
in Exercise 2.4. 9, held the record for the lowest flop count until quite recently [18].
It may seem strange that the total number of additions and multiplications are con-
sidered: Aren’t multiplications more time-consuming than additions? When you
consider how this is done mechanically, this is certainly the case: In fact, floating
point multiplication can be considered as a combination of many floating point ad-
ditions. Due to this, one can find many places in the literature where expressions
are rewritten so that the multiplication count is reduced, at the cost of a higher ad-
dition count. Winograd’s algorithm [39] is an example of this, where the number of
additions is much higher than the number of multiplications. However, most mod-
ern CPU’s have more complex hardware dedicated to computing multiplications,
which can result in that one floating point multiplication can be performed in one
cycle, just as one addition can. Another thing is that modern CPU’s typically can
perform many additions and multiplications in parallel, and the higher complexity
in the multiplication hardware may result in that the CPU can run less multiplica-
tions in parallel, compared to additions. In other words, if we run test program on a
computer, it may be difficult to detect any differences in performance between addi-
tion and multiplication, even though complex big-scale computing should in theory
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show some differences. There are also other important aspects of the FFT, besides
the flop count. Another is memory use. It is possible to implement the FFT so that
the output is computed into the same memory as the input, so that the FFT algo-
rithm does not require extra memory besides the input buffer. Clearly, one should
bit-reverse the input buffer in order to achieve this.

We have now defined two types of transforms to the frequency domain: Fourier
series for continuous, periodic functions, and the DFT, for periodic vectors. In the
literature there are in two other transforms also: The Continuous time Fourier trans-
form (CTFT) we have already mentioned at the end of Chapter 1. We also have the
Discrete time Fourier transform (DTFT)) for vectors which are not periodic [28]. In
this book we will deliberately avoid the DTFT as well, since it assumes that the sig-
nal to transform is of infinite duration, while we in practice analyze signals with a
limited time scope.

The sampling theorem is also one of the most important results of the last cen-
tury. It was discovered by Harry Nyquist and Claude Shannon [31], but also by oth-
ers independently. One can show that the sampling theorem holds also for functions
which are not periodic, as long as we have the same bound on the highest frequency.
This is more common in the literature. In fact, the proof seen here where we restrict
to periodic functions is not common. The advantage of the proof seen here is that
we remain in a finite dimensional setting, and that we only need the DFT. More gen-
erally, proofs of the sampling theorem in the literature use the DTFT and the CTFT.
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Chapter 3
Operations on digital sound:
digital filters

In Section 1.5 we defined analog filters as operations on sound which preserved dif-
ferent frequencies. Such operations are important since they can change the fre-
quency content in many ways. Analog filters can not be used computationally, how-
ever, since they are defined for all instances in time. As when we defined the DFT
to make Fourier series computable, we would like to define digital filters, in order to
make analog filters computable. It turns out that what we will define as digital filters
can be computed by the following procedure:

zn = 1

4
(xn−1 +2xn +xn+1), for n = 0, 1, . . . , N −1. (3.1)

Here x denotes the input vector, and z the output vector. In other words, the output
of a digital filter is constructed by combining several input elements linearly. The
concrete filter defined by Equation (3.1) is called a smoothing filter. We will demon-
strate that it smooths the variations in the sound, and this is where it gets its name
from. We will start this chapter by by looking at matrix representations for opera-
tions as given by Equation (3.1). Then we will formally define digital filters in terms
of preservation of frequencies as we did for analog filters, and show that the formal
definition is equivalent to such operations.

3.1 Matrix representations of filters

Let us consider Equation (3.1) in some more detail to get more intuition about filters.
As before we assume that the input vector is periodic with period N , so that xn+N =
xn . Our first observation is that the output vector z is also periodic with period N
since

zn+N = 1

4
(xn+N−1 +2xn+N +xn+N+1) = 1

4
(xn−1 +2xn +xn+1) = zn .

85



The filter is also clearly a linear transformation and may therefore be represented
by an N × N matrix S that maps the vector x = (x0, x1, . . . , xN−1) to the vector z =
(z0, z1, . . . , zN−1), i.e., we have z = Sx . To find S, for 1 ≤ n ≤ N − 2 it is clear from
Equation (3.1) that row n has the value 1/4 in column n−1, the value 1/2 in column
n, and the value 1/4 in column n +1. For row 0 we must be a bit more careful, since
the index −1 is outside the legal range of the indices. This is where the periodicity
helps us out so that

z0 = 1

4
(x−1 +2x0 +x1) = 1

4
(xN−1 +2x0 +x1) = 1

4
(2x0 +x1 +xN−1).

From this we see that row 0 has the value 1/4 in columns 1 and N −1, and the value
1/2 in column 0. In exactly the same way we can show that row N −1 has the entry
1/4 in columns 0 and N − 2, and the entry 1/2 in column N − 1. In summary, the
matrix of the smoothing filter is given by

S = 1

4



2 1 0 0 · · · 0 0 0 1
1 2 1 0 · · · 0 0 0 0
0 1 2 1 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 · · · 0 1 2 1
1 0 0 0 · · · 0 0 1 2


. (3.2)

A matrix on this form is called a Toeplitz matrix. The general definition is as follows
and may seem complicated, but is in fact quite straightforward:

Definition 3.1 (Toeplitz matrices). An N ×N -matrix S is called a Toeplitz matrix
if its elements are constant along each diagonal. More formally, Sk,l = Sk+s,l+s for
all nonnegative integers k, l , and s such that both k + s and l + s lie in the interval
[0, N −1]. A Toeplitz matrix is said to be circulant if in addition

S(k+s) mod N ,(l+s) mod N = Sk,l

for all integers k, l in the interval [0, N −1], and all s (Here mod denotes the re-
mainder modulo N ).

Toeplitz matrices are very popular in the literature and have many applications.
A Toeplitz matrix is constant along each diagonal, while the additional property of
being circulant means that each row and column of the matrix ’wraps over’ at the
edges. Clearly the matrix given by Equation (3.2) satisfies Definition 3.1 and is a cir-
culant Toeplitz matrix. A Toeplitz matrix is uniquely identified by the values on its
nonzero diagonals, and a circulant Toeplitz matrix is uniquely identified by the val-
ues on the main diagonal, and on the diagonals above (or under) it. While Toeplitz
matrices here show up in the context of filters, they will also show up later in the
context of wavelets.
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Equation (3.1) leads us to the more general expression

zn =∑
k

tk xn−k . (3.3)

This general expression opens up for defining many types of operations. The values
tk will be called filter coefficients. The range of k is not specified, but is typically an
interval around 0, since zn usually is calculated by combining xk ’s with indices close
to n. Both positive and negative indices are allowed. As an example, for formula (3.1)
k ranges over −1,0, and 1, and we have that t−1 = t1 = 1/4, and t0 = 1/2. By following
the same argument as above, the following is clear:

Proposition 3.2. Any operation defined by Equation (3.3) is a linear transforma-
tion which transforms a vector of period N to another of period N . It may there-
fore be represented by an N×N matrix S that maps the vector x = (x0, x1, . . . , xN−1)
to the vector z = (z0, z1, . . . , zN−1), i.e., we have z = Sx . Moreover, the matrix S is a
circulant Toeplitz matrix, and the first column s of this matrix is given by

sk =
{

tk , if 0 ≤ k < N /2;

tk−N if N /2 ≤ k ≤ N −1.
(3.4)

In other words, the first column of S can be obtained by placing the coefficients in
(3.3) with positive indices at the beginning of s, and the coefficients with negative
indices at the end of s.

This proposition will be useful for us, since it explains how to pass from the
form (3.3), which is most common in practice, to the matrix form S.
Example 3.3. Let us apply Proposition 3.2 to the operation defined by formula (3.1):

1. for k = 0 Equation 3.4 gives s0 = t0 = 1/2.

2. For k = 1 Equation 3.4 gives s1 = t1 = 1/4.

3. For k = N −1 Equation 3.4 gives sN−1 = t−1 = 1/4.

For all k different from 0, 1, and N − 1, we have that sk = 0. Clearly this gives the
matrix in Equation (3.2). ♣

Proposition 3.2 is also useful when we have a circulant Toeplitz matrix S, and we
want to find filter coefficients tk so that z = Sx can be written on the form (3.3):
Example 3.4. Consider the matrix

S =


2 1 0 3
3 2 1 0
0 3 2 1
1 0 3 2

 .

This is a circulant Toeplitz matrix with N = 4, and we see that s0 = 2, s1 = 3, s2 = 0,
and s3 = 1. The first equation in (3.4) gives that t0 = s0 = 2, and t1 = s1 = 3. The
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second equation in (3.4) gives that t−2 = s2 = 0, and t−1 = s3 = 1. By including only
the tk which are nonzero, the operation can be written as

zn = t−1xn−(−1) + t0xn + t1xn−1 + t2xn−2 = xn+1 +2x0 +3xn−1.

♣

What you should have learnt in this section

How to write down the circulant Toeplitz matrix from a digital filter expression, and
vice versa. How to find the first column of this matrix (s) from the filter coefficients
(t ), and vice versa.

Exercises for Section 3.1

1. Assume that the filter S is defined by the formula

zn = 1

4
xn+1 + 1

4
xn + 1

4
xn−1 + 1

4
xn−2.

Write down the filter coefficients tk , and the matrix for S when N = 8.

2. Given the circulant Toeplitz matrix

S =


1 2 0 0
0 1 2 0
0 0 1 2
2 0 0 1

 ,

write down the filter coefficients tk .

3. Assume that S is a circulant Toeplitz matrix so that only

S0,0, . . . ,S0,F and S0,N−E , . . . ,S0,N−1

are nonzero on the first row, where E , F are given numbers. When implementing
this filter on a computer we need to make sure that the vector indices lie in [0, N −1].
Show that zn = (Sx)n can be split into the following different formulas, depending
on n, to achieve this:

a. 0 ≤ n < E :

zn =
n−1∑
k=0

S0,N+k−n xk +
F+n∑
k=n

S0,k−n xk +
N−1∑

k=N−1−E+n
S0,k−n xk . (3.5)

b. E ≤ n < N −F :

zn =
n+F∑

k=n−E
S0,k−n xk . (3.6)
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c. N −F ≤ n < N :

zn =
n−(N−F )∑

k=0
S0,k−n xk +

n−1∑
k=n−E

S0,N+k−n xk +
N−1∑
k=n

S0,k−n xk . (3.7)

From these three formulas we can write down a full implementation of the filter.
This implementation is often more useful than writing down the entire matrix S,
since we save computation when many of the matrix entries are zero.

3.2 Formal definition of filters and the vector frequency
response

Let us now define digital filters formally, and establish their relationship to Toeplitz
matrices. We have seen that a sound can be decomposed into different frequency
components, and we would like to define filters as operations which adjust these
frequency components in a predictable way. One such example is provided in Ex-
ample 2.30, where we simply set some of the frequency components to 0. The natu-
ral starting point is to require for a filter that the output of a pure tone is a pure tone
with the same frequency.

Definition 3.5 (Digital filters and vector frequency response). A linear transfor-
mation S : RN 7→ RN is a said to be a digital filter, or simply a filter, if it maps any
Fourier vector in RN to a multiple of itself. In other words, for any integer n in the
range 0 ≤ n ≤ N −1 there exists a value λS,n so that

S
(
φn

)=λS,nφn , (3.8)

i.e., the N Fourier vectors are the eigenvectors of S. The vector of (eigen)values
λS = (λS,n)N−1

n=0 is often referred to as the (vector) frequency response of S.

We will identify the linear transformation S with its matrix relative to the stan-
dard basis. Since the Fourier basis vectors are orthogonal vectors, S is clearly or-
thogonally diagonalizable. Since also the Fourier basis vectors are the columns in
(FN )H , we have that

S = F H
N DFN (3.9)

whenever S is a digital filter, where D has the frequency response (i.e. the eigen-
values) on the diagonal1. We could also use DFTN to diagonalize filters, but it is
customary to use an orthogonal matrix (i.e. FN ) when the matrix is orthogonally di-
agonalizable. In particular, if S1 and S2 are digital filters, we can write S1 = F H

N D1FN

and S2 = F H
N D2FN , so that

S1S2 = F H
N D1FN F H

N D2FN = F H
N D1D2FN .

1Recall that the orthogonal diagonalization of S takes the form S = PDP T , where P contains as
columns an orthonormal set of eigenvectors, and D is diagonal with the eigenvectors listed on the di-
agonal (see Section 7.1 in [20]).

89



Since D1D2 = D2D1 for any diagonal matrices, we get the following corollary:

Corollary 3.6. The product of two digital filters is again a digital filter. Moreover,
all digital filters commute, i.e. if S1 and S2 are digital filters, S1S2 = S2S1.

Clearly also S1 + S2 is a filter when S1 and S2 are. The set of all filters is thus a
vector space, which also is closed under multiplication. Such a space is called an
algebra. Since all filters commute, this algebra is also called a commutative algebra.

The next result we will state gives three equivalent characterizations of a digital
filter. The first one is simply the definition in terms of having the Fourier basis as
eigenvectors. The second is that the matrix is circulant Toeplitz, i.e. that the opera-
tions we started this chapter with actually are filters. The third characterization is in
terms of a new concept which we now define.

Definition 3.7 (Time-invariance). Assume that S is a linear transformation from
RN to RN . Let x be input to S, and y = Sx the corresponding output. Let also z ,
w be delays of x , y with d elements (i.e. zn = xn−d , wn = yn−d ). S is said to be
time-invariant if, for any d and x , Sz = w (i.e. S sends the delayed input vector to
the delayed output vector).

With this notation, it is clear that time-delay with d elements, i.e. the operation
x → z , is a filter, since the time-delay of x = φn = 1p

N
e2πi kn/N is 1p

N
e2πi (k−d)n/N =

e−2πi dn/N x , and the Fourier basis are thus eigenvectors. If we denote thetime-delay
filter with Ed , the definition of time-invariance demands that SEd x = Ed Sx for
any x and d , i.e. SEd = Ed S for any d . We can now prove the following.

Theorem 3.8 (Characterizations of digital filters). The following are equivalent
characterizations of a digital filter:

1. S = (FN )H DFN for a diagonal matrix D , i.e. the Fourier basis is a basis of
eigenvectors for S.

2. S is a circulant Toeplitz matrix.

3. S is linear and time-invariant.

Proof: If S is a filter, then SEd = Ed S for all d since all filters commute, so that S
is time-invariant. This proves 1. → 3..

If S is time-invariant, since ed is e0 delayed by d elements, Sed (i.e. column d
of S), is the same as Se0 (i.e. the first column of S) delayed by d elements. Thus,
column d of S is column 0 of S delayed by d elements, and this means that S is a
circulant Toeplitz matrix. This proves 3. → 2..
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Finally, any circulant Toeplitz matrix can be written on the form
∑N−1

d=0 sd Ed (by
splitting the matrix into a sum of its diagonals). Since all Ed are filters, it is clear that
any circulant Toeplitz matrix is a filter. This proves 2. → 1..

Due to this result, filters are also called LTI filters, LTI standing for Linear, Time-
Invariant. Also, operations defined by (3.3) are digital filters, when restricted to vec-
tors with period N . The following results enables us to compute the eigenvalues/fre-
quency response easily, so that we do not need to form the characteristic polynomial
and find its roots:

Theorem 3.9. Any digital filter is uniquely characterized by the values in the first
column of its matrix. Moreover, if s is the first column in S, the frequency response
of S is given by

λS = DFTN s. (3.10)

Conversely, if we know the frequency responseλS , the first column s of S is given
by

s = IDFTNλS . (3.11)

Proof: If we replace S by (FN )H DFN we find that

DFTN s =
p

N FN s =
p

N FN S


1
0
...
0

=
p

N FN F H
N DFN


1
0
...
0

=
p

N DFN


1
0
...
0

= D

1
...
1

=λS ,

where we have used that the first column in FN has all entries equal to 1/
p

N , and
that the diagonal matrix D has all the eigenvalues of S on its diagonal, so that the
last expression is the vector of eigenvalues λS . This proves (3.10). Equation (3.11)
follows directly by applying the inverse DFT to (3.10).

The first column s, which thus characterizes the filter, is also called the impulse
response. This name stems from the fact that we can write s = Se0, i.e. the vector
s is the output (often called response) to the vector e0 (often called an impulse).
Equation (3.10) states that the frequency response can be written as

λS,n =
N−1∑
k=0

sk e−2πi nk/N , for n = 0, 1, . . . , N −1, (3.12)

where sk are the components of s.
Example 3.10. The identity matrix is a digital filter since I = (FN )H I FN . Since e0 is
the first column, it has impulse response s = e0. Its frequency response has 1 in all
components and therefore preserves all frequencies, as expected. ♣
Example 3.11. When only few of the coefficients sk are nonzero, it is possible to
obtain nice expressions for the frequency response. To see this, let us compute the
frequency response of the filter defined from formula (3.1). We saw that the first
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column of the corresponding Toeplitz matrix satisfied s0 = 1/2, and sN−1 = s1 = 1/4.
The frequency response is thus

λS,n = 1

2
e0 + 1

4
e−2πi n/N + 1

4
e−2πi n(N−1)/N

= 1

2
e0 + 1

4
e−2πi n/N + 1

4
e2πi n/N = 1

2
+ 1

2
cos(2πn/N ).

♣
Equations (3.9), (3.10), and (3.11) are important relations between the matrix-

and frequency representations of a filter. We see that the DFT is a crucial ingredient
in these relations. A consequence is that, once you recognize a matrix as circulant
Toeplitz, you do not need to make the tedious calculation of eigenvectors and eigen-
values which you are used to. Let us illustrate this with an example.
Example 3.12. Let us compute the eigenvalues and eigenvectors of the simple ma-
trix

S =
(
4 1
1 4

)
.

It is straightforward to compute the eigenvalues and eigenvectors of this matrix the
way you learnt in your first course in linear algebra. However, this matrix is also a
circulant Toeplitz matrix, so that we can use the results in this section to compute
the eigenvalues and eigenvectors. Since here N = 2, we have that e2πi nk/N = eπi nk =
(−1)nk . This means that the Fourier basis vectors are (1,1)/

p
2 and (1,−1)/

p
2, which

also are the eigenvectors of S. The eigenvalues are the frequency response of S,
which can be obtained as

p
N FN s =p

2
1p
2

(
1 1
1 −1

)(
4
1

)
=

(
5
3

)
The eigenvalues are thus 3 and 5. You could have obtained the same result with
your computer. Note that the computer may not return the eigenvectors exactly as
the Fourier basis vectors, since the eigenvectors are not unique (the multiple of an
eigenvector is also an eigenvector). The computer may for instance switch the signs
of the eigenvectors. We have no control over what the computer actually chooses to
do, since it uses some underlying numerical algorithm for computing eigenvectors
which we can’t influence. ♣

In signal processing, the frequency content of a vector (i.e., its DFT) is also re-
ferred to as its spectrum. This may be somewhat confusing from a linear algebra
perspective, because in this context the term spectrum is used to denote the eigen-
values of a matrix. But because of Theorem 3.9 this is not so confusing after all if
we interpret the spectrum of a vector (in signal processing terms) as the spectrum
of the corresponding digital filter (in linear algebra terms).

Certain vectors are easy to express in terms of the Fourier basis. This enables
us to compute the output of such vectors from a digital filter easily, as the following
example shows.
Example 3.13. Let us consider the filter S defined by zn = 1

6 (xn+2 + 4xn+1 + 6xn +
4xn−1 +xn−2), and see how we can compute Sx when

x = (cos(2π5 ·0/N ),cos(2π5 ·1/N ), . . . ,cos(2π5 · (N −1)/N )) ,
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where N is the length of the vector. We note first that
p

Nφ5 =
(
e2πi 5·0/N ,e2πi 5·1/N , . . . ,e2πi 5·(N−1)/N

)
p

NφN−5 =
(
e−2πi 5·0/N ,e−2πi 5·1/N , . . . ,e−2πi 5·(N−1)/N

)
,

Since e2πi 5k/N + e−2πi 5k/N = 2cos(2π5k/N ), we get by adding the two vectors that
x = 1

2

p
N (φ5 +φN−5). Since the φn are eigenvectors, we have expressed x as a sum

of eigenvectors. The corresponding eigenvalues are given by the vector frequency
response, so let us compute this. If N = 8, computing Sx means to multiply with the
8×8 circulant Toeplitz matrix

1

6



6 4 1 0 0 0 1 4
4 6 4 1 0 0 0 1
1 4 6 4 1 0 0 0
0 1 4 6 4 1 0 0
0 0 1 4 6 4 1 0
0 0 0 1 4 6 4 1
1 0 0 0 1 4 6 4
4 1 0 0 0 1 4 6


We now see that

λS,n = 1

6
(6+4e−2πi n/N +e−2πi 2n/N +e−2πi (N−2)n/N +4e−2πi (N−1)n/N )

= 1

6
(6+4e2πi n/N +4e−2πi n/N +e2πi 2n/N +e−2πi 2n/N )

= 1+ 4

3
cos(2πn/N )+ 1

3
cos(4πn/N ).

The two values of this we need are

λS,5 = 1+ 4

3
cos(2π5/N )+ 1

3
cos(4π5/N )

λS,N−5 = 1+ 4

3
cos(2π(N −5)/N )+ 1

3
cos(4π(N −5)/N )

= 1+ 4

3
cos(2π5/N )+ 1

3
cos(4π5/N ).

Since these are equal, x is a sum of eigenvectors with equal eigenvalues. This means
that x itself also is an eigenvector, with the same eigenvalue, so that

Sx =
(
1+ 4

3
cos(2π5/N )+ 1

3
cos(4π5/N )

)
x .

♣

3.2.1 Using digital filters to approximate analog filters

The formal definition of digital filters resembles that of analog filters, the difference
being that the Fourier basis is now discrete. From this one may think that one can
construct digital filters from analog filters. The following result clarifies this:
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Theorem 3.14. Let s be an analog filter with frequency response λs ( f ), and as-
sume that f ∈VM ,T (so that also s( f ) ∈VM ,T ). Let

x = ( f (0 ·T /N ), f (1 ·T /N ), . . . , f ((N −1)T /N ))

z = (s( f )(0 ·T /N ), s( f )(1 ·T /N ), . . . , s( f )((N −1)T /N ))

be vectors of N = 2M +1 uniform samples from f and s( f ). Then the operation
S : x → z (i.e. the operation which sends the samples of the input to the samples
of the output) is well-defined on RN , and is an N ×N -digital filter with frequency
response λS,n =λs (n/T ).

Proof: With N = 2M +1 we know that f ∈ VM ,T is uniquely determined from x .
This means that s( f ) also is uniquely determined from x , so that z also is uniquely
determined from x . The operation S : x → z is therefore well-defined on RN .

Clearly also s(e2πi nt/T ) = λs (n/T )e2πi nt/T . Since the samples of e2πi nt/T is the
vector e2πi kn/N , and the samples of λs (n/T )e2πi nt/T is λs (n/T )e2πi kn/N , the vector
e2πi kn/N is an eigenvector of S with eigenvalue λs (n/T ). Clearly then S is a digital
filter with frequency response λS,n =λs (n/T ).

It is interesting that the digital frequency response above is obtained by sampling
the analog frequency response. In this way we also see that it is easy to realize any
digital filter as the restriction of an analog filter: any analog filter s will do where
the frequency response has the values λS,n at the points n/T . In the theorem it is
essential that f ∈VM ,T . There are many functions with the same samples, but where
the samples of the output from the analog filter are different. When we restrict to
VM ,T , however, the output samples are always determined from the input samples.

Theorem 3.14 explains how digital filters can occur in practice. In the real world,
a signal is modeled as a continuous function f (t ), and an operation on signals as an
analog filter s. We can’t compute the entire output s( f ) of the analog filter, but it is
possible to apply the digital filter from Theorem 3.14 to the samples x of f . In general
f (t ) may not lie in VM ,T , but we can denote by f̃ the unique function in VM ,T with
the same samples as f (as in Section 2.3). By definition, Sx are the samples of s( f̃ ) ∈
VM ,T . s( f̃ ) can finally be found from these samples by using the procedure from
Figure 2.4 for finding s( f̃ ). This procedure for finding s( f̃ ) is illustrated in Figure 3.1.
Clearly, s( f̃ ) is an approximation to s( f ), since f̃ is an approximation to f , and since
s is continuous. Let us summarize this as follows:

Idea 3.15 (Approximating an analog filter). An analog filter s can be approxi-
mated through sampling, a digital filter, the DFT, and interpolation, as illustrated
in Figure 3.1. S is the digital filter with frequency response λS,n = λs (n/T ). When
f ∈VM ,T , this approximation equals s( f ). When we increase the number of sam-
ple points/the size of the filter, the approximation becomes better. If there is a
bound on the highest frequency in f , there exists an N so that when sampling of
that size, the approximation equals s( f ).
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f //

��

s( f̃ )

x
S // z

FN // y

OO

Figure 3.1: The connections between analog and digital filters, sampling and inter-
polation, provided by Theorem 3.14. The left vertical arrow represents sampling, the
right vertical arrow represents interpolation.

Let us comment on why the last statements here are true. That the approxima-
tion equals s( f ) when f ∈ VM ,T is obvious, since both f and s( f ) ∈ VM ,T are deter-
mined from their samples then. If there is a bound on the highest frequency in f ,
then f lies in VM ,T for large enough M , so that we recover s( f ) as our approxima-
tion using N = 2M +1. Finally, what happens when there is no bound on the highest
frequency? We know that s( fN ) = (s( f ))N . Since fN is a good approximation to f ,
the samples x of f are close to the samples of fN . By continuity of the digital filter,
z = Sx will also be close to the samples of (s( f ))N = s( fN ), so that (also by conti-
nuity) interpolating with z gives a good approximation to (s( f ))N , which is again a
good approximation to s( f )). From this it follows that the digital filter is a better
approximation when N is high.

What you should have learnt in this section

The formal definition of a digital filter in terms of having the Fourier vectors as
eigenvectors. The definition of the vector frequency response in terms of the cor-
responding eigenvalues. The definition of time-invariance and the three equivalent
characterizations of a filter. For filters, eigenvalues can be computed by taking the
DFT of the first column s, and there is no need to compute eigenvectors explicitly.
How to apply a digital filter to a sum of sines or cosines, by splitting these into a sum
of eigenvectors.

Exercises for Section 3.2

1. In Example 2.7 we looked at time reversal as an operation on digital sound. In
RN this can be defined as the linear mapping which sends the vector ek to eN−1−k

for all 0 ≤ k ≤ N −1.

a. Write down the matrix for the time reversal linear mapping, and explain
from this why time reversal is not a digital filter.

b. Prove directly that time reversal is not a time-invariant operation.

2. Let S be a digital filter. Show that S is symmetric if and only if the frequency
response satisfies sk = sN−k for all k.
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3. Consider the matrix

S =


4 1 3 1
1 4 1 3
3 1 4 1
1 3 1 4

 .

a. Compute the eigenvalues and eigenvectors of S using the results of this
section. You should only need to perform one DFT in order to achieve this.

b. Verify the result from a. by computing the eigenvectors and eigenvalues
the way you taught in your first course in linear algebra. This should be a
much more tedious task.

c. Use a computer to compute the eigenvectors and eigenvalues of S also.
For some reason some of the eigenvectors seem to be different from the Fourier
basis vectors, which you would expect from the theory in this section. Try to
find an explanation for this.

4. Assume that S1 and S2 are two circulant Toeplitz matrices.

a. How can you express the eigenvalues of S1+S2 in terms of the eigenvalues
of S1 and S2?

b. How can you express the eigenvalues of S1S2 in terms of the eigenvalues
of S1 and S2?

c. If A and B are general matrices, can you find a formula which expresses
the eigenvalues of A+B and AB in terms of those of A and B? If not, can you
find a counterexample to what you found in a. and b.?

5. Consider the linear mapping S which keeps every second component in RN , i.e.
S(e2k ) = e2k , and S(e2k−1) = 0. Is S a digital filter?

3.3 The continuous frequency response and properties

If we make the substitutionω= 2πn/N in the formula for λS,n , we may interpret the
frequency response as the values on a continuous function on [0,2π).

Theorem 3.16. The function λS (ω) defined on [0,2π) by

λS (ω) =∑
k

tk e−i kω, (3.13)

where tk are the filter coefficients of S, satisfies

λS,n =λS (2πn/N ) for n = 0, 1, . . . , N −1

for any N . In other words, regardless of N , the vector frequency reponse lies on
the curve λS .
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Proof: For any N we have that

λS,n =
N−1∑
k=0

sk e−2πi nk/N = ∑
0≤k<N /2

sk e−2πi nk/N + ∑
N /2≤k≤N−1

sk e−2πi nk/N

= ∑
0≤k<N /2

tk e−2πi nk/N + ∑
N /2≤k≤N−1

tk−N e−2πi nk/N

= ∑
0≤k<N /2

tk e−2πi nk/N + ∑
−N /2≤k≤−1

tk e−2πi n(k+N )/N

= ∑
0≤k<N /2

tk e−2πi nk/N + ∑
−N /2≤k≤−1

tk e−2πi nk/N

= ∑
−N /2≤k<N /2

tk e−2πi nk/N =λS (ω).

where we have used Equation (3.4).
Both λS (ω) and λS,n will be referred to as frequency responses in the following. To
distinguish the two, while λS,n is called the vector frequency response of S, λS (ω)) is
called the continuous frequency response of S. ω is called angular frequency.

The difference in the definition of the continuous- and the vector frequency re-
sponse lies in that one uses the filter coefficients tk , while the other uses the im-
pulse response sk . While these contain the same values, they are ordered differently.
Had we used the impulse response to define the continuous frequency response,
we would have needed to compute

∑N−1
k=0 sk e−πiω, which does not converge when

N → ∞ (although it gives the right values at all points ω = 2πn/N for all N )! The
filter coefficients avoid this convergence problem, however, since we assume that
only tk with |k| small are nonzero. In other words, filter coefficients are used in the
definition of the continuous frequency response so that we can find a continuous
curve where we can find the vector frequency response values for all N .

The frequency response contains the important characteristics of a filter, since it
says how it behaves for the different frequencies. When analyzing a filter, we there-
fore often plot the frequency response. Often we plot only the absolute value (or
the magnitude) of the frequency response, since this is what explains how each fre-
quency is amplified or attenuated. Since λS is clearly periodic with period 2π, we
may restrict angular frequency to the interval [0,2π). The conclusion in Observa-
tion 2.25 was that the low frequencies in a vector correspond to DFT indices close
to 0 and N −1, and high frequencies correspond to DFT indices close to N /2. This
observation is easily translated to a statement about angular frequencies:

Observation 3.17. When plotting the frequency response on [0,2π), angular fre-
quencies near 0 and 2π correspond to low frequencies, angular frequencies near
π correspond to high frequencies

λS may also be viewed as a function defined on the interval [−π,π). Plotting on
[−π,π] is often done in practice, since it makes clearer what corresponds to lower
frequencies, and what corresponds to higher frequencies:
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Figure 3.2: The (absolute value of the) frequency response of the moving average
filter of Formula (3.1) from the beginning of this chapter.

Observation 3.18. When plotting the frequency response on [−π,π), angular fre-
quencies near 0 correspond to low frequencies, angular frequencies near ±π cor-
respond to high frequencies.

The following holds:

Theorem 3.19. Assume that s is an analog filter, and that we sample a periodic
function at rate fs over one period, and denote the corresponding digital filter by
S. The analog and digital frequency responses are related by λs ( f ) =λS (2π f fs ).

To see this, note first that S has frequency response λS,n = λs (n/T ) = λs ( f ),
where f = n/T . We then rewrite λS,n =λS (2πn/N ) =λS (2π f T /N ) =λS (2π f fs ).
Example 3.20. In Example 3.11 we computed the vector frequency response of the
filter defined in formula (3.1). The filter coefficients are here t−1 = 1/4, t0 = 1/2, and
t1 = 1/4. The continuous frequency response is thus

λS (ω) = 1

4
e iω+ 1

2
+ 1

4
e−iω = 1

2
+ 1

2
cosω.

Clearly this matches the computation from Example 3.11. Figure 3.2 shows plots of
this frequency response, plotted on the intervals [0,2π) and [−π,π). Both the contin-
uous frequency response and the vector frequency response for N = 51 are shown.
Figure (b) shows clearly how the high frequencies are softened by the filter. ♣

Since the frequency response is essentially a DFT, it inherits several properties
from Theorem 2.21. We will mostly use the continuous frequency response to ex-
press these properties.
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Theorem 3.21. We have that

1. The continuous frequency response satisfies λS (−ω) =λS (ω).

2. If S is a digital filter, ST is also a digital filter. Morever, if the frequency re-
sponse of S is λS (ω), then the frequency response of ST is λS (ω).

3. If S is symmetric, λS is real. Also, if S is antisymmetric (the element on
the opposite side of the diagonal is the same, but with opposite sign), λS is
purely imaginary.

4. A digital filter S is an invertible if and only if λS,n 6= 0 for all n. In that case
S−1 is also a digital filter, and λS−1,n = 1/λS,n .

5. If S1 and S2 are digital filters, then S1S2 also is a digital filter, and λS1S2 (ω) =
λS1 (ω)λS2 (ω).

Proof: Property 1. and 3. follow directly from Theorem 2.21. Transposing a ma-
trix corresponds to reversing the first colum of the matrix and thus also the filter co-
efficients. Due to this Property 2. also follows from Theorem 2.21. If S = (FN )H DFN ,
and allλS,n 6= 0, we have that S−1 = (FN )H D−1FN , where D−1 is a digonal matrix with
the values 1/λS,n on the diagonal. Clearly then S−1 is also a digital filter, and its fre-
quency response is λS−1,n = 1/λS,n , which proves 4. The last property follows in the
same was as we showed that filters commute:

S1S2 = (FN )H D1FN (FN )H D2FN = (FN )H D1D2FN .

The frequency response of S1S2 is thus obtained by multiplying the frequency re-
sponses of S1 and S2.

In particular the frequency response may not be real, although this was the case
in the first example of this section. Theorem 3.21 applies also for the vector fre-
quency response. Since the vector frequency response are the eigenvavlues of the
filter, the last property above says that, for filters, multiplication of matrices corre-
sponds to multiplication of eigenvalues. Clearly this is an important property which
is shared with all other matrices which have the same eigenvectors.
Example 3.22. Assume that the filters S1 and S2 have the frequency responsesλS1 (ω) =
cos(2ω), λS2 (ω) = 1+3cosω. Let us see how we can use Theorem 3.21 to compute
the filter coefficients and the matrix of the filter S = S1S2. We first notice that, since
both frequency responses are real, all S1, S2, and S = S1S2 are symmetric. We rewrite
the frequency responses as

λS1 (ω) = 1

2
(e2iω+e−2iω) = 1

2
e2iω+ 1

2
e−2iω

λS2 (ω) = 1+ 3

2
(e iω+e−iω) = 3

2
e iω+1+ 3

2
e−iω.
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We now get that

λS1S2 (ω) =λS1 (ω)λS2 (ω) =
(

1

2
e2iω+ 1

2
e−2iω

)(
3

2
e iω+1+ 3

2
e−iω

)
= 3

4
e3iω+ 1

2
e2iω+ 3

4
e iω+ 3

4
e−iω+ 1

2
e−2iω+ 3

4
e−3iω

From this expression we see that the filter coefficients of S are t±1 = 3/4, t±2 = 1/2,
t±3 = 3/4. All other filter coefficients are 0. Using Theorem 3.2, we get that s1 = 3/4,
s2 = 1/2, and s3 = 3/4, while sN−1 = 3/4, sN−2 = 1/2, and sN−3 = 3/4 (all other sk are
0). This gives us the matrix representation of S. ♣

3.3.1 Windowing operations

In this section we will take a look at a very important, and perhaps surprising, ap-
plication of the continuous frequency response. Let us return to the computations
from Example 2.30. There we saw that, when we restricted to a block of the signal,
this affected the frequency representation. If we substitute with the angular frequen-
cies ω= 2πn/N and ω0 = 2πn0/M in Equation (2.13), we get

yn = 1

N

N−1∑
k=0

e i kω0 e−i kω = 1

N

N−1∑
k=0

e−i k(ω−ω0)

(here yn were the DFT components of the sound after we had restrcited to a block).
This expression states that, when we restrict to a block of length N in the signal by
discarding the other samples, a pure tone of angular frequency ω0 suddenly gets a
frequency constribution at angular frequency ω also, and the contribution is given
by this formula. The expression is seen to be the same as the frequency response
of the filter 1

N {1,1, . . . ,1} (where 1 is repeated N times), evaluated at ω−ω0. This
filter is nothing but a (delayed) moving average filter. The frequency response of a
moving average filter thus governs how the different frequencies pollute when we
limit ourselves to a block of the signal. Since this frequency response has its peak
at 0, angular frequencies ω close to ω0 have biggest values, so that the pollution
is mostly from frequencies close to ω0. But unfortunately, other frequencies also
pollute.

One can also ask the question if there are better ways to restrict to a block of size
N of the signal. We formulate the following idea.

Idea 3.23. Let (x0, . . . , xM ) be a sound of length M . We would like to find values
w = {w0, . . . , wN−1} so that the new sound (w0x0, . . . , wN−1xN−1) of length N (i.e.
where the samples are attenuated by the window samples, and where samples
have been discarded) has a frequency representation as close to x as possible.
The vector w is called a window of length N , and the new sound is called the
windowed signal.

Above we encountered the window w = {1,1, . . . ,1}. This is called the rectangular
window. To see how we can find a good window, note first that the DFT values in the
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(b) Hamming window

Figure 3.3: The frequency responses of the windows we have considered for restrict-
ing to a block of the signal.

windowed signal of length N is

yn = 1

N

N−1∑
k=0

wk e i kω0 e−i kω = 1

N

N−1∑
k=0

wk e−i k(ω−ω0).

This is the frequency response of 1
N w . In order to limit the pollution from other

frequencies, we thus need to construct a window with a frequency response with
smaller values than that of the rectangular window away from 0. Let us summarize
our findings as follows:

Observation 3.24. Assume that we would like to construct a window of length N .
It is desirable that the frequency response of the window has small values away
from zero.

We will not go into techniques for how such frequency responses can be con-
structed, but only consider one example different from the rectangular window. We
define the Hamming window by

wn = 2(0.54−0.46cos(2πn/(N −1))). (3.14)

The frequency responses of the rectangular window and the Hamming window are
compared in Figure 3.3 for N = 32. We see that the Hamming window has much
smaller values away from 0, so that it is better suited as a window. However, the
width of the “main lobe” (i.e. the main structure at the center), seems to be big-
ger. The window coefficients themselves are shown in Figure 3.4. It is seen that the
frequency response of the Hamming window attenuates more and more as we get
close to the boundaries. Many other windows are used in the literature. The con-
crete window from Exercise 5 is for instance used in the MP3 standard. It is applied
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Figure 3.4: The window coefficients we have considered for restricting to a block of
the signal.

to the sound, and after this an FFT is applied to the windowed sound in order to
make a frequency analysis of that part of the sound. The effect of the window is that
there is smaller loss in the frequency representation of the sound when we restrict to
a block of sound samples. This is a very important part of the psychoacoustic model
used in the MP3 encoder, since it has to make compression desicions based on the
frequency information in the sound.

What you should have learnt in this section

The definition of the continuous frequency response in terms of the filter coeffi-
cients t . Connection with the vector frequency response. Properties of the contin-
uous frequency response, in particular that the product of two frequency responses
equals the frequency response of the product. How to compute the frequency re-
sponse of the product of two filters, and how to find the filter coefficients when the
continuous frequency response is known.

Exercises for Section 3.3

1. Let again S be the filter defined by the equation

zn = 1

4
xn+1 + 1

4
xn + 1

4
xn−1 + 1

4
xn−2,

as in Exercise 1 in Section 3.1. Compute and plot (the magnitude of) λS (ω).

2. A filter S is defined by the equation

zn = 1

3
(xn +3xn−1 +3xn−2 +xn−3).

a. Compute and plot the (magnitude of the continuous) frequency response
of the filter, i.e. |λS (ω)|. Is the filter a lowpass filter or a highpass filter?
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b. Find an expression for the vector frequency response λS,2. What is Sx
when x is the vector of length N with components e2πi 2k/N ?

3. A filter S1 is defined by the equation

zn = 1

16
(xn+2 +4xn+1 +6xn +4xn−1 +xn−2).

a. Write down an 8×8 circulant Toeplitz matrix which corresponds to apply-
ing S1 on a periodic signal with period N = 8.

b. Compute and plot (the continuous) frequency response of the filter. Is the
filter a lowpass filter or a highpass filter?

c. Another filter S2 has (continuous) frequency response λS2 (ω) = (e iω+2+
e−iω)/4. Write down the filter coefficients for the filter S1S2.

4. Assume that the filters S1 and S2 have the frequency responses λS1 (ω) = 2 +
4cos(ω), λS2 (ω) = 3sin(2ω).

a. Compute and plot the frequency response of the filter S1S2.

b. Write down the filter coefficients tk and the impulse response s for the
filter S1S2.

5. The Hanning window is defined by wn = 1−cos(2πn/(N −1)). Compute and plot
the window coefficients and the continuous frequency response of this window for
N = 32, and compare with the window coefficients and the frequency responses for
the rectangular- and the Hamming window.

3.4 Assembling the filter matrix and compact notation

Let us return to how we first defined a filter in Equation (3.3):

zn =∑
k

tk xn−k .

As mentioned, the range of k may not be specified. In some applications in signal
processing there may in fact be infinitely many nonzero tk . However, when x is
assumed to have period N , we may as well assume that the k’s range over an interval
of length N (else many of the tk ’s can be added together to simplify the formula).
Also, any such interval can be chosen. It is common to choose the interval so that
it is centered around 0 as much as possible. For this, we can choose for instance
[bN /2c−N +1,bN /2c]. With this choice we can write Equation (3.3) as

zn =
bN /2c∑

k=bN /2c−N+1
tk xn−k . (3.15)

The index range in this sum is typically even smaller, since often much less than N
of the tk are nonzero (For Equation (3.1), there were only three nonzero tk ). In such
cases one often uses a more compact notation for the filter:
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Definition 3.25 (Compact notation for filters). Let kmin, kmax be the smallest
and biggest index of a filter coefficient in Equation (3.15) so that tk 6= 0 (if no such
values exist, let kmin = kmax = 0), i.e.

zn =
kmax∑

k=kmi n

tk xn−k . (3.16)

We will use the following compact notation for S:

S = {tkmi n , . . . , t−1, t0, t1, . . . , tkmax }.

In other words, the entry with index 0 has been underlined, and only the nonzero
tk ’s are listed. kmax and kmi n are also called the start and end indices of S. By the
length of S, denoted l (S), we mean the number kmax −kmi n .

One seldom writes out the matrix of a filter, but rather uses this compact nota-
tion.
Example 3.26. Using the compact notation for a filter, we would write S = {1/4,1/2,1/4}
for the filter given by formula (3.1)). For the filter

zn = xn+1 +2x0 +3xn−1

from Example 3.4, we would write S = {1,2,3}. ♣
Applying a filter to a vector x is also called taking the convolution of the two

vectors t and x . Convolution is usually defined without the assumption that the
input vector is periodic, and without any assumption on the vector lengths (i.e. they
may be sequences of inifinite length):

Definition 3.27 (Convolution of vectors). By the convolution of two vectors x
and y we mean the vector x ∗ y defined by

(x ∗ y)n =∑
k

xk yn−k . (3.17)

If both x and y have infinitely many nonzero entries, the sum is an infinite one,
and may diverge.

The case where both vectors x and y have a finite number of nonzero elements
deserves extra attention. Assume that x0, . . . , xN−1 and y0, . . . , yM−1 are the only nonzero
elements. If z = x∗y , it is clear from Equation (3.17) that only the elements z0, . . . , zM+N−2

can be nonzero. The convolution operation is therefore fully represented by the
finite-dimensional operation from RN ×RM →RM+N−1 defined by

(x0, . . . , xN−1)× (y0, . . . , yM−1) → (z0, . . . , zM+N−2). (3.18)
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Matlab has the built-in function conv for performing this operation. The conv func-
tion thus considers the convolution in terms of the (finite) nonzero parts of the vec-
tors, without keeping track of the start and end indices. Exercise 7 explains how one
may keep track of these indices. Put differently, the conv-function pads our original
values with zeros in both directions, instead of considering a periodic input vec-
tor. Due to its simplicity it is used much in practice, but it is not exactly the same
as applying a digital filter. The following result states that the difference between
convolution and filtering is only at the start and end of the vector.

Theorem 3.28. Let S = {t−E , . . . , t0, . . . , tF } where E ,F ≥ 0, and let x = (x0, . . . , xN−1).
We have that t ∗x equals Sx at the indices from F to N −E −1.

Proof: We have that (Sx)n = t−E xn+E + . . . + tF xn−F . Here the indices of x lie
between 0 and N − 1 if and only if n +E ≤ N − 1 and n − F ≥ 0, which happen if
F ≤ n ≤ N −E −1. We therefore do not access the added zeros outside [0, N −1], so
that the result is equal.

We also have a very important connection between convolution and polynomi-
als

Proposition 3.29. Assume that p(x) = aN xN +aN−1xN−1+. . . , a1x+a0 and q(x) =
bM xM + bM−1xM−1 + . . . ,b1x + b0 are polynomials of degree N and M respec-
tively. Then the coefficients of the polynomial pq can be obtained by computing
conv(a,b).

We can thus interpret a filter as a polynomial. In this setting, clearly the length
l (S) of the filter can be interpreted as the degree of the polynomial. Clearly also,
this polynomial is the frequency response, when we insert e iω for the variable. Also,
applying two filters in succession is equivalent to applying the convolution of the
filters, so that two filtering operations can be combined to one.

Since the number of nonzero filter coefficients is typically much less than N (the
period of the input vector), the matrix S have many entries which are zero. Multipli-
cation with such matrices requires less additions and multiplications than for other
matrices: If S has k nonzero filter coefficients, S has N k nonzero entries, so that kN
multiplications and (k −1)N additions are needed to compute Sx . This is much less
than the N 2 multiplications and (N −1)N additions needed in the general case. Per-
haps more important is that we need not form the entire matrix, we can perform the
matrix multiplication directly in a loop. Exercise 3 investigates this further. For large
N we risk running into out of memory situations if we had to form the entire matrix.

What you should have learnt in this section

The compact filter notation for filters with a finite number of filter coefficients. The
definition of convolution, its connection with filters, and the conv-function for com-
puting convolution. Connection between applying a filter and multiplying polyno-
mials.
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Exercises for Section 3.4

1. Compute and plot the continuous frequency response of the filter S = {1/4,1/2,1/4}.
Where does the frequency response achieve its maximum and minimum value, and
what are these values?

2. Plot the continuous frequency response of the filter T = {1/4,−1/2,1/4}. Where
does the frequency response achieve its maximum and minimum value, and what
are these values? Can you write down a connection between this frequency response
and that from Exercise 1?

3. Define the filter S by S = {1,2,3,4,5,6}. Write down the matrix for S when N = 8.
Plot (the magnitude of) λS (ω), and indicate the values λS,n for N = 8 in this plot.

4. Given the circulant Toeplitz matrix

S = 1

5



1 1 1 · · · 1
1 1 1 · · · 0
0 1 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
1 0 0 · · · 1
1 1 0 · · · 1
1 1 1 · · · 1


Write down the compact notation for this filter. Compute and plot (the magnitude)
of λS (ω).

5. Assume that S = {1,c,c2, . . . ,ck }. Compute and plot λS (ω) when k = 4 and k = 8.
How does the choice of k influence the frequency response? How does the choice of
c influence the frequency response?

6. Compute the convolution of {1,2,1} with itself. interpret the result in terms of
two polynomials.

7. In this exercise we will find out how to keep to track of the length and the start
and end indices when we convolve two sequences.

a. Let x be zero outside xa , . . . , xa+N−1, and y be zero outside yb , . . . , yb+M−1.
Show that z = x ∗ y is zero outside za+b , . . . , za+b+M+N−2. Explain why this
means that l (x ∗ y) = l (x)+ l (y) for general vectors.

b. Find expressions for the start- and end indices kmi n ,kmax for x ∗ y , in
terms of those of x and y .

8. Implement a function convimpl(x,y) which from input vectors of dimension
N and M , respectively, returns an output vector of dimension N +M −1, as dictated
by Equation (3.18). Compare your function together with the built-in conv-function
to verify that they give the same results.

9. Show that if S = {t0, . . . , tF } and x ∈ RN , then S

(
x

0F

)
= t ∗ x . Thus if we add zeros

in a vector, filtering and convolution are the same.
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3.5 Some examples of filters

We have now established the basic theory of filters, and it is time to study some
specific examples.
Example 3.30 (Time delay filters). We have already encountered the time-delay fil-
ter S = Ed . With only one nonzero diagonal, this is the simplest possible type of fil-
ters. Since s = Ed e0 = ed , we can write Ed = {0, . . . ,1}, where the 1 occurs at position
d . Intuitively, we would expect that time-delay does not change the frequencies in
sounds we hear. This is confirmed by the fact that the frequency response of the
time delay filter is λS (ω) = e−i dω, which has magnitude 1, so that the filter does not
change the magnitude of the different frequencies. ♣
Example 3.31 (Adding echo). An echo is a copy of the sound that is delayed and
softer than the original sound. The sample that comes t seconds before sample i
has index i − t fs where fs is the sampling rate. This also makes sense even if t is not
an integer so we can use this to produce delays that are less than one second. The
one complication with this is that the number t fs may not be an integer. We can get
round this by rounding it to the nearest integer. This corresponds to adjusting the
echo slightly. The following holds:

Fact 3.32. Let x be a digital sound. Then the sound z with samples given by

[N,nchannels] = size(x);
z = zeros(N,nchannels);
z(1:d,:) = x(1:d,:);
z((d+1):N,:) = x((d+1):N,:)+c*x(1:(N-d),:);

will include an echo of the original sound. Here d=round(ms) is the integer clos-
est to t fs , and c is a constant which is usually smaller than 1.

This is an example of a filtering operation where each output element is constructed
from two input elements. As in the case of noise it is important to dampen the part
that is added to the original sound, otherwise the echo will be too loud. Note also
that the formula that creates the echo is not used at the beginning of the signal, since
it is not audible until after d samples. Also, the echo is unaudible if d is too small.
You can listen to the sample file with echo added with d = 10000 and c = 0.5 here.

Using our compact filter notation, the filter which adds echo can be written as

S = {1,0, . . . ,0,c},

where the damping factor c appears after the delay d . The frequency response of
this is λS (ω) = 1+ce−i dω. This frequency response is not real, which means that the
filter is not symmetric. In Figure 3.5 we have plotted the magnitude of this frequency
response with c = 0.1 and d = 10. We see that the response varies between 0.9 and
1.1, so that the deviation from 1 is controlled by the damping factor c. Also, we see
that the oscillation in the frequency response, as visible in the plot, is controlled by
the delay d . ♣
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Figure 3.5: The frequency response of a filter which adds an echo with damping
factor c = 0.1 and delay d = 10.

Let us now take a look at some filters which adjust the bass and treble in sound.
The fact that the filters are useful for these purposes will be clear when we plot the
frequency response.
Example 3.33 (Reducing the treble with moving average filters). The treble in a sound
is generated by the fast oscillations (high frequencies) in the signal. If we want to re-
duce the treble we have to adjust the sample values in a way that reduces those fast
oscillations. A general way of reducing variations in a sequence of numbers is to re-
place one number by the average of itself and its neighbours, and this is easily done
with a digital sound signal. If we let the new sound signal be z = (zi )N−1

i=0 we can
compute it as

z(1) = (x(N) + x(1) + x(2))/3;
for n=2:(N-1)

z(n) = (x(n-1) + x(n) + x(n+1))/3;
end
z(N) = (x(N-1) + x(N) + x(1))/3;

In Example 3.31 we did not take into account that the signal is assumed periodic.
Above this has been taken into account through the addition of the first and last
lines (which correspond to the circulating part of the matrix). This filter is also called
a moving average filter, and it can be written in compact form as

S =
{

1

3
,

1

3
,

1

3

}
.

If we set N = 4, the corresponding circulant Toeplitz matrix for the filter is

S = 1

3


1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1
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The frequency response is λS (ω) = (e iω + 1+ e−iω)/3 = (1+ 2cos(ω))/3. More gen-
erally we can construct the moving average filter of 2L + 1 elements, which is S =
{1, · · · ,1, · · · ,1}/(2L+1), where there is symmetry around 0. In Example 2.18 we com-
puted that the DFT of the vector {1, · · · ,1, · · · ,1} was

x = sin(πn(2L+1)/N )

sin(πn/N )
.

Due to this the frequency response of S is

λS,n = 1

2L+1

sin(πn(2L+1)/N )

sin(πn/N )
,

and thus

λS (ω) = 1

2L+1

sin((2L+1)ω/2)

sin(ω/2)
.

We clearly have

0 ≤ 1

2L+1

sin((2L+1)ω/2)

sin(ω/2)
≤ 1,

and this frequency response approaches 1 as ω→ 0. The frequency response thus
peaks at 0, and it is clear that this peak gets narrower and narrower as L increases,
i.e. we use more and more samples in the averaging process. This appeals to our
intuition that this kind of filters smooth the sound by keeping only lower frequen-
cies. In Figure 3.6 we have plotted the frequency response for moving average filters
with L = 1, L = 5, and L = 20. We see, unfortunately, that the frequency response is
far from a filter which keeps some frequencies unaltered, while annihilating others
(this is a desirable property): Although the filter distinguishes between high and low
frequencies, it slightly changes the small frequencies. Moreover, the higher frequen-
cies are not annihilated, even when we increase L to high values. ♣

In the previous example we mentioned filters which favour certain frequencies
of interest, while annihilating the others. This is a desirable property for filters, so
let us give names to such filters:

Definition 3.34. A filter S is called

1. a lowpass filter if λS (ω) is large when ω is close to 0, and λS (ω) ≈ 0 when ω

is close to π (i.e. S keeps low frequencies and annhilates high frequencies),

2. a highpass filter if λS (ω) is large when ω is close to π, and λS (ω) ≈ 0 when ω
is close to 0 (i.e. S keeps high frequencies and annhilates low frequencies),

3. a bandpass filter if λS (ω) is large within some interval [a,b] ⊂ [0,2π], and
λS (ω) ≈ 0 outside this interval.

This definition should be considered rather vague when it comes to what we
mean by “ω close to 0,π”, and “λS (ω) is large”: in practice, when we talk about low-
pass and highpass filters, it may be that the frequency responses are still quite far
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Figure 3.6: The frequency response of moving average filters of different length.

from what is commonly refered to as ideal lowpass or highpass filters, where the fre-
quency response only assumes the values 0 and 1 near 0 and π. The next example
considers an ideal lowpass filter.
Example 3.35 (Ideal lowpass filters). By definition, the ideal lowpass filter keeps fre-
quencies near 0 unchanged, and completely removes frequencies near π. We now
have the theory in place in order to find the filter coefficients for such a filter: In Ex-
ample 2.30 we implemented the ideal lowpass filter with the help of the DFT. Math-
ematically you can see that this code is equivalent to computing (FN )H DFN where
D is the diagonal matrix with the entries 0, . . . ,L and N −L, . . . , N −1 being 1, the rest
being 0. Clearly this is a digital filter, with frequency response as stated. If the filter
should keep the angular frequencies |ω| ≤ ωc only, where ωc describes the highest
frequency we should keep, we should choose L so that ωc = 2πL/N . Again, in Ex-
ample 2.18 we computed the DFT of this vector, and it followed from Theorem 2.21
that the IDFT of this vector equals its DFT. This means that we can find the filter
coefficients by using Equation (3.11), i.e. we take an IDFT. We then get the filter
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coefficients
1

N

sin(πk(2L+1)/N )

sin(πk/N )
.

This means that the filter coefficients lie as N points uniformly spaced on the curve
1
N

sin(ω(2L+1)/2)
sin(ω/2) between 0 andπ. This curve has been encountered many other places

in these notes. The filter which keeps only the frequency ωc = 0 has all filter coeffi-
cients being 1

N (set L = 1), and when we include all frequencies (set L = N ) we get the
filter where x0 = 1 and all other filter coefficients are 0. When we are between these
two cases, we get a filter where s0 is the biggest coefficient, while the others decrease
towards 0 along the curve we have computed. The bigger L and N are, the quicker
they decrease to zero. All filter coefficients are usually nonzero for this filter, since
this curve is zero only at certain points. This is unfortunate, since it means that the
filter is time-consuming to compute. ♣

The two previous examples show an important duality between vectors which
are 1 on some elements and 0 on others (also called window vectors), and the vector
1
N

sin(πk(2L+1)/N )
sin(πk/N ) (also called a sinc): filters of the one type correspond to frequency

responses of the other type, and vice versa. The examples also show that, in some
cases only the filter coefficients are known, while in other cases only the frequency
response is known. In any case we can deduce the one from the other, and both
cases are important.

Filters are much more efficient when there are few nonzero filter coefficients. In
this respect the second example displays a problem: in order to create filters with
particularly nice properties (such as being an ideal lowpass filter), one may need
to sacrifice computational complexity by increasing the number of nonzero filter
coefficients. The trade-off between computational complexity and desirable filter
properties is a very important issue in filter design theory.
Example 3.36. In order to decrease the computational complexity for the ideal low-
pass filter in Example 3.35, one can for instance include only the first filter coeffi-
cients, i.e. {

1

N

sin(πk(2L+1)/N )

sin(πk/N )

}N0

k=−N0

,

ignoring the last ones. Hopefully this gives us a filter where the frequency reponse is
not that different from the ideal lowpass filter. In Figure 3.7 we show the correspond-
ing frequency responses. In the figure we have set N = 128, L = 32, so that the filter
removes all frequencies ω > π/2. N0 has been chosen so that the given percentage
of all coefficients are included. Clearly the figure shows that we should be careful
when we omit filter coefficients: if we drop too many, the frequency response is far
away from that of an ideal bandpass filter. In particular, we see that the new fre-
quency response oscillates wildly near the discontinuity of the ideal lowpass filter.
Such oscillations are called Gibbs oscillations. ♣
Example 3.37 (Filters and the MP3 standard). We mentioned previously that the MP3
standard splits the sound into frequency bands. This splitting is actually performed
by particular filters, which we will consider now.

In the example above, we saw that when we dropped the last filter coefficients in
the ideal lowpass filter, there were some undesired effects in the frequency response
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Figure 3.7: The frequency response which results by omitting the last filter coeffi-
cients for the ideal lowpass filter.

of the resulting filter. Are there other and better approximations to the ideal lowpass
filter which uses the same number of filter coefficients? This question is important,
since the ear is sensitive to certain frequencies, and we would like to extract these
frequencies for special processing, using as low computational complexity as possi-
ble. In the MP3-standard, such filters have been constructed. These filters are more
advanced than the ones we have seen upto now. They have as many as 512 filter
coefficients! We will not go into the details on how these filters are constructed, but
only show how their frequency responses look. In Figure 3.8(a), the “prototype fil-
ter” which is used in the MP3 standard is shown. We see that this is very close to
an ideal lowpass filter. Moverover, many of the undesirable effect from the previous
example have been eliminated: The oscillations near the discontinuities are much
smaller, and the values are lower away from 0. Using Property 4 in theorem 2.21, it
is straightforward to construct filters with similar frequency responses, but centered
around different frequencies: We simply need to multiply the filter coefficients with
a complex exponential, in order to obtain a filter where the frequency response has
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Figure 3.8: Frequency responses of some filters used in the MP3 standard.

been shifted to the left or right. In the MP3 standard, this observation is used to
construct 32 filters, each having a frequency response which is a shifted copy of that
of the prototype filter, so that all filters together cover the entire frequency range. 5
of these frequency responses are shown in Figure 3.8(b). To understand the effects
of the different filters, let us apply them to our sample sound. If you apply all fil-
ters in the MP3 standard in successive order with the most lowpass filters first, the
result will sound like this. You should interpret the result as low frequencies first,
followed by the high frequencies. π corresponds to the frequency 22.05K H z (i.e. the
highest representable frequency equals half the sampling rate on 44.1KHz. The dif-
ferent filters are concentrated on 1/32 of these frequencies each, so that the angular
frequencies you here are [π/64,3π/64], [3π/64,5π/64], [5π/64,7π/64], and so on, in
that order.

In Section 3.3.1 we mentioned that the psycoacoustic model of the MP3 stan-
dard applied a window the the sound data, followed by an FFT to that data. This is
actually performed in parallel on the same sound data. Applying two different op-
erations in parallel to the sound data may seem strange. In the MP3 standard [17]
(p. 109) this is explained by “the lack of spectral selectivity obtained at low frequen-
cies“ by the filters above. In other words, the FFT can give more precise frequency
information than the filters can. This more precise information is then used to com-
pute psychoacoustic information such as masking thresholds, and this information
is applied to the output of the filters. ♣
Example 3.38 (Reducing the treble II). When reducing the treble it is reasonable to
let the middle sample xi count more than the neighbours in the average, so an alter-
native is to compute the average by instead writing

z(n) = (x(n-1) + 2*x(n) + x(n+1))/4

The coefficients 1,2,1 here have been taken from row 2 in Pascal’s triangle. It turns
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Figure 3.9: The frequency response of filters corresponding to a moving average filter
convolved with itself k times.

out that this is a good choice of coefficients. Also if we take averages of more num-
bers it will turn out that higher rows of Pascals triangle are good choices. Let us take
a look at why this is the case. Let S be the moving average filter of two elements, i.e.

(Sx)n = 1

2
(xn−1 +xn).

In Example 3.33 we had an odd number of filter coefficients. Here we have only two.
We see that the frequency response in this case is

λS (ω) = 1

2
(1+e−iω) = e−iω/2 cos(ω/2).

The frequency response is complex now, since the filter is not symmetric in this
case. Let us now apply this filter k times, and denote by Sk the resulting filter. The-
orem 3.21 gives us that the frequency response of Sk is

λSk (ω) = 1

2k
(1+e−iω)k = e−i kω/2 cosk (ω/2),

which is a polynomial in e−iω with the coefficients taken from Pascal’s triangle (re-
member that the values in Pascals triangle are the coefficients of x in the expression
(1+ x)k , i.e. the binomial coefficients

(k
r

)
for 0 ≤ r ≤ k). At least, this partially ex-

plains how filters with coefficients taken from Pascal’s triangle appear. The reason
why these are more desirable than moving average filters, and are used much for
smoothing abrupt changes in images and in sound, is the following: Since we take
a k’th power with k large, λSk is more square-like near 0, i.e. it becomes more and
more like a bandpass filter near 0. In Figure 3.9 we have plotted the magnitude of the
frequence response when k = 5, and when k = 30. This behaviour near 0 is not so
easy to see from the figure. Note that we have zoomed in on the frequency response
to the area where it actually decreases to 0.

If we pick coefficients from row 4 of Pascals triangle instead, we would write

114



for n=3:(N-2)
z(n) = (x(n-2) + 4*x(n-1) + 6*x(n) + 4*x(n+1) + x(n+2))/16;

end

Here we have dropped the first and last part, which have special expressions due
to the circulant structure of the matrix. Picking coefficients from a row in Pascal’s
triangle works better the longer the filter is:

Observation 3.39. Let x be the samples of a digital sound, and let {ci }2k+1
i=1 be the

numbers in row 2k of Pascal’s triangle. Then the sound with samples y given by

z = zeros(size(x));
for n = (k+1):(N-k)

for j = 1:(2*k+1)
z(n,:) = z(n,:) + c(j)*x(n + k + 1 - j,:);

end
end
z= z/2^k;

has reduced treble compared with the sound given by the samples x .

An example of the result of smoothing is shown in Figure 3.10. (a) shows the samples
of the pure sound with frequency 440Hz (with sampling frequency fs = 4400Hz). (b)
shows the result of applying the averaging process by using row 4 of Pascals triangle.
We see that the oscillations have been reduced. In Exercise 4 you will be asked to
implement reducing the treble in our sample audio file. If you do this you should
hear that the sound gets softer when you increase k: For k = 32 the sound will be
like this, for k = 256 it will be like this. ♣

Another common option in an audio system is reducing the bass. This corre-
sponds to reducing the low frequencies in the sound, or equivalently, the slow vari-
ations in the sample values. It turns out that this can be accomplished by simply
changing the sign of the coefficients used for reducing the treble. Let us explain why
this is the case. Let S1 be a filter with filter coefficients tk , and let us consider the
filter S2 with filter coefficient (−1)k tk . The frequency response of S2 is

λS2 (ω) =∑
k

(−1)k tk e−iωk =∑
k

(e−iπ)k tk e−iωk

=∑
k

e−iπk tk e−iωk =∑
k

tk e−i (ω+π)k =λS1 (ω+π).

where we have set e−iπ = −1 (note that this is nothing but Property 4. in Theo-
rem 2.21, with d = N /2). Now, for a lowpass filter S1, λS1 (ω) has large values when ω
is close to 0 (the low frequencies), and values near 0 when ω is close to π (the high
frequencies). For a highpass filter S2, λS2 (ω) has values near 0 when ω is close to 0
(the low frequencies), and large values when ω is close to π (the high frequencies).
When S2 is obtained by adding an alternating sign to the filter coefficicents of S1,
The relation λS2 (ω) = λS1 (ω+π) thus says that S2 is a highpass filter when S1 is a
lowpass filter, and vice versa:
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Figure 3.10: Reducing the treble.

Observation 3.40. Assume that S2 is obtained by adding an alternating sign to
the filter coefficicents of S1. If S1 is a lowpass filter, then S2 is a highpass filter. If
S1 is a highpass filter, then S2 is a lowpass filter.

The following example elaborates further on this.
Example 3.41 (Reducing the bass). Consider the bass-reducing filter deduced from
the fourth row in Pascals triangle:

z(n) = (x(n-2)-4*x(n-1)+6*x(n)-4*x(n+1)+x(n+2))/16;

The result of applying this filter to the sound in Figure 3.10 is shown in Figure 3.11.
We observe that the samples oscillate much more than the samples of the original
sound. If we play a sound after such a bass-reducing filter has been applied to it, the
bass will be reduced.
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Figure 3.11: Reducing the bass.

Observation 3.42. Let x be the samples of a digital sound, and let {ci }2k+1
i=1 be the

numbers in row 2k of Pascal’s triangle. Then the sound with samples y given by

z=zeros(length(x));
for n=(k+1):(N-k)

for j=1:(2*k+1)
z(n)=x(n)+(-1)^(k+1-j)*c(j)*x(n+j-k-1))/2^k;

end
end

has reduced bass compared to the sound given by the samples y .

In Exercise 4 you will be asked to implement reducing the bass in our sample audio
file. The new sound will be difficult to hear for large k, and we will explain why later.
For k = 1 the sound will be like this, for k = 2 it will be like this. Even if the sound is
quite low, you can hear that more of the bass has disappeared for k = 2.

The frequency response we obtain from using row 5 of Pascal’s triangle is shown
in Figure 3.12. It is just the frequency response of the corresponding treble-reducing
filter shifted with π. The alternating sign can also be achieved if we write the fre-
quency response 1

2k (1 + e−iω)k from Example 3.38 as 1
2k (1 − e−iω)k , which corre-

sponds to applying the filter S(x) = 1
2 (−xn−1 +xn) k times. ♣

What you should have learnt in this section

Simple examples of filters, such as time delay filters and filters which add echo. Low-
pass and highpass filters and their frequency responses, and their interpretation as
treble- and bass-reducing filters. Moving average filters, and filters arising from rows
in Pascal’s triangle, as examples of such filters. How to pass between lowpass and
highpass filters by adding an alternating sign to the filter cofficients.
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Figure 3.12: The frequency response of the bass reducing filter, which corresponds
to row 5 of Pascal’s triangle.

Exercises for Section 3.5

1. Let Ed1 and Ed2 be two time delay filters. Show that Ed1 Ed2 = Ed1+d2 (i.e. that the
composition of two time delays again is a time delay) in two different ways

a. Give a direct argument which uses no computations.

b. By using Property 3 in Theorem 2.21, i.e. by using a property for the Dis-
crete Fourier Transform.

2. In this exercise, we will experiment with adding echo to a signal.

a. Write a function play_with_echo which takes the sound samples, the
sample rate, a damping constant c, and a delay d as input, and plays the
sound samples with an echo added, as described in Example 3.31. Recall that
you have to ensure that the sound samples lie in [−1,1].

b. Generate the sound from Example 3.31, and verify that it is the same as
the one you heard there.

c. Listen to the sound samples for different values of d and c. For which
range of d is the echo distinguisible from the sound itself? How low can you
choose c in order to still hear the echo?

3. Consider the two filters S1 = {1,0, . . . ,0,c} and S2 = {1,0, . . . ,0,−c}. Both of these
can be interpreted as filters which add an echo. Show that 1

2 (S1+S2) = I . What is the
interpretation of this relation in terms of echos?

4. In this exercise, we will experiment with increasing and reducing the treble and
bass in a signal as in examples 3.38 and 3.41.
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a. Write functionsplay_with_reduced_treble andplay_with_reduced_bass
which take a data vector, sampling rate, and k as input, and which reduce
bass and treble, respectively, in the ways described above, and plays the re-
sult, when row number 2k in Pascal’ triangle is used to construct the filters.
Use the function conv to help you to find the values in Pascal’s triangle.

b. Generate the sounds you heard in examples 3.38 and 3.41, and verify that
they are the same.

c. In your code, it will not be necessary to scale the values after reducing the
treble, i.e. the values are already between −1 and 1. Explain why this is the
case.

d. How high must k be in order for you to hear difference from the actual
sound? How high can you choose k and still recognize the sound at all?

5. Consider again Example 3.35. Find an expression for a filter so that only frequen-
cies so that |ω−π| <ωc are kept, i.e. the filter should only keep angular frequencies
close to π (i.e. here we construct a highpass filter).

6. In this exercise we will investigate how we can combine lowpass and highpass
filters to produce other filters

a. Assume that S1 and S2 are lowpass filters. What kind of filter is S1S2? What
if both S1 and S2 are highpass filters?

b. Assume that one of S1,S2 is a highpass filter, and that the other is a low-
pass filter. What kind of filter S1S2 in this case?

7. A filter S1 has the frequency response 1
2 (1+cosω), and another filter has the fre-

quency response 1
2 (1+cos(2ω)).

a. Is S1S2 a lowpass filter, or a highpass filter?

b. What does the filter S1S2 do with angular frequencies close to ω=π/2.

c. Find the filter coefficients of S1S2.
Hint: Use Theorem 3.21 to compute the frequency response of S1S2 first.

d. Write down the matrix of the filter S1S2 for N = 8.

8. An operation describing some transfer of data in a system is defined as the com-
position of the following three filters:

• First a time delay filter with delay d1 = 2, due to internal transfer of data in the
system,

• then the treble-reducing filter T = {1/4,1/2,1/4},

• finally a time delay filter with delay d2 = 4 due to internal transfer of the fil-
tered data.
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We denote by T2 = Ed2 T Ed1 = E4T E2 the operation which applies these filters in
succession.

a. Explain why T2 also is a digital filter. What is (the magnitude of) the fre-
quency response of Ed1 ? What is the connection between (the magnitude of)
the frequency response of T and T2?

b. Show that T2 = {0,0,0,0,0,1/4,1/2,1/4}.
Hint: Use the expressions (Ed1 x)n = xn−d1 , (T x)n = 1

4 xn+1 + 1
2 xn + 1

4 xn−1,
(Ed2 x)n = xn−d2 , and compute first (Ed1 x)n , then (T Ed1 x)n , and finally (T2x)n =
(Ed2 T Ed1 x)n . From the last expression you should be able to read out the fil-
ter coefficients.

c. Assume that N = 8. Write down the 8×8-circulant Toeplitz matrix for the
filter T2.

9. In Example 3.37, we mentioned that the filters used in the MP3-standard were
constructed from a lowpass prototype filter by multiplying the filter coefficients with
a complex exponential. Clearly this means that the new frequency response is a shift
of the old one. The disadvantage is, however, that the new filter coefficients are com-
plex. It is possible to address this problem as follows. Assume that tk are the filter co-
efficients of a filter S1, and that S2 is the filter with filter coefficients cos(2πkn/N )tk ,
where n ∈N. Show that

λS2 (ω) = 1

2
(λS1 (ω−2πn/N )+λS1 (ω+2πn/N )).

In other words, when we multiply (modulate) the filter coefficients with a cosine,
the new frequency response can be obtained by shifting the old frequency response
with 2πn/N in both directions, and taking the average of the two.

10. a. Explain what the code below does, line by line.

[x, fs] = audioread(’castanets.wav’);
[N, nchannels] = size(x);
z = zeros(N, nchannels);
for n=2:(N-1)

z(n,:) = 2*x(n+1,:) + 4*x(n,:) + 2*x(n-1,:);
end
z(1,:) = 2*x(2,:) + 4*x(1,:) + 2*x(N,:);
z(N,:) = 2*x(1,:) + 4*x(N,:) + 2*x(N-1,:);
z = z/max(abs(z));
playerobj=audioplayer(z, fs);
playblocking(playerobj)

Comment in particular on what happens in the three lines directly after the
for-loop, and why we do this. What kind of changes in the sound do you
expect to hear?

b. Write down the compact filter notation for the filter which is used in the
code, and write down a 5×5 circulant Toeplitz matrix which corresponds to
this filter. Plot the (continuous) frequency response. Is the filter a lowpass- or
a highpass filter?
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c. Another filter is given by the circulant Toeplitz matrix
4 −2 0 0 −2

−2 4 −2 0 0
0 −2 4 −2 0
0 0 −2 4 −2

−2 0 0 −2 4

 .

Express a connection between the frequency responses of this filter and the
filter from b. Is the new filter a lowpass- or a highpass filter?

3.6 More general filters

The starting point for defining filters at the beginning of this chapter was equations
on the form

zn =∑
k

tk xn−k .

For most filters we have looked at, we had a limited number of nonzero tk , and this
enabled us to compute them on a computer using a finite number of additions and
multiplications. Filters which have a finite number of nonzero filter coefficients are
also called FIR-filters (FIR is short for Finite Impulse Response. Recall that the im-
pulse response of a filter can be found from the filter coefficients). However, there
exist many useful filters which are not FIR filters, i.e. where the sum above is infi-
nite. The ideal lowpass filter from Example 3.35 was one example. It turns out that
many such cases can be made computable if we change our procedure slightly. The
old procedure for computing a filter is to compute z = Sx . Consider the following
alternative:

Idea 3.43 (More general filters (1)). Let x be the input to a filter, and let T be a
filter. By solving the system T z = x for z we get another filter, which we denote by
S.

Of course T must then be the inverse of S (which also is a filter), but the point is
that the inverse of a filter may have a finite number of filter coefficicents, even if the
filter itself does not. In such cases this new procedure is more attractive that the old
one, since the equation system can be solved with few arithmetic operations when
T has few filter coefficients.

It turns out that there also are highly computable filters where neither the filter
nor its inverse have a finite number of filter coefficients. Consider the following idea:

Idea 3.44 (More general filters (2)). Let x be the input to a filter, and let U and
V be filters. By solving the system U z = V x for z we get another filter, which we
denote by S. The filter S can be implemented in two steps: first we compute the
right hand side y =V x , and then we solve the equation U z = y .
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If both U and V are invertible we have that the filter is S = U−1V , and this is
invertible with inverse S−1 = V −1U . The point is that, when U and V have a finite
number of filter coefficicents, both S and its inverse will typically have an infinite
number of filter coefficients. The filters from this idea are thus more general than
the ones from the previous idea, and the new idea makes a wider class of filters im-
plementable using row reduction of sparse matrices. Computing a filter by solving
U z = V x may also give meaning when the matrices U and V are singular: The ma-
trix system can have a solution even if U is singular. Therefore we should be careful
in using the form T =U−1V .

We have the following result concerning the frequency responses:

Theorem 3.45. Assume that S is the filter defined from the equation U z = V x .
Then we have that λS (ω) = λV (ω)

λU (ω) whenever λU (ω) 6= 0.

Proof: Set x = φn . We have that U z = λU ,nλS,nφn , and V x = λV ,nφn . If the ex-

pressions are equal we must have that λU ,nλS,n = λV ,n , so that λS,n = λV ,n
λU ,n

for all

n. By the definition of the continuous frequency response this means that λS (ω) =
λV (ω)
λU (ω) whenever λU (ω) 6= 0.

The following example clarifies the points made above, and how one may con-
struct U and V from S. The example also shows that, in addition to making some
filters with infinitely many filter coefficients computable, the procedure U z = V x
for computing a filter can also reduce the complexity in some filters where we al-
ready have a finite number of filter coefficients.
Example 3.46. Consider again the moving average filter S from Example 3.33:

zn = 1

2L+1
(xn+L +·· ·+xn +·· ·+xn−L).

If we implemented this directly, 2L additions would be needed for each n, so that we
would need a total of 2N L additions. However, we can also write

zn+1 = 1

2L+1
(xn+1+L +·· ·+xn+1 +·· ·+xn+1−L)

= 1

2L+1
(xn+L +·· ·+xn +·· ·+xn−L)+ 1

2L+1
(xn+1+L −xn−L)

= zn + 1

2L+1
(xn+1+L −xn−L).

This means that we can also compute the output from the formula

zn+1 − zn = 1

2L+1
(xn+1+L −xn−L),

which can be written on the form U z =V x with U = {1,−1} and V = 1
2L+1 {1,0, . . . ,0,−1}

where the 1 is placed at index −L −1 and the −1 is placed at index L . We now per-
form only 2N additions in computing the right hand side, and solving the equa-
tion system requires only 2(N −1) additions. The total number of additions is thus
2N +2(N −1) = 4N −2, which is much less than the previous 2LN when L is large.
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A perhaps easier way to find U and V is to consider the frequency response of
the moving average filter, which is

1

2L+1
(e−Liω+ . . .+eLiω) = 1

2L+1
e−Liω 1−e(2L+1)iω

1−e iω

=
1

2L+1

(−e(L+1)iω+e−Liω
)

1−e iω
,

where we have used the formula for the sum of a geometric series. From here we
easily see the frequency responses of U and V from the numerator and the denom-
inator. ♣

Filters with an infinite number of filter coefficients are also called IIR filters (IIR
stands for Infinite Impulse Response). Thus, we have seen that some IIR filters may
still have efficient implementations.

Exercises for Section 3.6

1. A filter is defined by demanding that zn+2 − zn+1 + zn = xn+1 −xn .

a. Compute and plot the frequency response of the filter.

b. Use a computer to compute the output when the input vector is x = (1,2, . . . ,10).
In order to do this you should write down two 10×10-circulant Toeplitz ma-
trices.

3.7 Implementation of filters

As we saw in Example 3.46, a filter with many filter coefficients could be factored into
the application of two simpler filters, and this could be used as a basis for an efficient
implementation. There are also several other possible efficient implementations of
filters. In this section we will consider two such techniques. The first technique con-
siders how we can use the DFT to speed up the computation of filters. The second
technique considers how we can factorize a filter into a product of simpler filters.

3.7.1 Implementation of filters using the DFT

If there are k filter coefficients, a direct implementation of a filter would require kN
multiplications. Since filters are diagonalized by the DFT, one can also compute the
filter as the product S = F H

N DFN . This would instead require O
(
N log2 N

)
complex

multiplications when we use the FFT algorithm, which may be a higher number of
multiplications. We will however see that, by slightly changing our algorithm, we
may end up with a DFT-based implementation of the filter which requires fewer
multiplications.

The idea is to split the computation of the filter into smaller parts. Assume that
we compute M elements of the filter at a time. If the nonzero filter coefficients of S
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are t−k0 ,. . . ,tk−k0−1, we have that

(Sx)t =
∑

r
tr xs−r = t−k0 xt+k0 + ..+ tk−k0−1xt−(k−k0−1).

From this it is clear that (Sx)t only depends on xt−(k−k0−1), . . . , xt+k0 . This means
that, if we restrict the computation of S to xt−(k−k0−1), . . . , xt+M−1+k0 , the outputs
xt , . . . , xt+M−1 will be the same as without this restriction. This means that we can
compute the output M elements at a time, at each step multiplying with a circulant
Toeplitz matrix of size (M +k−1)×(M +k−1). If we choose M so that M +k−1 = 2r ,
we can use the FFT and IFFT algorithms to compute S = F H

N DFN , and we require
O(r 2r ) multiplications for every block of length M . The total number of multiplica-
tions is N r 2r

M = N r 2r

2r −k+1 . If k = 128, you can check on your calculator that the smallest
value is for r = 10 with value 11.4158× N . Since the direct implementation gives
kN multiplications, this clearly gives a benefit for the new approach, it gives a 90%
decrease in the number of multiplications.

3.7.2 Factoring a filter into several filters

In practice, filters are often applied in hardware, and applied in real-time scenarios
where performance is a major issue. The most CPU-intensive tasks in such appli-
cations often have few memory locations available. These tasks are thus not com-
patible with filters with many filter coefficients, since for each output sample we
then need access to many input samples and filter coefficients. A strategy which
addresses this is to factorize the filter into the product of several smaller filters, and
then applying each filter in turn. Since the frequency response of the product of
filters equals the product of the frequency responses, we get the following idea:

Idea 3.47. Let S be a filter with real coefficients. Assume that

λS (ω) = K e i kω(e iω−a1) . . . (e iω−am)(e2iω+b1e iω+c1) . . . (e2iω+bne iω+cn). (3.19)

Then we can write S = K Ek A1 . . . AmB1 . . .Bn , where Ai = {1,−ai } and Bi =
{1,bi ,ci }.

Note that in Equation 3.19 ai correspond to the real roots of the frequency re-
sponse, while bi ,ci are obtained by pairing the complex conjugate roots. Clearly the
frequency responses of Ai ,Bi equal the factors in the frequency response of S, which
in any case can be factored into the product of filters with 2 and 3 filter coefficients,
followed by a time-delay.

Note that, even though this procedure factorizes a filter into smaller parts (which
is attractive for hardware implementations since smaller filters require fewer loca-
tions in memory), the number of of arithmetic operations is usually not reduced.
However, consider Example 3.38, where we factorized the treble-reducing filters into
a product of moving average filters of length 2 (all roots in the previous idea are real,
and equal). Each application of a moving average filter of length 2 does not really
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require any multiplications, since multiplication with 1
2 corresponds to a bitshift.

Therefore, the factorization of Example 3.38 removes the need for doing any multi-
plications at all, while keeping the number of additions the same. There are compu-
tational savings in this case, due to the special filter structure here.

Exercises for Section 3.7

1. Write a function filterdftimpl, which takes the filter coefficients t and the
value k0 from this section, computes the optimal M , and implements the filter as
here.

2. Factor the filter S = {1,5,10,6} into a product of two filters, one with two filter
coefficients, and one with three filter coefficients.

Summary

We defined digital filters, which do the same job for digital sound as analog filters do
for (continuous) sound. Digital filters turned out to be linear transformations diag-
onalized by the DFT. We proved several other equivalent characterizations of digital
filters as well, such as being time-invariant, and having a matrix which is circulant
and Toeplitz. Just as for continuous sound, digital filters are characterized by their
frequency response, which explains how the filter treats the different frequencies.
We also went through several important examples of filters, some of which corre-
sponded to meaningful operations on sound, such as adjustmest of bass and treble,
and adding echo. We also explained that there exist filters with useful implementa-
tions which have an infinite number of filter coefficients, and we considered tech-
niques for implementing filters efficiently. Most of the topics covered on that can
also be found in [28]. We also took a look at the role of filters in the MP3 standard for
compression of sound.

In signal processing literature, the assumption that vectors are periodic is of-
ten not present, and filters are thus not defined as finite-dimensional operations.
With matrix notation they would then be viewed as infinite matrices which have the
Toeplitz structure (i.e. constant values on the diagonals), but with no circulation.
The circulation in the matrices, as well as the restriction to finite vectors, come from
the assumption of a periodic vector. There are, however, also some books which
view filters as circulant Toeplits matrices as we have done, such as [13].
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Chapter 4
Symmetric filters and the DCT

In Chapter 1 we approximated a signal of finite duration with trigonometric func-
tions. Since these are all periodic, there are some undesirable effects near the bound-
aries of the signal (at least when the values at the boundaries are different), and this
resulted in a slowly converging Fourier series. This was addressed by instead consid-
ering the symmetric extension of the function, for which we obtained a more precise
Fourier representation, as fewer Fourier basis vectors were needed in order to get a
precise approximation.

This chapter is dedicated to addressing these thoughts for vectors. We will start
by defining symmetric extensions of vectors, similarly to how we defined these for
functions. Just as the Fourier series of a symmetric function was a cosine series, we
will see that the symmetric extension can be viewed as a cosine vector. This gives
rise to a different change of coordinates than the DFT, which we will call the DCT,
which enables us to express a symmetric vector as a sum of cosine-vectors (instead
of the non-symmetric complex exponentials). Since a cosine also can be associated
with a given frequency, the DCT is otherwise similar to the DFT, in that it extracts
the frequency information in the vector. The advantage is that the DCT can give
more precise frequency information than the DFT, since it avoids the discontinuity
problem of the Fourier series. This makes the DCT very practical for applications,
and we will explain some of these applications. We will also show that the DCT has
a a very efficient implementation, comparable with the FFT.

In this chapter we will also see that the DCT has a very similar role as the DFT
when it comes to filters: just as the DFT diagonalized filters, we will see that sym-
metric filters can be diagonalized by the DCT, when we apply the filter to the sym-
metric extension of the input. We will actually show that the filters which preserve
our symmetric extensions are exactly the symmetric filters.
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(b) The symmetric extension of x

Figure 4.1: A vector and its symmetric extension.

4.1 Symmetric vectors and the DCT

As in Chapter 1, vectors can also be extended in a symmetric manner, besides the
simple periodic extension procedure from Figure 2.1. In Figure 4.1 we have shown
such an extension of a vector x . It has x as its first half, and a copy of x in reverse
order as its second half. We will call this the symmetric extension of x :

Definition 4.1 (Symmetric extension of a vector). By the symmetric extension of
x ∈RN , we mean the symmetric vector x̆ ∈R2N defined by

x̆k =
{

xk 0 ≤ k < N
x2N−1−k N ≤ k < 2N −1

(4.1)

Clearly, the symmetric extension is symmetric around N − 1/2. This is not the
only way to construct a symmetric extension, as we will return to later. As shown
in Figure 4.1, we also repeat the vector in R2N in order to obtain a periodic vector.
This is not included in Definition 4.1. Creating a symmetric extension is thus really
a two-step process:

1. First, “mirror” the vector to obtain a vector in R2N ,

2. repeat this periodically to obtain a periodic vector.

The result from the first step lies in an N -dimensional subspace of all vectors inR2N ,
which we will call the space of symmetric vectors. To account for the fact that we a
periodic vector also can have a different symmetry point than N −1/2, let us make
the following general definition:
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Definition 4.2 (Symmetric vector). We say that a periodic vector x is symmetric
if there exists a number d so that xd+k = xd−k for all k so that d +k and d −k are
integers. d is called the symmetry point of x

Due to the inherent periodicity of x , it is clear that N must be an even number for
symmetric vectors to exist at all. d can take any value, and it may not be an integer:
It can also be an odd multiple of 1/2, because then both d +k and d −k are integers
when k also is an odd multiple of 1/2. The symmetry point in symmetric extensions
as defined in Definition 4.1 was d = N −1/2. This is very common in the literature,
and this is why we concentrate on this in this chapter. Later we will also consider
symmetry around N −1, as this also is much used.

We would like to find a basis for the N -dimensional space of symmetric vectors,
and we would like this basis to be similar to the Fourier basis. Since the Fourier
basis corresponds to the standard basis in the frequency domain, we are lead to
studying the DFT of a symmetric vector. If the symmetry point is an integer, it is
straightforward to prove the following:

Theorem 4.3 (Symmetric vectors with integer symmetry points). Let d be an
integer. The following are equivalent

1. x is real and symmetric with d as symmetry point.

2. (x̂)n = zne−2πi dn/N where zn are real numbers so that zn = zN−n .

Proof: Assume first that d = 0. It follows in this case from property 2(a) of Theo-
rem 2.21 that (x̂)n is a real vector. Combining this with property 1 of Theorem 2.21
we see that x̂ , just as x , also must be a real vector symmetric about 0. Since the
DFT is one-to-one, it follows that x is real and symmetric about 0 if and only if x̂ is.
From property 3 of Theorem 2.21it follows that, when d is an integer, x is real and
symmetric about d if and only if (x̂)n = zne−2πi dn/N , where zn is real and symmetric
about 0. This completes the proof.

Symmetric extensions were here defined by having the non-integer symmetry
point N − 1/2, however. For these we prove the following, which is slightly more
difficult.

Theorem 4.4 (Symmetric vectors with non-integer symmetry points). Let d be
an odd multiple of 1/2. The following are equivalent

1. x is real and symmetric with d as symmetry point.

2. (x̂)n = zne−2πi dn/N where zn are real numbers so that zN−n =−zn .
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Proof: When x is as stated we can write

(x̂)n = 1p
N

N−1∑
k=0

xk e−2πi kn/N

= 1p
N

(∑
s≥0

xd+s e−2πi (d+s)n/N + ∑
s≥0

xd−s e−2πi (d−s)n/N
)

= 1p
N

∑
s≥0

xd+s

(
e−2πi (d+s)n/N +e−2πi (d−s)n/N

)
= 1p

N
e−2πi dn/N

∑
s≥0

xd+s

(
e−2πi sn/N +e2πi sn/N

)
= 1p

N
e−2πi dn/N

∑
s≥0

2xd+s cos(2πsn/N ).

Here s runs through odd multiples of 1/2. Since zn = 1p
N

∑
s≥0 2xd+s cos(2πsn/N ) is

a real number, we can write the result as zne−2πi dn/N . Substituting N −n for n, we
get

(x̂)N−n = 1p
N

e−2πi d(N−n)/N
∑
s≥0

2xd+s cos(2πs(N −n)/N )

= 1p
N

e−2πi d(N−n)/N
∑
s≥0

2xd+s cos(−2πsn/N +2πs)

=− 1p
N

e−2πi d(N−n)/N
∑
s≥0

2xd+s cos(2πsn/N ) =−zne−2πi d(N−n)/N .

This shows that zN−n = −zn , and this completes one way of the proof. The other
way, we can write

xk = 1p
N

N−1∑
n=0

(x̂)n e2πi kn/N

if (x̂)n = zne−2πi dn/N and (x̂)N−n =−zne−2πi d(N−n)/N , the sum of the n’th term and
the N −n’th term in the sum is

zne−2πi dn/N e2πi kn/N − zne2−πi d(N−n)/N e2πi k(N−n)/N

= zn(e2πi (k−d)n/N −e−2πi d+2πi dn/N−2πi kn/N )

= zn(e2πi (k−d)n/N +e2πi (d−k)n/N ) = 2zn cos(2π(k −d)n/N ).

This is real, so that all xk are real. If we set k = d + s, k = d − s here we get

2zn cos(2π((d + s)−d)n/N ) = 2zn cos(2πsn/N )

2zn cos(2π((d − s)−d)n/N ) = 2zn cos(−2πsn/N ) = 2zn cos(2πsn/N ).

By adding terms together and comparing we must have that xd+s = xd−s , and the
proof is done.
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Now, let us specialize to symmetric extensions as defined in Definition 4.1, i.e.
where d = N −1/2. The following result gives us an orthonormal basis for the sym-
metric extensions, which are very simple in the frequency domain:

Theorem 4.5. The set of all x symmetric around N −1/2 is a vector space of di-
mension N , and we have that{

e0,

{
1p
2

(
eπi n/(2N )en +e−πi n/(2N )e2N−n

)}N−1

n=1

}

is an orthonormal basis for x̂ where x is symmetric around N −1/2.

Proof: For a vector x symmetric about d = N −1/2 we know that

(x̂)n = zne−2πi (N−1/2)n/(2N ),

and the only requirement on the vector z is the antisymmetry condition z2N−n =
−zn . The vectors z i = 1p

2
(e i −e2N−i ), 1 ≤ i ≤ N −1, together with the vector z0 = e0,

are clearly orthonormal and satisifes the antisymmetry condition. From these we
obtain that{

e0,

{
1p
2

(
e−2πi (N−1/2)n/(2N )en −e−2πi (N−1/2)(2N−n)/(2N )e2N−n

)}N−1

n=1

}
is an orthonormal basis for the x̂ with x symmetric. We can write

1p
2

(
e−2πi (N−1/2)n/(2N )en −e−2πi (N−1/2)(2N−n)/(2N )e2N−n

)
= 1p

2

(
e−πi neπi n/(2N )en +eπi ne−πi n/(2N )e2N−n

)
= 1p

2
eπi n

(
eπi n/(2N )en +e−πi n/(2N )e2N−n

)
.

This also means that{
e0,

{
1p
2

(
eπi n/(2N )en +e−πi n/(2N )e2N−n

)}N−1

n=1

}
is an orthonormal basis.

We immediately get the following result:

Theorem 4.6.{
1p
2N

cos

(
2π

0

2N

(
k + 1

2

))
,

{
1p
N

cos

(
2π

n

2N

(
k + 1

2

))}N−1

n=1

}
(4.2)

is an orthonormal basis for the set of vectors symmetric around N −1/2 in R2N .
Moreover, the n’th vector in this basis has frequency contribution only from the
indices n and 2N −n.
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Proof: Since the IDFT is unitary, the IDFT applied to the vectors above gives an
orthonormal basis for the set of symmetric extensions. We get that

(F2N )H (e0) =
(

1p
2N

,
1p
2N

, . . . ,
1p
2N

)
= 1p

2N
cos

(
2π

0

2N

(
k + 1

2

))
.

We also get that

(F2N )H
(

1p
2

(
eπi n/(2N )en +e−πi n/(2N )e2N−n

))
= 1p

2

(
eπi n/(2N ) 1p

2N
e2πi nk/(2N ) +e−πi n/(2N ) 1p

2N
e2πi (2N−n)k/(2N )

)
= 1p

2

(
eπi n/(2N ) 1p

2N
e2πi nk/(2N ) +e−πi n/(2N ) 1p

2N
e−2πi nk/(2N )

)
= 1

2
p

N

(
e2πi (n/(2N ))(k+1/2) +e−2πi (n/(2N ))(k+1/2)

)
= 1p

N
cos

(
2π

n

2N

(
k + 1

2

))
.

Since F2N is unitary, and thus preserves the scalar product, the given vectors are
orthonormal.

We need to address one final thing before we can define the DCT: The vector x
we start with is in RN , but the vectors above are in R2N . We would like to have or-
thonormal vectors in RN , so that we can use them to decompose x . It is possible
to show with a direct argument that, when we restrict the vectors above to the first
N elements, they are still orthogonal. We will, however, apply a more instructive
argument to show this, which gives us some intuition into the connection with sym-
metric filters. We start with the following result, which shows that a filter preserves
symmetric vectors if and only if the filter is symmetric.

Theorem 4.7. Let S be a filter. The following are equivalent

1. S preserves symmetric vectors (i.e. Sx is a symmetric vector whenever x is).

2. The set of filter coefficients of S is a symmetric vector.

Also, when S preserves symmetric vectors, the following hold:

1. The vector of filter coefficients has an integer symmetry point if and only if
the input and output have the same type (integer or non-integer) of sym-
metry point.

2. The input and output have the same symmetry point if and only if the filter
is symmetric.

Proof: Assume that the filter S maps a symmetric vector with symmetry at d1 to
another symmetric vector. Let x be the symmetric vector so that (x̂)n = e−2πi d1n/N

for n < N /2. Since the output is a symmetric vector, we must have that

λS,ne−2πi d1n/N = zne−2πi d2n/N

132



for some d2, zn and for n < N /2. But this means that λS,n = yne−2πi (d2−d1)n/N . Sim-
ilar reasoning applies for n > N /2, so that λS,n clearly equals ŝ for some symmetric
vector s from Theorems 4.3 and 4.4. This vector equals (up to multiplication withp

N ) the filter coefficients of S, which therefore is a symmetric. Moreover, it is clear
that the filter coefficients have an integer symmetry point if and only if the input and
output vector either both have an integer symmetry point, or both a non-integer
symmetry point.

Since the filter coefficients of a filter which preserves symmetric vectors also is
a symmetric vector, this means that its frequency response takes the form λS,n =
zne−2πi dn/N , where z is a real vector. This means that the phase (argument) of the
freqency response is −2πdn/N or π− 2πdn/N , depending on the sign of zn . In
other words, the phase is linear in n. Filters which preserve symmetric vectors are
therefore also called linear phase filters.

Note also that the case d = 0 or d = N −1/2 corresponds to symmetric filters. An
example of linear phase filters which are not symmetric are smoothing filters where
the coefficients are taken from odd rows in Pascal’s triangle.

When S is symmetric, it preserves symmetric extensions, so that it makes sense
to restrict S to symmetric vectors. We therefore make the following definition.

Definition 4.8 (Symmetric restriction). Assume that S :R2N →R2N is a symmet-
ric filter. We define Sr : RN → RN as the mapping which sends x ∈ RN to the first
N components of the vector S x̆ . Sr is also called the symmetric restriction of S .

Sr is clearly linear, and the restriction of S to vectors symmetric about N −1/2 is
characterized by Sr . We continue with the following result:

Theorem 4.9. Assume that S : R2N → R2N is a symmetric filter, and that S =(
S1 S2

S3 S4

)
. Then Sr is symmetric, and Sr = S1 + (S2) f , where (S2) f is the matrix

S2 with the columns reversed.

Proof: With S as in the text of the theorem, we compute

Sr x = (
S1 S2

)


x0
...

xN−1

xN−1
...

x0


= S1

 x0
...

xN−1

+S2

xN−1
...

x0

= S1

 x0
...

xN−1

+ (S2) f

 x0
...

xN−1



= (S1 + (S2) f )x ,

so that Sr = S1 + (S2) f . Since S is symmetric, S1 is also symmetric. (S2) f is also sym-
metric, since it is constant on anti-diagonals. It follows then that S is also symmetric.
This completes the proof.
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Note that Sr is not a digital filter, since its matrix is not circulant. In particular, its
eigenvectors are not pure tones. In the block matrix factorization of S, S2 contains
the circulant part of the matrix, and forming (S2) f means that the circulant parts
switch corners. With the help of Theorem 4.9 we can finally establish the orthogo-
nality of the cosine-vectors in RN .

Corollary 4.10 (Basis of eigenvectors for Sr ). Let S be a symmetric filter, and let
Sr be the mapping defined in Theorem 4.9. Define

dn,N =


√
1
N ,n = 0√
2
N ,1 ≤ n < N

and d n = dn,N cos
(
2π n

2N

(
k + 1

2

))
for 0 ≤ n ≤ N − 1, then {d 0,d 1, . . . ,d N−1} is an

orthonormal basis of eigenvectors for Sr .

Proof: Let S be a symmetric filter of length 2N . We know then thatλS,n =λS,2N−n ,
so that

S

(
cos

(
2π

n

2N

(
k + 1

2

)))
= S

(
1

2

(
e2πi (n/(2N ))(k+1/2) +e−2πi (n/(2N ))(k+1/2)

))
= 1

2

(
eπi n/(2N )S

(
e2πi nk/(2N )

)
+e−πi n/(2N )S

(
e−2πi nk/(2N )

))
= 1

2

(
eπi n/(2N )λS,ne2πi nk/(2N ) +e−πi n/(2N )λS,2N−ne−2πi nk/(2N )

)
= 1

2

(
λS,ne2πi (n/(2N ))(k+1/2) +λS,2N−ne−2πi (n/(2N ))(k+1/2)

)
=λS,n

1

2

(
e2πi (n/(2N ))(k+1/2) +e−2πi (n/(2N ))(k+1/2)

)
=λS,n cos

(
2π

n

2N

(
k + 1

2

))
,

where we have used that e2πi nk/(2N ) is an eigenvector of S with eigenvalue λS,n ,
and e−2πi nk/(2N ) = e2πi (2N−n)k/(2N ) is an eigenvector of S with eigenvalue λS,2N−n .
This shows that the vectors are eigenvectors for symmetric filters of length 2N . It is
also clear that the first half of the vectors must be eigenvectors for Sr with the same
eigenvalue, since when y = Sx =λS,n x , we also have that

(y0, y1, . . . , yN−1) = Sr (x0, x1, . . . , xN−1) =λS,n(x0, x1, . . . , xN−1).

To see why these vectors are orthogonal, choose at the outset a symmetric filter
where {λS,n}N−1

n=0 are distinct. Then the cosine-vectors of length N are also eigenvec-
tors with distinct eigenvalues, and they must be orthogonal since Sr is symmetric.
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Moreover, since

2N−1∑
k=0

cos2
(
2π

n

2N

(
k + 1

2

))

=
N−1∑
k=0

cos2
(
2π

n

2N

(
k + 1

2

))
+

2N−1∑
k=N

cos2
(
2π

n

2N

(
k + 1

2

))

=
N−1∑
k=0

cos2
(
2π

n

2N

(
k + 1

2

))
+

N−1∑
k=0

cos2
(
2π

n

2N

(
k +N + 1

2

))

=
N−1∑
k=0

cos2
(
2π

n

2N

(
k + 1

2

))
+ (−1)2n

N−1∑
k=0

cos2
(
2π

n

2N

(
k + 1

2

))

= 2
N−1∑
k=0

cos2
(
2π

n

2N

(
k + 1

2

))
,

where we used that cos(x +nπ) = (−1)n cos x. This means that∥∥∥∥∥
{

cos

(
2π

n

2N

(
k + 1

2

))}2N−1

k=0

∥∥∥∥∥=p
2

∥∥∥∥∥
{

cos

(
2π

n

2N

(
k + 1

2

))}N−1

k=0

∥∥∥∥∥ .

Thus, in order to make the vectors orthonormal when we consider the first N ele-
ments instead of all 2N elements, we need to multiply with

p
2. This gives us the

vectors d n as defined in the text of the theorem. This completes the proof.
We now clearly see the analogy between symmetric functions and vectors: while

the first can be written as a sum of cosine-functions, the second can be written as a
sum of cosine-vectors. The orthogonal basis we have found is given its own name:

Definition 4.11 (DCT basis). We denote by DN the orthogonal basis
{d 0,d 1, . . . ,d N−1}. We also call DN the N -point DC T basis.

Using the DCT basis instead of the Fourier basis we can make the following def-
initions, which parallel those for the DFT:

Definition 4.12 (Discrete Cosine Transform). The change of coordinates from
the standard basis of RN to the DCT basis DN is called the discrete cosine trans-
form (or DCT). The N × N matrix DN that represents this change of basis is
called the (N -point) DCT matrix. If x is a vector in RN , its coordinates y =
(y0, y1, . . . , yN−1) relative to the DCT basis are called the DCT coefficients of x (in
other words, y = DN x).

Note that we can also write

DN =
√

2

N


1/
p

2 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 1

(
cos

(
2π n

2N (k +1/2)
))

. (4.3)
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Since this matrix is orthogonal, it is immediate that

(
cos

(
2π n

2N (k +1/2)
))−1 = 2

N

(
cos

(
2πn+1/2

2N k
))


1/2 0 · · · 0

0 1 · · · 0
...

...
...

...
0 0 · · · 1

 (4.4)

(
cos

(
2πn+1/2

2N k
))−1 = 2

N


1/2 0 · · · 0

0 1 · · · 0
...

...
...

...
0 0 · · · 1

(
cos

(
2π n

2N (k +1/2)
))

. (4.5)

In other words, not only can DN be directly expressed in terms of a cosine-matrix,
but our developments helped us to express the inverse of a cosine matrix in terms of
other cosine-matrices. In the literature different types of cosine-matrices have been
useful:

I Cosine-matrices with entries cos(2πnk/(2(N −1))).

II Cosine-matrices with entries cos(2πn(k +1/2)/(2N )).

III Cosine-matrices with entries cos(2π(n +1/2)k/(2N )).

IV Cosine-matrices with entries cos(2π(n +1/2)(k +1/2)/(2N )).

We will call these type-I, type-II, type-III, and type-IV cosine-matrices, respectively.
What we did above handles the case of type-II cosine-matrices. It will turn out that
not all of these cosine-matrices are orthogonal, but that we in all cases, as we did
above for type-II cosine matrices, can express the inverse of a cosine-matrix of one
type in terms of a cosine-matrix of another type, and that any cosine-matrix is easily
expressed in terms of an orthogonal matrix. These orthogonal matrices will be called
D (I )

N , D (I I )
N , D (I I I )

N , and D (IV )
N , respectively, and they are all called DCT-matrices. The

DN we constructed abobe is thus D (I I )
N . The type-II DCT matrix is the most com-

monly used, and the type is therefore often dropped when refering to these. We
will consider the other cases of cosine-matrices at different places in this book: In
Section 5.6 we will run into type-I cosine matrices, in connection with a different
extension strategy used for wavelets. Type-IV cosine-matrices will be encountered
in exercises 4 and 5 at the end of this section.

As with the Fourier basis vectors, the DCT basis vectors are called synthesis vec-
tors, since we can write

x = y0d 0 + y1d 1 +·· ·+ yN−1d N−1 (4.6)

in the same way as for the DFT. Following the same reasoning as for the DFT, D−1
N is

the matrix where the d n are columns. But since these vectors are real and orthonor-
mal, DN must be the matrix where the d n are rows. Moreover, since Theorem 4.9
also states that the same vectors are eigenvectors for filters which preserve symmet-
ric extensions, we can state the following:
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Theorem 4.13. DN is the orthogonal matrix where the rows are d n . Moreover, for
any digital filter S which preserves symmetric extensions, (DN )T diagonalizes Sr ,
i.e. Sr = DT

N DDN where D is a diagonal matrix.

Let us also make the following definition:

Definition 4.14 (IDCT). We will call x = (DN )T y the inverse DCT or (IDCT) of x .

Example 4.15. As with Example 2.19, exact expressions for the DCT can be written
down just for a few specific cases. It turns out that the case N = 4 as considered
in Example 2.19 does not give the same type of nice, exact values, so let us instead
consider the case N = 2. We have that

D4 =
(

1p
2

cos(0) 1p
2

cos(0)

cos
(
π
2

(
0+ 1

2

))
cos

(
π
2

(
1+ 1

2

)) )
=

( 1p
2

1p
2

1p
2

− 1p
2

)
The DCT of the same vector as in Example 2.19 can now be computed as:

D2

(
1
2

)
=

( 3p
2

− 1p
2

)
.

♣
Matlab’s functions for computing the DCT and IDCT are called dct, and idct,

respectively. These are defined exactly as they are here, contrary to the case for the
FFT (where a different normalizing factor was used).

With these functions we can repeat examples 2.30- 2.32, by simply replacing the
calls to DFTImpl with calls to the DCT counterparts. You may not here much im-
provements in these simple experiments, but in theory the DCT should be able to
approximate sound better.

Similarly to Theorem 2.24 for the DFT, one can think of the DCT as a least squares
approximation and the unique representation of a function having the same sample
values, but this time in terms of sinusoids instead of complex exponentials:

Theorem 4.16 (Interpolation with the DCT basis). Let f be a function defined
on the interval [0,T ], and let x be the sampled vector given by

xk = f ((2k +1)T /(2N )) for k = 0, 1, . . . , N −1.

There is exactly one linear combination g (t ) on the form

N−1∑
n=0

yndn,N cos(2π(n/2)t/T )

which satisfies the conditions

g ((2k +1)T /(2N )) = f ((2k +1)T /(2N )), k = 0, 1, . . . , N −1,

and its coefficients are determined by y = DN x .
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Proof: This follows by inserting t = (2k +1)T /(2N ) in the equation

g (t ) =
N−1∑
n=0

yndn,N cos(2π(n/2)t/T )

to arrive at the equations

f (kT /N ) =
N−1∑
n=0

yndn,N cos

(
2π

n

2N

(
k + 1

2

))
0 ≤ k ≤ N −1.

This gives us an equation system for finding the yn with the invertible DCT matrix
as coefficient matrix, and the result follows.

Due to this there is a slight difference to how we applied the DFT, due to the
subtle change in the sample points, from kT /N for the DFT, to (2k + 1)T /(2N ) for
the DCT. The sample points for the DCT are thus the midpoints on the intervals in a
uniform partition of [0,T ] into N intervals, while they for the DFT are the start points
on the intervals. Also, the frequencies are divided by 2. In Figure 4.2 we have plotted
the sinusoids of Theorem 4.16 for T = 1, as well as the sample points used in that
theorem. The sample points in (a) correspond to the first column in the DCT matrix,
the sample points in (b) to the second column of the DCT matrix, and so on (up to
normalization with dn,N ). As n increases, the functions oscillate more and more. As
an example, y5 says how much content of maximum oscillation there is. In other
words, the DCT of an audio signal shows the proportion of the different frequencies
in the signal, and the two formulas y = DN x and x = (DN )T y allow us to switch
back and forth between the time domain representation and the frequency domain
representation of the sound. In other words, once we have computed y = DN x ,
we can analyse the frequency content of x . If we want to reduce the bass we can
decrease the y-values with small indices and if we want to increase the treble we
can increase the y-values with large indices.

Exercises for Section 4.1

1. Consider the matrix

S = 1

3



2 1 0 0 0 0
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 2


a. Compute the eigenvalues and eigenvectors of S using the results of this
section. You should only need to perform one DFT or one DCT in order to
achieve this.

b. Use a computer to compute the eigenvectors and eigenvalues of S also.
What are the differences from what you found in a.?

c. Find a filter T so that S = Tr . What kind of filter is T ?
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(a) cos(2π(0/2)t )
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(b) cos(2π(1/2)t )
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(c) cos(2π(2/2)t )
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(d) cos(2π(3/2)t )
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(e) cos(2π(4/2)t )
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(f) cos(2π(5/2)t )

Figure 4.2: The 6 different sinusoids used in DCT for N = 6, i.e. cos(2π(n/2)t ), 0 ≤
n < 6. The plots also show piecewise linear functions (in red) between the sample
points 2k+1

2N 0 ≤ k < 6, since only the values at these points are used in Theorem 4.16.

2. Consider the averaging filter S = { 1
4 , 1

2 , 1
4 }. Write down the matrix Sr for the case

when N = 4.

3. As in Example 4.15, state the exact cartesian form of the DCT matrix for the case
N = 3.

4. Show that the vectors

{
cos

(
2π

n+ 1
2

2N

(
k + 1

2

))}N−1

n=0
inRN are orthogonal, with lengths
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p
N /2. This means that the matrix with entries

√
2
N cos

(
2π

n+ 1
2

2N

(
k + 1

2

))
is orthogo-

nal. Since this matrix also is symmetric, it is its own inverse. This is the DCT-IV,
which we denote by D (IV)

N . Although we will not consider this, the DCT-IV also has
an efficient implementation. Hint: Compare with the orthogonal vectors d n , used
in the DCT.
5. The MDCT is defined as the N×(2N )-matrix M with elements Mn,k = cos(2π(n+
1/2)(k+1/2+N /2)/(2N )). This exercise will take you through the details of the trans-
formation which corresponds to multiplication with this matrix. The MDCT is very
useful, and is also used in the MP3 standard and in more recent standards.

a. Show that

M =
√

N

2
D (IV)

N

(
0 A
B 0

)
where A and B are the (N /2)×N -matrices

A =


· · · · · · 0 −1 −1 0 · · · · · ·
...

...
...

...
...

...
...

...
0 −1 · · · · · · · · · · · · −1 0
−1 0 · · · · · · · · · · · · 0 −1

=
(
−I f

N /2 −IN /2

)

B =


1 0 · · · · · · · · · · · · 0 −1
0 1 · · · · · · · · · · · · −1 0
...

...
...

...
...

...
...

...
· · · · · · 0 1 −1 0 · · · · · ·

=
(
IN /2 −I f

N /2

)
.

Due to this expression, any algorihtm for the DCT-IV can be used to compute
the MDCT.

b. The MDCT is not invertible, since it is not a square matrix. We will show
here that it still can be used in connection with invertible transformations.
We first define the IMDCT as the matrix M T /N . Transposing the matrix ex-
pression we obtained in a. gives

1p
2N

(
0 B T

AT 0

)
D (IV)

N

for the IMDCT, which thus also has an efficient implementation. Show that if

x0 = (x0, . . . , xN−1) x1 = (xN , . . . , x2N−1) x2 = (x2N , . . . , x3N−1)

and

y0,1 = M

(
x0

x1

)
y1,2 = M

(
x1

x2

)
(i.e. we compute two MDCT’s where half of the data overlap), then

x1 = {IMDCT(y0,1)}2N−1
k=N + {IMDCT(y1,2)}N−1

k=0 .

Even though the MDCT itself is not invertible, the input can still be recovered
from overlapping MDCT’s.
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4.2 Improvements from using the DCT to interpolate
functions and approximate analog filters

Recall that, in Section 3.2.1, we explained how to approximate an analog filter from
the samples. It turns out that, when an analog filter is symmetric, we can use sym-
metric extensions to create a better approximation from the samples.

Assume that s is an analog filter, and that we apply it to a general function f .
Denote as before the symmetric extension of f by f̆ . We start with the following
observation, which follows from the continuity of s.

Observation 4.17. Since ( f̆ )N is a better approximation to f̆ , compared to what
fN is to f , s(( f̆ )N ) is a better approximation to s( f̆ ), compared to what s( fN ) is to
s( f ).

Since s( f̆ ) agrees with s( f ) except near the boundaries, we can thus conclude that
s(( f̆ )N ) is a better approximation to s( f ) than what s( fN ) is.

We have seen that the restriction of s to VM ,T is equivalent to an N × N digital
filter S, where N = 2M +1. Let x be the samples of f , x̆ the samples of f̆ . Turning
around the fact that ( f̆ )N is a better approximation to f̆ , compared to what fN is to
f , the following is clear.

Observation 4.18. The samples x̆ are a better approximation to the samples of
( f̆ )N , than the samples x are to the samples of fN .

Now, let z = Sx , and z̆ = S x̆ . The following is also clear from the preceding observa-
tion, due to continuity of the digital filter S.

Observation 4.19. z̆ is a better approximation to S(samples of ( f̆ )N ) =
samples of s(( f̆ )N ), than z is to S(samples of fN ) = samples of s( fN ).

Since by Observation 4.17 s(( f̆ )N ) is a better approximation to the output s( f ), we
conclude that z̆ is a better approximation than z to the samples of the output of the
filter.

Observation 4.20. S x̆ is a better approximation to the samples of s( f ) than Sx is
(x are the samples of f ).

Now, let us also bring in the assumption that s is symmetric. Then the correspond-
ing digital filter S is also symmetric, and we know then that we can view its restric-
tion to symmetric extensions in R2N in terms of the mapping Sr : RN → RN . We
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f //

��

s( ˜̆f )

f̆

��
x̆

��
(x̆0, x̆1, . . . , x̆ N−1)

Sr // (z̆0, z̆1, . . . , z̆ N−1)
DN // y

OO

Figure 4.3: The connections between the new mapping Sr , sampling, and interpo-
lation. The right vertical arrow represents interpolation with the DCT, i.e. that we
compute

∑N−1
n=0 yndn,N cos(2π(n/2)t/T ) for values of t .

f //

��

s( ˜̆f )

x
Sr // z

DN // y

OO

Figure 4.4: Simplification of Figure 4.3. The left vertical arrow represents sampling
as dictated by the DCT.

can thus specialize Figure 3.1 to symmetric filters by adding the step of creating the
symmetric extension, and replacing S with Sr . We have summarized these remarks
in Figure 4.3. The DCT here appears, since we have used Theorem 4.16 to interpo-
late with the DCT basis, instead of the Fourier basis. Note that this also requires that
the sampling is performed as required in that theorem, i.e. the samples are the mid-
points on all intervals. This new sampling procedure is not indicated in Figure 4.3.
Figure 4.3 can be further simplified to that shown in Figure 4.4.

Note that the assumption that s is symmetric only helped us to implement the

approximation s( ˜̆f ) in a nore efficient way, since Sr has N points and S has 2N

points. s( ˜̆f ) can in any way be used as an approximation, even if s is not symmet-
ric. But this approximation is actually even better when s is symmetric: Since s is
symmetric, s( f̆ ) is a symmetric function (since f̆ is a symmetric function). The N ’th
order Fourier series of s( f̆ ) is s(( f̆ )N ) = (s( f̆ ))N , and this is a better approximation
to s( f̆ ) since s( f̆ ) is a symmetric function. Since the procedure above obtained an
approximation to (the samples of) (s( f̆ ))N , it follows that the approximations are
better when s is symmetric.

As mentioned in Section 3.2, interpolation of a function from its samples can be
seen as a special case. This can thus be illustrated as in Figure 4.5. Note that the
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f //

��

s( ˜̆f )

x
DN // y

OO

Figure 4.5: How we can approximate a function from its samples with the DCT.

approximation lies in V2M ,2T (i.e. it is in a higher order Fourier space), but the point
is that the same number of samples is used.

4.2.1 Implementations of symmetric filters

Symmetric filters are also important for applications since they can be implemented
efficiently. To see this, we can write

(Sx)n =
N−1∑
k=0

sk x(n−k) mod N

= s0xn +
(N−1)/2∑

k=1
sk x(n−k) mod N +

N−1∑
k=(N+1)/2

sk x(n−k) mod N

= s0xn +
(N−1)/2∑

k=1
sk x(n−k) mod N +

(N−1)/2∑
k=1

sk x(n−(N−k)) mod N

= s0xn +
(N−1)/2∑

k=1
sk (x(n−k) mod N +x(n+k) mod N ). (4.7)

If we compare the first and last expressions here, we need the same number of sum-
mations, but the number of multiplications needed in the latter expression has been
halved.

Observation 4.21. Assume that a symmetric filter has 2s + 1 filter coefficients.
The filter applied to a vector of length N can then be implemented using (s +1)N
multiplications and 2sN additions. This gives a reduced number of arithmetic
operations when compared to a filter with the same numer of coefficients which
is not symmetric, where a direct implementations requires (2s +1)N multiplica-
tions and 2sN additions.

Similarly to as in Section 3.7.2, a symmetric filter can be factored into a product
of symmetric filters. To see how, note first that a real polynomial is symmetric if and
only if 1/a is a root whenever a is. If we pair together the factors for the roots a,1/a
when a is real we get a component in the frequency response of degree 2. If we pair
the factors for the roots a,1/a, a,1/a when a is complex, we get a component in the
frequency response of degree 4. We thus get the following idea:
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Idea 4.22. Let S be a symmetric filter with real coefficients. There exist constants
K , a1, . . . , am , b1,c1, . . . ,bn ,cn so that

λS (ω) =K (a1e iω+1+a1e−iω) . . . (ame iω+1+ame−iω)

× (b1e2iω+ c1e iω+1+ c1e−iω+b1e−2iω) . . . (bne2iω+ cne iω+1+ cne−iω+bne−2iω).

We can write S = K A1 . . . AmB1 . . .Bn , where Ai = {ai ,1, ai } and Bi =
{bi ,ci ,1,ci ,bi }.

In any case we see that the component filters have 3 and 5 filter coefficients.

Exercises for Section 4.2

1. Recall that in Exercise 3 in Section 3.1 we wrote down formulas for the out-
put of a filter. Using the results of this section these formulas can be be written
in a way which reduces the number of arithmetic operations. Assume that S =
t−E , . . . , t0, . . . , tE is a symmetric filter. Use Equation (4.7) to show that zn = (Sx)n

in this case can be split into the following different formulas, depending on n:

a. 0 ≤ n < E :

zn = t0xn +
n∑

k=1
tk (xn+k +xn−k )+

E∑
k=n+1

tk (xn+k +xn−k+N ). (4.8)

b. E ≤ n < N −E :

zn = t0xn +
E∑

k=1
tk (xn+k +xn−k ). (4.9)

c. N −E ≤ n < N :

zn = t0xn +
N−1−n∑

k=1
tk (xn+k +xn−k )+

E∑
k=N−1−n+1

tk (xn+k−N +xn−k ). (4.10)

2. Assume that S = t−E , . . . , t0, . . . , tE is a symmetric filter. Write a function filterS
which takes a symmetric vector t and a vector x as input, and returns z = Sx , using
the formulas from Exercise 1.

3. Reimplement the function filterS from the previous exercise so that it instead
performs the filtering using the function conv. This gives a much nicer implementa-
tion, where there is no need to split the implementation into the different formulas
stated in Exercise 1.

4. Repeat Exercise 4 in Section 2.1 by reimplementing the functionsplay_with_reduced_treble
and play_with_reduced_bass using the function filterS from the previous ex-
ercise. The resulting sound files should sound the same, since the only difference
is that we have modified the way we handle the beginning and end portion of the
sound samples.
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4.3 Efficient implementations of the DCT

When we defined the DCT in the preceding section, we considered symmetric vec-
tors of twice the length, and viewed these in the frequency domain. In order to have
a fast algorithm for the DCT, which are comparable to the FFT algorithms we de-
veloped in Section 2.4, we need to address the fact that vectors of twice the length
seem to be involved. The following theorem addresses this. This result is much used
in practical implementations of DCT, and can also be used for practical implemen-
tation of the DFT as we will see in Exercise 2:

Theorem 4.23 (DCT algorithm). Let y = DN x be the N -point DCT of the vector
x . Then we have that

yn = cn,N

(
cos

(
π

n

2N

)
ℜ((FN x (1))n)+ sin

(
π

n

2N

)
ℑ((FN x (1))n)

)
, (4.11)

where c0,N = 1 and cn,N =p
2 for n ≥ 1, and where x (1) ∈RN is defined by

(x (1))k = x2k for 0 ≤ k ≤ N /2−1

(x (1))N−k−1 = x2k+1 for 0 ≤ k ≤ N /2−1,

Proof: The N -point DCT of x is

yn = dn,N

N−1∑
k=0

xk cos

(
2π

n

2N

(
k + 1

2

))
.

Splitting this sum into two sums, where the indices are even and odd, we get

yn = dn,N

N /2−1∑
k=0

x2k cos

(
2π

n

2N

(
2k + 1

2

))

+dn,N

N /2−1∑
k=0

x2k+1 cos

(
2π

n

2N

(
2k +1+ 1

2

))
.

If we reverse the indices in the second sum, this sum becomes

dn,N

N /2−1∑
k=0

xN−2k−1 cos

(
2π

n

2N

(
N −2k −1+ 1

2

))
.

If we then also shift the indices with N /2 in this sum, we get

dn,N

N−1∑
k=N /2

x2N−2k−1 cos

(
2π

n

2N

(
2N −2k −1+ 1

2

))

= dn,N

N−1∑
k=N /2

x2N−2k−1 cos

(
2π

n

2N

(
2k + 1

2

))
,
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where we used that cos is symmetric and periodic with period 2π. We see that we
now have the same cos-terms in the two sums. If we thus define the vector x (1) as in
the text of the theorem, we see that we can write

yn = dn,N

N−1∑
k=0

(x (1))k cos

(
2π

n

2N

(
2k + 1

2

))

= dn,Nℜ
(

N−1∑
k=0

(x (1))k e−2πi n
(
2k+ 1

2

)
/(2N )

)

=
p

N dn,Nℜ
(

e−πi n/(2N ) 1p
N

N−1∑
k=0

(x (1))k e−2πi nk/N

)
= cn,Nℜ

(
e−πi n/(2N )(FN x (1))n

)
= cn,N

(
cos

(
π

n

2N

)
ℜ((FN x (1))n)+ sin

(
π

n

2N

)
ℑ((FN x (1))n)

)
,

where we have recognized the N -point DFT, and where cn,N = p
N dn,N . Inserting

the values for dn,N , we see that c0,N = 1 and cn,N =p
2 for n ≥ 1, which agrees with

the definition of cn,N in the theorem. This completes the proof.

With the result above we have avoided computing a DFT of double size. If we in
the proof above define the N ×N -diagonal matrix QN by Qn,n = cn,N e−πi n/(2N ), the
result can also be written on the more compact form

y = DN x =ℜ(
QN FN x (1)) .

We will, however, not use this form, since there is complex arithmetic involved, con-
trary to Equation(4.11). Let us see how we can use (4.11) to implement the DCT,
once we already have implemented the DFT in terms of the function FFTImpl as in
Section 2.4:

function y = DCTImpl(x)
N = length(x);
if N == 1

y = x;
else

x1 = [x(1:2:N, :); x(N:(-2):1, :)];
y = FFTImpl(x1, @FFTKernelStandard)/sqrt(N);
cosvec = cos(pi*((0:(N-1))’)/(2*N));
sinvec = sin(pi*((0:(N-1))’)/(2*N));
for s2 = 1:size(x, 2)

y(:, s2) = cosvec.*real(y(:, s2)) + sinvec.*imag(y(:, s2));
end
y(2:N, :) = sqrt(2)*y(2:N, :);

end

In the code, the vector x (1) is created first by rearranging the components, and it
is sent as input to FFTImpl. After this we take real parts and imaginary parts, and
multiply with the cos- and sin-terms in Equation (4.11).

146



4.3.1 Efficient implementations of the IDCT

As with the FFT, it is straightforward to modify the DCT implementation so that it
returns the IDCT. To see how we can do this, write from Theorem 4.23, for n ≥ 1

yn = cn,N

(
cos

(
π

n

2N

)
ℜ((FN x (1))n)+ sin

(
π

n

2N

)
ℑ((FN x (1))n)

)
yN−n = cN−n,N

(
cos

(
π

N −n

2N

)
ℜ((FN x (1))N−n)+ sin

(
π

N −n

2N

)
ℑ((FN x (1))N−n)

)
= cn,N

(
sin

(
π

n

2N

)
ℜ((FN x (1))n)−cos

(
π

n

2N

)
ℑ((FN x (1))n)

)
, (4.12)

where we have used the symmetry of FN for real signals. These two equations enable
us to determine ℜ((FN x (1))n) and ℑ((FN x (1))n) from yn and yN−n . We get

cos
(
π

n

2N

)
yn + sin

(
π

n

2N

)
yN−n = cn,Nℜ((FN x (1))n)

sin
(
π

n

2N

)
yn −cos

(
π

n

2N

)
yN−n = cn,Nℑ((FN x (1))n).

Adding we get

cn,N (FN x (1))n =cos
(
π

n

2N

)
yn + sin

(
π

n

2N

)
yN−n + i (sin

(
π

n

2N

)
yn −cos

(
π

n

2N

)
yN−n)

=(cos
(
π

n

2N

)
+ i sin

(
π

n

2N

)
)(yn − i yN−n) = eπi n/(2N )(yn − i yN−n).

This means that (FN x (1))n = 1
cn,N

eπi n/(2N )(yn +i yN−n) for n ≥ 1. Since ℑ((FN x (1))0) =
0 we have that (FN x (1))0 = 1

c0,N
y0. This means that x (1) can be recovered by taking the

IDFT of the vector with component 0 being 1
c0,N

y0, and the remaining components

being 1
cn,N

eπi n/(2N )(yn − i yN−n):

Theorem 4.24 (IDCT algorithm). Let x = (DN )T y be the IDCT of y . and let z be
the vector with component 0 being 1

c0,N
y0, and the remaining components being

1
cn,N

eπi n/(2N )(yn − i yN−n). Then we have that

x (1) = (FN )H z ,

where x (1) is defined as in Theorem 4.23.

The implementation of IDCT can thus go as follows:

function x = IDCTImpl(y)
N = size(y, 1);
if N == 1

x = y;
else

Q = exp(pi*1i*((0:(N-1))’)/(2*N));
Q(2:N) = Q(2:N)/sqrt(2);
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y1 = zeros(size(y)); y1(1, :) = y(1, :);
for s2 = 1:size(y, 2)

y1(2:N, s2) = Q(2:N).*(y(2:N, s2)-1i*y(N:(-1):2, s2));
end
y1 = FFTImpl(y1, @FFTKernelStandard, 0)*sqrt(N);
x = zeros(size(y));
x(1:2:N, :) = real(y1(1:(N/2), :));
x(2:2:N, :) = real(y1(N:(-1):(N/2+1), :));

end

4.3.2 Reduction in the number of multiplications with the DCT

Let us also state a result which confirms that the DCT and IDCT implementations
we have described give the same type of reductions in the number multiplications
as the FFT and IFFT:

Theorem 4.25. (Number of multiplications required by the DCT and IDCT al-
gorithms) Both the DCT and IDCT can use any FFT and IFFT algorithm, and
their algorithms then have the same order as these. In comparison, the num-
ber of real multiplications/additions required by a direct implementation of the
N -point DCT and IDCT is N 2 and N (N −1), respectively.

Proof: By Theorem 2.39, the number of multiplications required by the FFT al-
gorithm from Section 2.4 is O(N log2 N ). By Theorem 4.23, two additional multipli-
cations are needed for each index. But in Exercise 1 we show that the joint compu-
tation of yn and yN−n can be done with 3 multiplications rather than 4, so that we
can get away with 3N /2 additional multiplications instead. Thus, a total number
of O(N log2 N +3N /2) multiplications are required by the DCT. Since the number of
multiplications for the IFFT is the same as for the FFT, we only need to count the ad-
ditional multiplications needed in forming the vector z = 1

cn,N
eπi n/(2N )(yn − i yN−n).

The same exercise shows that this can be done by 3N /2 additional multiplications,
so that the number of muliplications needed by the IDCT is O(N log2 N +3N /2) also.
It is clear that the direct implementation of the DCT and IDCT needs N 2 multiplica-
tions, since only real arithmetic is involved.

Since the DCT and IDCT can be implemented using the FFT and IFFT, it has the
same advantages as the FFT when it comes to parallel computing . Much literature
is devoted to reducing the number of multiplications in the DFT and the DCT even
further than what we have done (see [18] for one of the most recent developments).
Some more notes on computational complexity are in order. For instance, we have
not counted the operations sin and cos in the DCT. The reason is that these values
can be precomputed, since we take the sine and cosine of a specific set of values for
each DCT or DFT of a given size. This is contrary to to multiplication and addition,
since these include the input values, which are only known at runtime. We have,
however, not written down that we use precomputed arrays for sine and cosine in
our algorithms: This is an issue to include in more optimized algorithms. Another
point has to do with the multiplication of 1p

N
. As long as N = 22r , multiplication with

148



N need not be considered as a multiplication, since it can be implemented using a
bitshift.

Exercises for Section 4.3

1. In this exercise we will take a look at a small trick which reduces the number
of multiplications needed by the DCT algorithm from Theorem 4.23. This is very
similar to Exercise 7 in Section 2.4, where a simple observation lead us to halve the
number of multiplications from O(2N log2 N ) to O(N log2 N ) in the FFT and IFFT
algorithms.

a. Assume that x is a real signal. Equation (4.12), which said that

yn = cn,N

(
cos

(
π

n

2N

)
ℜ((FN x (1))n)+ sin

(
π

n

2N

)
ℑ((FN x (1))n)

)
yN−n = cn,N

(
sin

(
π

n

2N

)
ℜ((FN x (1))n)−cos

(
π

n

2N

)
ℑ((FN x (1))n)

)
for the n’th and N −n’th coefficient of the DCT. This can also be rewritten as

yn = cn,N (
(ℜ((FN x (1))n)+ℑ((FN x (1))n)

)
cos

(
π

n

2N

)
−ℑ((FN x (1))n)(cos

(
π

n

2N

)
− sin

(
π

n

2N

)
))

yN−n = cn,N (−(ℜ((FN x (1))n)+ℑ((FN x (1))n)
)

cos
(
π

n

2N

)
+ℜ((FN x (1))n)(sin

(
π

n

2N

)
+cos

(
π

n

2N

)
)).

Explain that the first two equations require 4 multiplications to compute yn

and yN−n , and that the last two equations require 3 multiplications to com-
pute yn and yN−n (Do not count the multiplications with cn,N ).

b. Explain why the trick in a. reduces the number of multiplications in a
DCT, so that it needs only MN = 3N /2 multiplications plus the number of
multiplications needed by an N -point DFT.

c. Explain why the trick in a. can be used to reduce the number of multi-
plications in an IDCT also to MN = 3N /2 plus the number of multiplications
needed by an N -point IDFT.
Hint: match the expression eπi n/(2N )(yn−i yN−n) you encountered in the IDCT
with the rewriting you did in b.

d. Show that the penalty of the trick we here have used to reduce the number
of multiplications, is an increase in the number of additions. Why can this
trick still be useful? (here we thus have similarities with

2. (An efficient joint implementation of the DCT and the FFT). In this exercise we
will explain a joint implementation of the DFT and the DCT, which further reduces
the number of arithmetic operations needed. It also has the additional benefit that
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it avoids complex arithmetic altogether, and has a very structured implementation
(this is not always the case for the quickest FFT implementations. Not surprisingly,
one often sacrifices clarity of code when one pursues higher computational speed).
For further details, the reader is refered to [38]

a. Let y = FN x be the N -point DFT of the real vector x . Show that

ℜ(yn) =


1p
2
ℜ((FN /2x (e))n)+ (EDN /4z)n 0 ≤ n ≤ N /4−1

1p
2
ℜ((FN /2x (e))n) n = N /4

1p
2
ℜ((FN /2x (e))n)− (EDN /4z)N /2−n N /4+1 ≤ n ≤ N /2−1

(4.13)

ℑ(yn) =


1p
2
ℑ((FN /2x (e))n) n = 0

1p
2
ℑ((FN /2x (e))n)+ (EDN /4w )N /4−n 1 ≤ n ≤ N /4−1

1p
2
ℑ((FN /2x (e))n)+ (EDN /4w )n−N /4 N /4 ≤ n ≤ N /2−1

(4.14)

where x (e) is as defined in Theorem 2.34, where z , w ∈RN /4 defined by

zk = x2k+1 +xN−2k−1 0 ≤ k ≤ N /4−1,

wk = (−1)k (xN−2k−1 −x2k+1) 0 ≤ k ≤ N /4−1,

and where E is a diagonal matrix with diagonal entries E0,0 = 1
2 and En,n = 1

2
p

2
for n ≥ 1. Explain from this how you can make an algorithm which reduces
an FFT of length N to an FFT of length N /2 (on x (e)), and two DCT’s of length
N /4 (on z and w ). We will call this algorithm the revised FFT algorithm.

a. says nothing about the coefficients yn for n > N
2 . These are obtained in the same

way as before through symmetry. a. also says nothing about yN /2. This can be ob-
tained with the same formula as in Theorem 2.34.

b. Write down a matrix interpretation of what you found in a.

Let us now compute the number of arithmetic operations our revised algorithm
needs. Denote by the number of real multiplications needed by the revised N -point
FFT algorithm

c. Explain from the algorithm in a. that

MN = 2(MN /4 +3N /8)+MN /2 AN = 2(AN /4 +3N /8)+ AN /2 +3N /2 (4.15)

HINT: 3N /8 should come from the extra three additions/multiplications (see
Exercise 1) you need to compute when you run the algorithm from Theo-
rem 4.23 for DN /4 (there are N /8 pairs (yn , yN−n)). Note also that the equa-
tions in a. require no extra multiplications, but N /2+N /2+N /2 extra addi-
tions.
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d. Explain why xr = M2r is the solution to the difference equation

xr+2 −xr+1 −2xr = 3×2r ,

and that xr = A2r is the solution to

xr+2 −xr+1 −2xr = 9×2r .

and show that the general solution to these are xr = 1
2 r 2r +C 2r +D(−1)r for

multiplications, and xr = 3
2 r 2r +C 2r +D(−1)r for additions.

e. Explain why, regardless of initial conditions to the difference equations,
MN =O

( 1
2 N log2 N

)
and AN =O

( 3
2 N log2 N

)
both for the revised FFT and the

revised DCT. The total number of operations is thus O(2N log2 N ), i.e. half the
operation count of the split radix algorithm.

f. Explain that, if you had not employed the trick from Exercise 1, we would
instead have obtained MN =O

( 2
3 log2 N

)
, and AN =O

( 4
3 log2 N

)
, also half the

operation counts of the split radix algorithm.

The algorithm we here have developed thus is constructed from the beginning to
apply for real data. Since the operation count of the split radix algorithm can be
halved when we assume real data, the new algorithm is equivalent to it in terms of
the number of operations. The trick from Exercise 1 did not change the total number
of operations, but it ensured that a bigger percentage of the operations were addi-
tions, which again may be an advantage. This new algorithm even beats the split
radix algorithm when it comes to the number of multiplications. Another advantage
of the new algorithm is that it can be used to compute bith the DCT and the DFT.

3. We did not write down corresponding algorithms for the revised IFFT and IDCT
algorithms. We will consider this in this exercise.

a. Using equations (4.13)-(4.14), show that

ℜ(yn)−ℜ(yN /2−n) = 2(EDN /4z)n

ℑ(yn)+ℑ(yN /2−n) = 2(EDN /4w )N /4−n

for 1 ≤ n ≤ N /4−1. Explain how one can compute z and w from this using
two IDCT’s of length N /4.

b. Using equations (4.13)-(4.14), show that

ℜ(yn)+ℜ(yN /2−n) =p
2ℜ((FN /2x (e))n)

ℑ(yn)−ℑ(yN /2−n) =p
2ℑ((FN /2x (e))n),

and explain how one can compute x (e) from this using an IFFT of length N /2.
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Summary

We started this chapter by extending a previous result which had to do with that the
Fourier series of a symmetric function converged quicker. To build on this we first
needed to define symmetric extensions of vectors and symmetric vectors, before
we classified symmetric extensions in the frequency domain. From this we could
find a nice, orthonormal basis for the symmetric extensions, which lead us to the
definition of the DCT. We also saw a connection with symmetric filters: These are
exactly the filters which preserve symmetric extensions, and we could characterize
symmetric filters restricted to symmetric extension as an N -dimensional mapping.
We also showed that it is smart to replace the DFT with the DCT when we work with
filters which are known to be symmetric. Among other things, this lead to a better
way of approximating analog filters, and better interpolation of functions.

We also showed how to obtain an efficient implementation of the DCT, which
could reuse the FFT implementation. The DCT has an important role in the MP3
standard. As we have explained, the MP3 standard applies several filters to the
sound, in order to split it into bands concentrating on different frequency ranges.
In Section 8.3 we will look closer at how these filters can be implemented and con-
structed. The implementation can use transforms similar to the MDCT, as explained
in Exercise 5 in Section4.1. The MDCT is also used in the more advanced version of
the MP3 standard (layer III). Here it is applied to the filtered data to obtain a higher
spectral resolution of the sound. The MDCT is applied to groups of 576 (in special
circumstances 192) samples. The MP3 standard document [17] does not dig into
the theory for this, only representing what is needed in order to make an implemen-
tation. It is somewhat difficult to read this document, since it is written in quite a
different language, familiar mainly to those working with international standards.

The different type of cosine-matrices can all be associated with some extension
strategy for the signal. [25] contains a review of these.

The DCT is particularly popular for processing sound data before they are com-
pressed with lossless techniques such as Huffman coding or arithmetic coding. The
reason is, as mentioned, that the DCT provides a better approximation from a low-
dimensional space than the DFT does, and that it has a very efficient implementa-
tion. Libraries exist which goes into lengths to provide efficient implementation of
the FFT and the DCT. FFTW, short for Fastest Fourier Transform in the West [15], is
perhaps the best known of these.

Signal processing literature often does not motivate digital filters in explaining
where they come from, and where the input to the filters come from. Using analog
filters to motivate this, and to argue for improvements in using the DCT and sym-
meric extensions, is not that common. Much literature simply says that the property
of linear phase is good, without elaborating on this further.
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Part II

Wavelets and applications to
image processing
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Chapter 5
Motivation for wavelets and
some simple examples

In Part I our focus was to approximate functions or vectors with trigonometric func-
tions. We saw that the Discrete Fourier transform could be used to obtain a repre-
sentation of a vector in terms of such functions, and that computations could be
done efficiently with the FFT algorithm. This was useful for analyzing, filtering, and
compressing sound and other discrete data. The approach with trigonometric func-
tions has some limitations, however. One of these is that, in a representation with
trigonometric functions, the frequency content is fixed over time. This is in contrast
with most sound data, where the characteristics are completely different in different
parts. We have also seen that, even if a sound has a simple representation in terms
of trigonometric functions on two different parts, the representation of the entire
sound may not be simple. In particular, if the function is nonzero only on a very
small interval, a representation of it in terms of trigonometric functions is not so
simple.

In this chapter we are going to introduce the basic properties of an alternative to
Fourier analysis for representing functions. This alternative is called wavelets. Sim-
ilar to Fourier analysis, wavelets are also based on the idea of expressing a function
in some basis. But in contrast to Fourier analysis, where the basis is fixed, wavelets
provide a general framework with many different types of bases. In this chapter we
first give a motivation for wavelets, before we continue by introducing some very
simple wavelets. The first wavelet we look at can be interpreted as an approxima-
tion scheme based on piecewise constant functions. The next wavelet we look at is
similar, but with piecewise linear functions used instead. Following these examples
we will establish a more general framework, based on experiences from the simple
wavelets. In the following chapters we will interpret this framework in terms of fil-
ters, and use this connection to construct even more interesting wavelets.

The examples in this chapter can be run from the notebook
notebook_wavexamples.m.
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(a) Image of the earth (b) Zoomed in on the rectange
marked in (a)

(c) Zoomed further in on the
rectange marked in (b)

Figure 5.1: A view of Earth from space, together with versions of the image where we
have zoomed in.

5.1 Why wavelets?

Figure 5.1(a) shows a view of the entire Earth. The startup image in Google Earth™,
a program for viewing satellite images, maps and other geographic information, is
very similar to this. In (b) we have zoomed in on the Mexican Gulff, as marked with
a rectangle in (a). Similarly, in (c) we have further zoomed in on Cuba and a small
portion of Florida, as marked with a rectangle in (b). There is clearly an amazing
amount of information available behind a program like Google Earth™, since we
there can zoom further in, and obtain enough detail to differentiate between build-
ings and even trees or cars all over the Earth. So, when the Earth is spinning in the
opening screen of Google Earth™, all the Earth’s buildings appear to be spinning
with it! If this was the case the Earth would not be spinning on the screen, since
there would just be so much information to process that a laptop would not be able
to display a rotating Earth.

There is a simple reason that the globe can be shown spinning in spite of the
huge amounts of information that need to be handled. We are going to see later
that a digital image is just a rectangular array of numbers that represent the colour
at a dense set of points. As an example, the images in Figure 5.1 are made up of
a grid of 1064× 1064 points, which gives a total of 1 132 096 points. The colour at
a point is represented by three eight-bit integers, which means that the image files
contain a total of 3 396 288 bytes each. So regardless of how close to the surface of
the Earth our viewpoint is, the resulting image always contains the same number
of points. This means that when we are far away from the Earth we can use a very
coarse model of the geographic information that is being displayed, but as we zoom
in, we need to display more details and therefore need a more accurate model.

Observation 5.1. When discrete information is displayed in an image, there is no
need to use a mathematical model that contains more detail than what is visible
in the image.
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A consequence of Observation 5.1 is that for applications like Google Earth™ we
should use a mathematical model that makes it easy to switch between different lev-
els of detail, or different resolutions. Such models are called multiresolution models,
and wavelets are prominent examples of this kind of models. We will see that mul-
tiresolution models also provide us with means of approximating functions, just as
Taylor series and Fourier series. Our new approximation scheme differs from these
in one important respect, however: When we approximate with Taylor series and
Fourier series, the error must be computed at the same data points as well, so that
the error contains just as much information as the approximating function, and the
function to be approximated. Multiresolution models on the other hand will be de-
fined in such a way that the error and the “approximating function” each contain
half of the information from the function we approximate, i.e. their amount of data
is reduced. This property makes multiresolution models attractive for the problems
at hand, when compared to approaches such as Taylor series and Fourier series.

When we zoom in with Google Earth™, it seems that this is done continuously.
The truth is probably that the program only has representations at some given reso-
lutions (since each representation requires memory), and that one interpolates be-
tween these to give the impression of a continuous zoom. In the coming chapters
we will first look at how we can represent the information at different resolutions, so
that only new information at each level is included.

We will now turn to how wavelets are defined more formally, and construct the
simplest wavelet we have. Its construction goes in the following steps: First we intro-
duce what we call resolution spaces, and the corresponding scaling function. Then
we introduce the detail spaces, and the corresponding mother wavelet. These two
functions will give rise to certain bases for these spaces, and we will define the Dis-
crete Wavelet Transform as a change of coordinates between these bases.

5.2 A wavelet based on piecewise constant functions

Our starting point will be the space of piecewise constant functions on an interval
[0, N ). This will be called a resolution space.

Definition 5.2 (The resolution space V0). Let N be a natural number. The reso-
lution space V0 is defined as the space of functions defined on the interval [0, N )
that are constant on each subinterval [n,n +1) for n = 0, . . . , N −1.

Note that this also corresponds to piecewise constant functions which are peri-
odic with period N . We will, just as we did in Fourier analysis, identify a function
defined on [0, N ) with its (period N ) periodic extension. An example of a function in
V0 for N = 10 is shown in Figure 5.2. It is easy to check that V0 is a linear space, and
for computations it is useful to know the dimension of the space and have a basis.
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Figure 5.2: A piecewise constant function.

Lemma 5.3. Define the function φ(t ) by

φ(t ) =
{

1, if 0 ≤ t < 1;

0, otherwise;
(5.1)

and set φn(t ) = φ(t −n) for any integer n. The space V0 has dimension N , and
the N functions {φn}N−1

n=0 form an orthonormal basis for V0 with respect to the
standard inner product

〈 f , g 〉 =
∫ N

0
f (t )g (t )d t . (5.2)

In particular, any f ∈V0 can be represented as

f (t ) =
N−1∑
n=0

cnφn(t ) (5.3)

for suitable coefficients (cn)N−1
n=0 . The function φn is referred to as the characteris-

tic function of the interval [n,n +1)

Note the small difference between the inner product we define here from the in-
ner product we used for functions previously: Here there is no scaling 1/T involved.
Also, for wavelets we will only consider real functions, and the inner product will
therefore not be defined for complex functions. Two examples of the basis functions
defined in Lemma 5.5 are shown in Figure 5.3.

Proof: Two functionsφn1 andφn2 with n1 6= n2 clearly satisfy
∫
φn1 (t )φn2 (t )d t = 0

since φn1 (t )φn2 (t ) = 0 for all values of x. It is also easy to check that ‖φn‖ = 1 for all
n. Finally, any function in V0 can be written as a linear combination the functions
φ0, φ1, . . . , φN−1, so the conclusion of the lemma follows.

In our discussion of Fourier analysis, the starting point was the function sin(2πt )
that has frequency 1. We can think of the space V0 as being analogous to this func-
tion: The function

∑N−1
n=0 (−1)nφn(t ) is (part of the) square wave that we discussed in
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(b) The function φ7

Figure 5.3: Two examples of the basis functions in V0.
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(a) The square wave in V0
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(b) An approximation to cos t from V0

Figure 5.4: Examples of functions from V0

Chapter 1, and which also oscillates regularly like the sine function, see Figure 5.4 (a).
The difference is that we have more flexibility since we have a whole space at our
disposal instead of just one function — Figure 5.4 (b) shows another function in V0.

In Fourier analysis we obtained a linear space of possible approximations by in-
cluding sines of frequency 1, 2, 3, . . . , up to some maximum. We use a similar ap-
proach for constructing wavelets, but we double the frequency each time and label
the spaces as V0, V1, V2, . . .

Definition 5.4 (Refined resolution spaces). The space Vm for the interval [0, N )
is the space of piecewise linear functions defined on [0, N ) that are constant on
each subinterval [n/2m , (n +1)/2m) for n = 0, 1, . . . , 2m N −1.

Some examples of functions in the spaces V1, V2 and V3 for the interval [0,10] are
shown in Figure 5.5. As m increases, we can represent smaller details. In particular,
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Figure 5.5: Piecewise constant approximations to cos t on the interval [0,10] in the
spaces V1 (a), V2 (b), and V3 (c). The plot in (d) shows the square wave in V2.

the function in (d) is a piecewise constant function that oscillates like sin(2π22t ) on
the interval [0,10].

It is easy to find a basis for Vm , we just use the characteristic functions of each
subinterval.

Lemma 5.5. Let [0, N ) be a given interval with N some positive integer. Then the
dimension of Vm is 2m N . The functions

φm,n(t ) = 2m/2φ(2m t −n), for n = 0, 1, . . . , 2m N −1. (5.4)

{φm,n}2m N−1
n=0 form an orthonormal basis for Vm , which we will denote byφm . Any

function f ∈Vm can thus be represented uniquely as

f (t ) =
2m N−1∑

n=0
cm,nφm,n(t ).

Proof: The functions given by Equation (5.4) are nonzero on the subintervals
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[n/2m , (n + 1)/2m) which we referred to in Definition 5.4, so that φm,n1φm,n2 = 0
when n1 6= n2, since these intervals are disjoint. The only mysterious thing may be
the normalisation factor 2m/2. This comes from the fact that∫ N

0
φ(2m t −n)2 d t =

∫ (n+1)/2m

n/2m
φ(2m t −n)2 d t = 2−m

∫ 1

0
φ(u)2 du = 2−m .

The normalisation therefore thus ensures that ‖φm,n‖ = 1 for all m.
In the following we will always denote the coordinates in the basis φm by cm,n .

Note that our definition restricts the dimensions of the spaces we study to be on the
form N 2m . In Chapter 6 we will explain how this restriction can be dropped, but un-
til then the dimensions will be assumed to be on this form. In the theory of wavelets,
the function φ is also called a scaling function. The origin behind this name is that
the scaled (and translated) functions φm,n of φ are used as basis functions for the
refined resolution spaces. Later on we will see that other scaling functions φ can
be chosen, where the scaled versions φm,n will be used to define similar resolution
spaces, with slightly different properties.

5.2.1 Function approximation property

Each time m is increased by 1, the dimension of Vm doubles, and the subinterval on
which the functions in Vm are constant are halved in size. It therefore seems reason-
able that, for most functions, we can find good approximations in Vm provided m is
big enough.

Theorem 5.6. Let f be a given function that is continuous on the interval [0, N ].
Given ε> 0, there exists an integer m ≥ 0 and a function g ∈Vm such that∣∣ f (t )− g (t )

∣∣≤ ε
for all t in [0, N ].

Proof: Since f is (uniformly) continuous on [0, N ], we can find an integer m so
that

∣∣ f (t1)− f (t2)
∣∣ ≤ ε for any two numbers t1 and t2 in [0, N ] with |t1 − t2| ≤ 2−m .

Define the approximation g by

g (t ) =
2m N−1∑

n=0
f
(
tm,n+1/2

)
φm,n(t ),

where tm,n+1/2 is the midpoint of the subinterval
[
n2−m , (n +1)2−m

)
,

tm,n+1/2 = (n +1/2)2−m .

For t in this subinterval we then obviously have | f (t )− g (t )| ≤ ε, and since these
intervals cover [0, N ], the conclusion holds for all t ∈ [0, N ].
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(a) The function to be approximated.
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(b) The projection onto V2.
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(c) The projection onto V4.
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(d) The projection onto V6.

Figure 5.6: Comparison of the function defined by f (t ) = t 2 on [0,1] with the projec-
tion onto different spaces Vm .

Theorem 5.6ï¿½does not tell us how to find the approximation g although the
proof makes use of an approximation that interpolates f at the midpoint of each
subinterval. Note that if we measure the error in the L2-norm, we have

‖ f − g‖2 =
∫ N

0

∣∣ f (t )− g (t )
∣∣2 d t ≤ Nε2,

so ‖ f − g‖ ≤ εpN . We therefore have the following corollary.

Corollary 5.7. Let f be a given continuous function on the interval [0, N ]. Then

lim
m→∞‖ f −projVm

( f )‖ = 0.

Figure 5.6 illustrates how some of the approximations of the function f (x) = x2

from the resolution spaces for the interval [0,1] improve with increasing m.
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5.2.2 Detail spaces and wavelets

So far we have described a family of function spaces that allow us to determine arbi-
trarily good approximations to a continuous function. The next step is to introduce
the so-called detail spaces and the wavelet functions. We start by observing that
since

[n,n +1) = [2n/2,(2n +1)/2)∪ [(2n +1)/2,(2n +2)/2),

we have

φ0,n = 1p
2
φ1,2n + 1p

2
φ1,2n+1.

This provides a formal proof of the intuitive observation that V0 ⊂ V1, for if g ∈ V0,
we can write

g (t ) =
N−1∑
n=0

c0,nφ0,n(t ) =
N−1∑
n=0

c0,n
(
φ1,2n +φ1,2n+1

)
/
p

2,

and the right-hand side clearly lies in V1. Since also

φm−1,n(t ) = 2(m−1)/2φ(2m−1t −n) = 2(m−1)/2φ0,n(2m−1t )

= 2(m−1)/2 1p
2

(φ1,2n(2m−1t )+φ1,2n+1(2m−1t ))

= 2(m−1)/2(φ(2m t −2n)+φ(2m t − (2n +1))) = 1p
2

(φm,2n(t )+φm,2n+1(t )),

we also have that

φm−1,n = 1p
2
φm,2n + 1p

2
φm,2n+1, (5.5)

so that also Vk ⊂Vk+1 for any integer k ≥ 0.

Lemma 5.8. The spaces V0, V1, . . . , Vm , . . . are nested,

V0 ⊂V1 ⊂V2 ⊂ ·· · ⊂Vm · · · .

This means that it is meaningful to project Vk+1 onto Vk . The next step is to
characterize the projection from V1 onto V0, and onto the orthogonal complement
of V0 in V1. Before we do this, let us make the following definitions.

Definition 5.9 (Detail spaces). The orthogonal complement of Vm−1 in Vm is de-
noted Wm−1. All the spaces Wk are also called detail spaces, or error spaces.

The name detail space is used since the projection from Vm onto Vm−1 in consid-
ered as a (low-resolution) approximation, and the error, which lies in Wm−1, is the
detail which is left out when we replace with this approximation. We will also write
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gm = gm−1 + em−1 when we split gm ∈ Vm into a sum of a low-resolution approxi-
mation and a detail component. In the context of our Google Earth™example, in
Figure 5.1 you should interpret g0 as the image in (a), the image in (b) as an excerpt
of g1, and e0 as the additional details which are needed to reproduce (b) from (a).

Since V0 and W0 are mutually orthogonal spaces they are also linearly indepen-
dent spaces. When U and V are two such linearly independent spaces, we will write
U ⊕V for the vector space consisting of all vectors of the form u + v , with u ∈ U ,
v ∈ V . U ⊕V is also called the direct sum of U and V . This also makes sense if we
have more than two vector spaces (such as U ⊕V ⊕W ), and the direct sum clearly
obeys the associate law U ⊕ (V ⊕W ) = (U ⊕V )⊕W . Using the direct sum notation,
we can first write

Vm =Vm−1 ⊕Wm−1. (5.6)

Since Vm has dimension 2m N , it follows that also Wm has dimension 2m N . We can
continue the direct sum decomposition by also writing Vm−1 as a direct sum, then
Vm−2 as a direct sum, and so on, and end up with

Vm =V0 ⊕W0 ⊕W1 ⊕·· ·⊕Wm−1, (5.7)

where the spaces on the right hand side have dimension N , N ,2N , . . . ,2m−1N . This
decomposition wil be important for our purposes. It says that the resolution space
Vm acan be written as the sum of a lower order resolution space V0, and m detail
spaces W0, . . . ,Wm−1. We will later interpret this splitting into a low-resolution com-
ponent and m detail components.

It turns out that the following function will play the same role for the detail space
Wk as the function φ plays for the resolution space Vk .

Definition 5.10. We define

ψ(t ) = (
φ1,0(t )−φ1,1(t )

)
/
p

2 =φ(2t )−φ(2t −1), (5.8)

and
ψm,n(t ) = 2m/2ψ(2m t −n), for n = 0, 1, . . . , 2m N −1. (5.9)

As in the proof for Equation (5.5), it follows that

ψm−1,n = 1p
2
φm,2n − 1p

2
φm,2n+1, (5.10)

Clearly ψ is supported on [0,1), and ‖ψ‖ = 1. From this it follows as for φ0 that
the {ψ0,n}N−1

n=0 are orthonormal. In the same way as for φm , it follows also that the

{ψm,n}2m N−1
n=0 is orthonormal for any m. We will write ψm for the orthonormal basis

{ψm,n}2m N−1
n=0 , and we will always denote the coordinates in the basis ψm by wm,n .

The next result motivates the definition of ψ, and states how we can project from V1

onto V0 and W0, i.e. find the low-resolution approximation and the detail compo-
nent of g1 ∈V1.
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Lemma 5.11. For 0 ≤ n < N we have that

projV0
(φ1,n) =

{
φ0,n/2/

p
2, if n is even;

φ0,(n−1)/2/
p

2, if n is odd.
(5.11)

projW0
(φ1,n) =

{
ψ0,n/2/

p
2, if n is even;

−ψ0,(n−1)/2/
p

2, if n is odd.
(5.12)

In particular, ψ0 is an orthonormal basis for W0. More generally, if g1 =∑2N−1
n=0 c1,nφ1,n ∈V1, then

projV0
(g1) =

N−1∑
n=0

c0,nφ0,n , where c0,n = c1,2n + c1,2n+1p
2

(5.13)

projW0
(g1) =

N−1∑
n=0

w0,nψ0,n , where w0,n = c1,2n − c1,2n+1p
2

. (5.14)

Proof: We first observe that φ1,n(t ) 6= 0 if and only if n/2 ≤ t < (n +1)/2. Suppose
that n is even. Then the intersection[

n

2
,

n +1

2

)
∩ [n1,n1 +1) (5.15)

is nonempty only if n1 = n
2 . Using the orthogonal decomposition formula we get

projV0
(φ1,n) =

N−1∑
k=0

〈φ1,n ,φ0,k〉φ0,k = 〈φ1,n ,φ0,n1〉φ0,n1

=
∫ (n+1)/2

n/2

p
2d t φ0,n/2 = 1p

2
φ0,n/2.

Using this we also get

projW0
(φ1,n) =φ1,n − 1p

2
φ0,n/2 =φ1,n − 1p

2

(
1p
2
φ1,n + 1p

2
φ1,n+1

)
= 1

2
φ1,n − 1

2
φ1,n+1 =ψ0,n/2/

p
2.

This proves the expressions for both projections when n is even. When n is odd, the
intersection (5.15) is nonempty only if n1 = (n−1)/2, which gives the expressions for
both projections when n is odd in the same way. In particular we get

projW0
(φ1,n) =φ1,n − φ0,(n−1)/2p

2
=φ1,n − 1p

2

(
1p
2
φ1,n−1 + 1p

2
φ1,n

)
= 1

2
φ1,n − 1

2
φ1,n−1 =−ψ0,(n−1)/2/

p
2.
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Figure 5.7: The projection of a basis function in V1 onto V0 and W0.

ψ0 must be an orthonormal basis for W0 sinceψ0 is contained in W0, and both have
dimension N .

We project the function g1 in V1 using the formulas in (5.11). We first split the
sum into even and odd values of n,

g1 =
2N−1∑
n=0

c1,nφ1,n =
N−1∑
n=0

c1,2nφ1,2n +
N−1∑
n=0

c1,2n+1φ1,2n+1. (5.16)

We can now apply the two formulas in (5.11),

projV0
(g1) = projV0

(
N−1∑
n=0

c1,2nφ1,2n +
N−1∑
n=0

c1,2n+1φ1,2n+1

)

=
N−1∑
n=0

c1,2n projV0
(φ1,2n)+

N−1∑
n=0

c1,2n+1 projV0
(φ1,2n+1)

=
N−1∑
n=0

c1,2nφ0,n/
p

2+
N−1∑
n=0

c1,2n+1φ0,n/
p

2

=
N−1∑
n=0

c1,2n + c1,2n+1p
2

φ0,n

which proves Equation (5.13). Equation (5.14) is proved similarly.
In Figure 5.7 we have used Lemma 5.11 to plot the projections ofφ1,0 ∈V1 onto V0

and W0. It is an interesting exercise to see from the plots why exactly these functions
should be least-squares approximations of φ1,n . It is also an interesting exercise to
prove the following from Lemma 5.11:

Proposition 5.12. Let f (t ) ∈V1, and let fn,1 be the value f attains on [n,n +1/2),
and fn,2 the value f attains on [n +1/2,n +1). Then projV0

( f ) is the function in
V0 which equals ( fn,1 + fn,2)/2 on the interval [n,n + 1). Moreover, projW0

( f ) is
the function in W0 which is ( fn,1 − fn,2)/2 on [n,n +1/2), and −( fn,1 − fn,2)/2 on
[n +1/2,n +1).
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(b) The function ψ

Figure 5.8: The functions we used to analyse the space of piecewise constant func-
tions

In other words, the projection on V0 is constructed by averaging on two subin-
tervals, while the projection on W0 is constructed by taking the difference from the
mean. This sounds like a reasonable candidate for the least-squares approxima-
tions. In the exercise we generalize these observations.

In the same way as in Lemma 5.11, it is possible to show that

projWm−1
(φm,n) =

{
ψm−1,n/2/

p
2, if n is even;

−ψm−1,(n−1)/2/
p

2, if n is odd.
(5.17)

From this it follows as before thatψm is an orthonormal basis for Wm . If {Bi }n
i=1 are

mutually independent bases, we will in the following write (B1,B2, . . . ,Bn) for the
basis where the basis vectors from Bi are included before B j when i < j . With this
notation, the decomposition in Equation (5.7) can be restated as follows

Theorem 5.13. φm and (φ0,ψ0,ψ1, · · · ,ψm−1) are both bases for Vm .

The function ψ thus has the property that its dilations and translations together
span the detail components. Later we will encounter other functions, which also
will be denoted by ψ, and have similar properties. In the theory of wavelets, such
ψ are called mother wavelets. In Figure 5.8 we have plotted the functions φ and ψ.
There is one important property of ψ, which we will return to:

Observation 5.14. We have that
∫ N

0 ψ(t )d t = 0.

This can be seen directly from the plot in Figure 5.8, since the parts of the graph
above and below the x-axis cancel. In general we say that ψ has k vanishing mo-
ments if the integrals

∫
t lψ(t )d t = 0 for all 0 ≤ l ≤ k −1. Due to Observation 5.14, ψ
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has one vanishing moment. In Chapter 7 we will show that mother wavelets with
many vanishing moments are very desirable when it comes to approximation of
functions.

We now have all the tools needed to define the Discrete Wavelet Transform.

Definition 5.15 (Discrete Wavelet Transform). The DWT (Discrete Wavelet
Transform) is defined as the change of coordinates from φ1 to (φ0,ψ0). More
generally, the m-level DWT is defined as the change of coordinates from φm to
(φ0,ψ0,ψ1, · · · ,ψm−1). In an m-level DWT, the change of coordinates from

(φm−k+1,ψm−k+1,ψm−k+2, · · · ,ψm−1) to (φm−k ,ψm−k ,ψm−k+1, · · · ,ψm−1)
(5.18)

is also called the k’th stage. The (m-level) IDWT (Inverse Discrete Wavelet Trans-
form) is defined as the change of coordinates the opposite way.

The DWT corresponds to replacing as manyφ-functions as we can withψ-functions,
i.e. replacing the original function with a sum of as much detail at different resolu-
tions as possible. We now can state the following result.

Theorem 5.16. If gm = gm−1 +em−1 with

gm =
2m N−1∑

n=0
cm,nφm,n ∈Vm ,

gm−1 =
2m−1N−1∑

n=0
cm−1,nφm−1,n ∈Vm−1 em−1 =

2m−1N−1∑
n=0

wm−1,nψm−1,n ∈Wm−1,

then the change of coordinates from φm to (φm−1,ψm−1) (i.e. first stage in a
DWT) is given by (

cm−1,n

wm−1,n

)
=

(
1/
p

2 1/
p

2
1/
p

2 −1/
p

2

)(
cm,2n

cm,2n+1

)
(5.19)

Conversely, the change of coordinates from (φm−1,ψm−1) toφm (i.e. the last stage
in an IDWT) is given by(

cm,2n

cm,2n+1

)
=

(
1/
p

2 1/
p

2
1/
p

2 −1/
p

2

)(
cm−1,n

wm−1,n

)
(5.20)

Proof: Equations (5.5) and (5.10) say that

φm−1,n =φm,2n/
p

2+φm,2n+1/
p

2 ψm−1,n =φm,2n/
p

2−φm,2n+1/
p

2.
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The change of coordinate matrix from the basis {φm−1,n ,ψm−1,n} to {φm,2n ,φm,2n+1}

is thus

(
1/
p

2 1/
p

2
1/
p

2 −1/
p

2

)
. This proves Equation (5.20). Equation (5.19) follows imme-

diately since this matrix equals its inverse.
Above we assumed that N is even. In Exercise 8 we will see how we can handle

the case when N is odd.
From Theorem 5.16, we see that, if we had defined

Cm = {φm−1,0,ψm−1,0,φm−1,1,ψm−1,1, · · · ,φm−1,2m−1N−1,ψm−1,2m−1N−1}. (5.21)

i.e. we have reordered the basis vectors in (φm−1,ψm−1) (the subscript m is used
since Cm is a basis for Vm), it is apparent from Equation (5.20) that G = Pφm←Cm is
the matrix where ( 1p

2
1p
2

1p
2

− 1p
2

)
is repeated along the main diagonal 2m−1N times. Also, from Equation (5.19) it is
apparent that H = PCm←φm

is the same matrix. Such matrices are called block di-
agonal matrices. This particular block diagonal matrix is clearly orthogonal. Let us
make the foollowing definition

Definition 5.17 (DWT and IDWT kernel transformations). The matrices
H = PCm←φm

and G = Pφm←Cm are called the DWT and IDWT kernel
transformations. The DWT and the IDWT can be expressed in terms of
these kernel transformations by

P(φm−1,ψm−1)←Cm H and GPCm←(φm−1,ψm−1),

respectively, where

1. P(φm−1,ψm−1)←Cm is a permutation matrix which groups the even elements
first, then the odd elements,

2. PCm←(φm−1,ψm−1) is a permutation matrix which places the first half at the
even indices, the last half at the odd indices.

Clearly, the kernel transformations H and G also invert each other. The point of
using the kernel transformation is that they compute the output sequentially, simi-
larly to how a filter does. Clearly also the kernel transformations are very similar to
a filter, and we will return to this in the next chapter.

At each level in a DWT, Vk is split into one low-resolution component from Vk−1,
and one detail component from Wk−1. We can visualize this with the following fig-
ure, where the arrows represent changes of coordinates:

φm
//

##

φm−1
//

$$

φm−2
//

$$

· · · // φ1
//

  

φ0

ψm−1 ψm−2 ψm−3 ψ0

169



The detail component from Wk−1 is not subject to further transformation. This is
seen in the figure since ψk−1 is a leaf node, i.e. there are no arrows going out from
ψm−1. In a similar illustration for the IDWT, the arrows would go the opposite way.

The Discrete Wavelet Transform is the analogue in a wavelet setting to the Dis-
crete Fourier transform. When applying the DFT to a vector of length N , one starts
by viewing this vector as coordinates relative to the standard basis. When applying
the DWT to a vector of length N , one instead views the vector as coordinates relative
to the basisφm . This makes sense in light of Exercise 1.

What you should have learnt in this section

Definition of resolution spaces (Vm), detail spaces (Wm), scaling function (φ), and
mother wavelet (ψ) for the wavelet based on piecewise constant functions. The nest-
ing of resultion spaces, and how one can project from one resolution space onto a
lower order resolution space, and onto its orthogonal complement. The definition
of the Discrete Wavelet Transform as a change of coordinates, and how this can be
written down from relations between basis functions.

Exercises for Section 5.2

1. Show that the coordinate vector for f ∈ V0 in the basis {φ0,0,φ0,1, . . . ,φ0,N−1} is
( f (0), f (1), . . . . f (N −1)).

2. Prove Proposition 5.12.

3. In this exercise we will consider the two projections from V1 onto V0 and W0.

a. Consider the projection projV0
of V1 onto V0. Use lemma 5.11 to write

down the matrix for projV0
relative to the basesφ1 andφ0.

b. Similarly, use lemma 5.11 to write down the matrix for projW0
: V1 → W0

relative to the basesφ1 andψ0.

4. Consider again the projection projV0
of V1 onto V0.

a. Explain why projV0
(φ) =φ and projV0

(ψ) = 0.

b. Show that the matrix of projV0
relative to (φ0,ψ0) is given by the diagonal

matrix where the first half of the entries on the diagonal are 1, the second half
0.

c. Show in a similar way that the projection of V1 onto W0 has a matrix rela-
tive to (φ0,ψ0) given by the diagonal matrix where the first half of the entries
on the diagonal are 0, the second half 1.

5. Show that

projV0
( f ) =

N−1∑
n=0

(∫ n+1

n
f (t )d t

)
φ0,n(t ) (5.22)

for any f . Show also that the first part of Proposition 5.12 follows from this.
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6. Show that

‖∑
n

(∫ n+1

n
f (t )d t

)
φ0,n(t )− f ‖2 = 〈 f , f 〉−∑

n

(∫ n+1

n
f (t )d t

)2

.

This, together with the previous exercise, gives us an expression for the least-squares
error for f from V0 (at least after taking square roots).

7. Show that

projW0
( f ) =

N−1∑
n=0

(∫ n+1/2

n
f (t )d t −

∫ n+1

n+1/2
f (t )d t

)
ψ0,n(t ) (5.23)

for any f . Show also that the second part of Proposition 5.12 follows from this.

8. When N is odd, the (first stage in a) DWT is defined as the change of coordinates
from (φ1,0,φ1,1, . . . ,φ1,N−1) to

(φ0,0,ψ0,0,φ0,1,ψ0,1, . . . ,φ0,(N−1)/2,ψ(N−1)/2,φ0,(N+1)/2).

Since all functions are assumed to have period N , we have that

φ0,(N+1)/2 = 1p
2

(φ1,N−1 +φ1,N ) = 1p
2

(φ1,0 +φ1,N−1).

From this relation one can find the last column in the change of coordinate matrix
from φ0 to (φ1,ψ1), i.e. the IDWT matrix. In particular, when N is odd, we see that
the last column in the IDWT matrix circulates to the upper right corner. In terms of
coordinates, we thus have that

c1,0 = 1p
2

(c0,0 +w0,0 + c0,(N+1)/2) c1,N−1 = 1p
2

c0,(N+1)/2. (5.24)

a. If N = 3, the DWT matrix equals 1p
2

1 1 1
1 −1 0
0 0 1

, and the inverse of this

is 1p
2

1 1 −1
1 −1 −1
0 0 2

. Explain from this that, when N is odd, the DWT matrix

can be constructed by adding a column on the form 1p
2

(−1,−1,0, . . . ,0,2) to

the DWT matrices we had for N even (in the last row zeros are also added). In
terms of the coordinates, we thus have the additional formulas

c0,0 = 1p
2

(c1,0+c1,1−c1,N−1 ) w0,0 = 1p
2

(c1,0−c1,1−c1,N−1 ) c0,(N+1)/2 = 1p
2

2c1,N−1.

(5.25)

b. Explain that the DWT matrix is orthogonal if and only if N is even. Also
explain that it is only the last column which spoils the orthogonality.
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5.3 Implementation of the DWT and examples

The DWT is straightforward to implement: One simply needs to iterate Equation (5.19)
for m,m−1, . . . ,1. We will use a DWT kernel function which takes as input the coordi-
nates (cm,0,cm,1, . . .), and returns the coordinates (cm−1,0, wm−1,0,cm−1,1, wm−1,1, . . .),
i.e. computes one stage of the DWT. This is a different order for the coordinates than
that given by the basis (φm ,ψm). The reason is that it is easier with this new order to
compute the DWT in-place. As an example, the kernel transformation for the Haar
wavelet can be implemented as follows. For simplicity this first version of the code
assumes that N is even:

function x = DWTKernelHaar(x, symm, dual)
x = x/sqrt(2);
N = size(x, 1);
for k = 1:2:(N-1)

x(k:(k+1), :) = [x(k, :) + x(k+1, :); x(k, :) - x(k+1, :)];
end

Note that the code above accepts two-dimensional data, just as our functionFFTImpl
did. Thus, the function may be applied simultaneously to all channels in a sound.
The mysterious parameters symm and dual will be explained in Chapter 6. For now
they have no role in the code, but will still appear several places in the code in this
section. When N is even, IDWTKernelHaar can be implemented with the exact
same code. When N is odd, we can use the results from exercise 8 in Section 5.2
(see exercise 17). The reason for using a general kernel function will be apparent
later, when we change to different types of wavelets.

Since the code above does not give the coordinates in the same order as (φm ,ψm),
an implementation of the DWT needs to organize the DWT coefficients in the right
order, in addition to calling the kernel function for each stage, and applying the ker-
nel to the right coordinates. Clearly, the coordinates fromφm end up at indices k2m ,
where m represents the current stage, and k runs through the indices. The following
function, called DWTImpl, follows this procedure. It takes as input the number of
levels, nres, as well as the input vector x , runs the DWT on x with the given number
of resolutions, and returns the result:

function x = DWTImpl(x, nres, f, symmarg, dualarg)
symm = 1;
if nargin >= 4

symm = symmarg;
end
dual = 0;
if nargin >= 5

dual = dualarg;
end
N = size(x, 1);
for res=0:(nres - 1)

x(1:2^res:N, :) = f(x(1:2^res:N, :), symm, dual);
end
x = reorganize_coefficients(x, nres, 1);

Again note that the code is applied to all columns if the data is two-dimensional.
Note also that here the kernel function f is first invoked, one time for each resolu-
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tion. Finally, the coefficients are reorganized so that the φm coordinates come first,
followed by the coordinates from the different levels. We have provided a function
reorganize_coefficientswhich does this reorganization, and you will be spared
the details in this implementation. In exercise 18 we go through some aspects of this
implementation. Note that, although the DWT requires this reoragnization, this re-
organization may not be required in practice, as further processing is needed, for
which the coefficients can be accessed where they have been placed after the in-
place operations. Note also the two last arguments, symm and dual, which we have
not commented on. We will return to these in Chapter 6. Note that there is some
code at the beginning which ensures that these arguments have default values. This
implementation is not recursive, as the for-loop runs through the different stages.
Inside the loop we perform the change of coordinates from φk to (φk−1,ψk−1) by
applying Equation (5.19). This works on the first coordinates, since the coordinates
fromφk are stored first in

(φk ,ψk ,ψk+1, · · · ,ψm−2,ψm−1).

Finally, the c-coordinates are stored before the w-coordinates. In this implemen-
tation, note that the first levels require the most multiplications, since the latter
levels leave an increasing part of the coordinates unchanged. Note also that the
change of coordinates matrix is a very sparse matrix: At each level a coordinate can
be computed from only two of the other coordinates, so that this matrix has only two
nonzero elements in each row/column. The algorithm clearly shows that there is no
need to perform a full matrix multiplication to perform the change of coordinates.

The corresponding function for the IDWT, called IDWTImpl, goes as follows:

function x = IDWTImpl(x, nres, f, symmarg, dualarg)
symm = 1;
if nargin >= 4

symm = symmarg;
end
dual = 0;
if nargin >= 5

dual = dualarg;
end
x = reorganize_coefficients(x, nres, 0);
N = size(x, 1);
for res = (nres - 1):(-1):0

x(1:2^res:N, :) = f(x(1:2^res:N, :), symm, dual);
end

Here the steps are simply performed in the reverse order, and by iterating Equa-
tion (5.20). You may be puzzled by the namesDWTKernelHaar andIDWTKernelHaar.
In the next sections we will consider other cases, where the underlying function φ

may be a different function, not necessarily piecewise constant. It will turn out that
much of the analysis we have done makes sense for other functions φ as well, giving
rise to other structures which we also will refer to as wavelets. The wavelet resulting
from piecewise constant functions is thus simply one example out of many, and it is
commonly referred to as the Haar wavelet.

Let us round off this section with some important examples.
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Example 5.18. In some cases, the DWT can be computed by hand, keeping in mind
its definition as a change of coordinates. As an example, consider the simple vector
x of length 210 = 1024 defined by

xn =
{

1 for n < 512

0 for n ≥ 512,

and let us compute the 10-level DWT of this vector by first visualizing the func-
tion with these coordinates. Since m = 10 here, we should view x as coordinates
in the basis φ10 of a function f (t ) ∈ V10. This is f (t ) = ∑511

n=0φ10,n , and since φ10,n

is supported on [2−10n,2−10(n + 1)), the support of f has width 512 × 2−10 = 1/2
(512 translates, each with width 2−10). Moreover, since φ10,n is 210/2 = 25 = 32 on
[2−10n,2−10(n +1)) and 0 elsewhere, it is clear that

f (t ) =
{

32 for 0 ≤ t < 1/2

0 for 0t ≥ 1/2.

This is by definition a function in V1: f must in fact be a multiplum of φ1,0, since
this also is supported on [0,1/2). We can thus write f (t ) = cφ1,0(t ) for some c. We
can find c by setting t = 0. This gives that 32 = 21/2c (since f (0) = 32, φ1,0(0) = 21/2),
so that c = 32/

p
2. This means that f (t ) = 32p

2
φ1,0(t ), f is in V1, and with coordinates

(32/
p

2,0, . . . ,0) inφ1.
When we run a 10-level DWT we make a change of coordinates from φ10 to

(φ0,ψ0, · · · ,ψ9). The first 9 levels give us the coordinates in (φ1,ψ1,ψ2, . . . ,ψ9), and
these are (32/

p
2,0, . . . ,0) from what we showed. It remains thus only to perform the

last level in the DWT, i.e. perform the change of coordinates from φ1 to (φ0,ψ0).
Since φ1,0 = 1p

2
(φ0,0 +ψ0,0), so that we get

f (t ) = 32p
2
φ1,0(t ) = 32p

2

1p
2

(φ0,0 +ψ0,0) = 16φ0,0 +16ψ0,0.

From this we see that the coordinate vector of f in (φ0,ψ0, · · · ,ψ9), i.e. the 10-level
DWT of x , is (16,16,0,0, . . . ,0). Note that here V0 and W0 are both 1-dimensional,
since V10 was assumed to be of dimension 210 (in particular, N = 1).

It is straightforward to verify what we found using the algorithm above:

% Simple DWT example
DWTImpl([ones(512,1); zeros(512,1)], 10, @DWTKernelHaar);

The reason why the method from this example worked was that the vector we started
with had a simple representation in the wavelet basis, actually it equaled the coordi-
nates of a basis function in φ1. Usually this is not the case, and our only possibility
then is to run the DWT on a computer. ♣
Example 5.19. When you run a DWT you may be led to believe that coefficients
from the lower order resolution spaces may correspond to lower frequencies. This
sounds reasonable, since the functions φ(2m t −n) ∈ Vm change more quickly than
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(b) The first order DWT coefficients

Figure 5.9: The sound samples and the DWT coefficients of the sound
castanets.wav.

φ(t −n) ∈ V0. However, the functions φm,n do not correspond to pure tones in the
setting of wavelets. But we can still listen to sound from the different resolution
spaces. In Exercise 11 you will be asked to implement a function which runs an
m-level DWT on the first samples of the sound file castanets.wav, extracts the
coefficients from the lower order resolution spaces or the detail spaces, transforms
the values back to sound samples with the IDWT, and plays the result. When you
listen to the result the sound is clearly recognizable for lower values of m, but is
degraded for higher values of m. The explanation is that too much of the detail is
omitted when you use a higher m. To be more precise, when listening to the sound
by throwing away everything from the detail spaces W0,W1, . . . ,Wm−1, we are left
with a 2−m share of the data. Note that this procedure is mathematically not the
same as setting some DFT coefficients to zero, since the DWT does not operate on
pure tones.

It is of interest to plot the samples of our test audio file castanets.wav, and
compare it with the first order DWT coefficients of the same samples. This is shown
in Figure 5.9. The first half part of the plot represents the low-resolution approxima-
tion of the sound, the second half part represents the detail/error. We see that the
detail is quite significant in this case. This means that the first order wavelet approx-
imation does not give a very good approximation to the sound. In the exercises we
will experiment more on this.

It is also interesting to plot only the detail/error in the sound, for different reso-
lutions. For this, we must perform a DWT so that we get a representation in the basis
(φ0,ψ0,ψ1, . . . ,ψm−1), set the coefficicents from V0 to zero, and transform back with
the IDWT. In figure 5.10 the error is shown for the test audio file castanets.wav for
m = 1, m = 2. This clearly shows that the error is larger when two levels of the DWT
are performed, as one would suspect. It is also seen that the error is larger in the part
of the file where there are bigger variations. This also sounds reasonable. ♣

The previous example illustrates that wavelets as well may be used to perform
operations on sound. As we will see later, however, our main application for wavelets
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(b) m = 2

Figure 5.10: The error (i.e. the contribution from W0 ⊕W1 ⊕·· ·⊕Wm−1) in the sound
file castanets.wav, for different values of m.

will be images, where they have found a more important role than for sound. Images
typically display variations which are less abrupt than the ones found in sound. Just
as the functions above had smaller errors in the corresponding resolution spaces
than the sound had, images are thus more suited for for use with wavelets. The
main idea behind why wavelets are so useful comes from the fact that the detail, i.e.,
wavelet coefficients corresponding to the spaces Wk , are often very small. After a
DWT one is therefore often left with a couple of significant coefficients, while most
of the coefficients are small. The approximation from V0 can be viewed as a good
approximation, even though it contains much less information. This gives another
reason why wavelets are popular for images: Detailed images can be very large, but
when they are downloaded to a web browser, the browser can very early show a low-
resolution of the image, while waiting for the rest of the details in the image to be
downloaded. When we later look at how wavelets are applied to images, we will
need to handle one final hurdle, namely that images are two-dimensional.
Example 5.20. Above we plotted the DWT coefficients of a sound, as well as the de-
tail/error. We can also experiment with samples generated from a mathematical
function. Figure 5.11 plots the error for different functions, with N = 1024. In these
cases, we see that we require large m before the detail/error becomes significant.
We see also that there is no error for the square wave. The reason is that the square
wave is a piecewise constant function, so that it can be represented exactly by the
φ-functions. For the other functions, however, this is not the case, so we here get an
error. ♣

Above we used the functions DWTImpl, IDWTImpl to plot the error. For the func-
tions we plotted in the previous example it is also possible to compute the wavelet
coefficients, which we previously have denoted by wm,n , exactly. You will be asked to
do this in exercises 14 and 15. The following example shows the general procedure
which can be used for this:
Example 5.21. Let us consider the function f (t ) = 1− t/N . This function decreases
linearly from 1 to 0 on [0, N ], so that it is not piecewise constant, and does not lie in
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(a) A square wave
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(b) f (t ) = 1−2|1/2− t/N |
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(c) f (t ) = 1/2+cos(2πt/N )/2

Figure 5.11: The error (i.e. the contribution from W0 ⊕W1 ⊕·· ·⊕Wm−1) for N = 1024
for different functions f (t ), for different values of m.

any of the spaces Vm . We can instead consider projVm
f ∈Vm , and apply the DWT to

this. Let us compute theψm-coordinates wm,n of projVm
f in the orthonormal basis

(φ0,ψ0,ψ1, . . . ,ψm−1). The orthogonal decomposition theorem says that

wm,n = 〈 f ,ψm,n〉 =
∫ N

0
f (t )ψm,n(t )d t =

∫ N

0
(1− t/N )ψm,n(t )d t .

Using the definition of ψm,n we see that this can also be written as

2m/2
∫ N

0
(1− t/N )ψ(2m t −n)d t = 2m/2

(∫ N

0
ψ(2m t −n)d t −

∫ N

0

t

N
ψ(2m t −n)d t

)
.

Using Observation 5.14 we get that
∫ N

0 ψ(2m t −n)d t = 0, so that the first term above
vanishes. Moreover,ψm,n is nonzero only on [2−mn,2−m(n+1)), and is 1 on [2−mn,2−m(n+
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1/2)), and −1 on [2−m(n +1/2),2−m(n +1)). We therefore get

wm,n =−2m/2
(∫ 2−m (n+1/2)

2−m n

t

N
d t −

∫ 2−m (n+1)

2−m (n+1/2)

t

N
d t

)

=−2m/2

([
t 2

2N

]2−m (n+1/2)

2−m n
−

[
t 2

2N

]2−m (n+1)

2−m (n+1/2)

)

=−2m/2
((

2−2m(n +1/2)2

2N
− 2−2mn2

2N

)
−

(
2−2m(n +1)2

2N
− 2−2m(n +1/2)2

2N

))
=−2m/2

(
−2−2mn2

2N
+ 2−2m(n +1/2)2

N
− 2−2m(n +1)2

2N

)
=−2−3m/2

2N

(−n2 +2(n +1/2)2 − (n +1)2)= 1

N 22+3m/2
.

We see in particular that wm,n → 0 when m →∞. Also, all coordinates were equal,
i.e. wm,0 = wm,1 = wm,2 = ·· · . It is not too hard to convince oneself that this equality
has to do with the fact that f is linear. We see also that there were a lot of compu-
tations even in this very simple example. For most functions we therefore usually
do not compute wm,n symbolically, but instead run implementations like DWTImpl,
IDWTImpl on a computer. ♣

What you should have learnt in this section

Definition of the m-level Discrete Wavelet Transform. Implementation of the Haar
wavelet transform and its inverse. Experimentation with wavelets on sound.

Exercises for Section 5.3

1. Write a function IDWTKernelHaar which uses the formulas (5.24) to implement
the IDWT, similarly to how the function DWTKernelHaar implemented the DWT us-
ing the formulas (5.25).

2. Generalize exercise 4 to the projections from Vm+1 onto Vm amd Wm .

3. Show that f (t ) ∈Vm if and only if g (t ) = f (2t ) ∈Vm+1.

4. Let C1,C2 . . . ,Cn be independent vector spaces, and let Ti : Ci → Ci be linear
transformations. The direct sum of T1, T2,. . . ,Tn , written as T1 ⊕T2 ⊕ . . .⊕Tn , de-
notes the linear transformation from C1 ⊕C2 ⊕·· ·⊕Cn to itself defined by

T1 ⊕T2 ⊕ . . .⊕Tn(c 1 +c 2 +·· ·+c n) = T1(c 1)+T2(c 2)+·· ·+Tn(c n)

when c 1 ∈C1, c 2 ∈C2, . . . , c n ∈Cn . Similarly, when A1, A2, . . . , An are square matrices,
A1 ⊕ A2 ⊕·· ·⊕ An is defined as the block matrix where the blocks along the diagonal
are A1, A2, . . . , An , and where all other blocks are 0. Show that, if Bi is a basis for Ci

then
[T1 ⊕T2 ⊕ . . .⊕Tn](B1,B2,...,Bn ) = [T1]B1 ⊕ [T2]B2 ⊕·· ·⊕ [Tn]Bn ,

Here two new concepts are used: a direct sum of matrices, and a direct sum of linear
transformations.
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(b) The DWT of x2

Figure 5.12: 2 vectors which seem equal, but where the DWT’s are very different

5. Assume that T1 and T2 are matrices, and that the eigenvalues of T1 are equal to
those of T2. What are the eigenvalues of T1 ⊕T2? Can you express the eigenvectors
of T1 ⊕T2 in terms of those of T1 and T2?

6. Assume that A and B are square matrices which are invertible. Show that A ⊕B
is invertible, and that (A⊕B)−1 = A−1 ⊕B−1.

7. Let A,B ,C ,D be square matrices of the same dimensions. Show that (A⊕B)(C ⊕
D) = (AC )⊕ (BD).

8. Assume that you run an m-level DWT on a vector of length r . What value of N
does this correspond to? Note that an m-level DWT performs a change of coordi-
nates fromφm to (φ0,ψ0,ψ1, . . . ,ψm−2,ψm−1).

9. In Figure 5.12 we have plotted the DWT’s of two vectors x1 and x2. In both vec-
tors we have 16 ones followed by 16 zeros, and this pattern repeats cyclically so that
the length of both vectors is 256. The only difference is that the second vector is
obtained by delaying the first vector with one element. You see that the two DWT’s
are very different: For the first vector we see that there is much detail present (the
second part of the plot), while for the second vector there is no detail present. At-
tempt to explain why this is the case. Based on your answer, also attempt to explain
what can happen if you change the point of discontinuity for the piecewise constant
function in Figure 5.20(a) to something else.

10. Run a 2-level DWT on the first 217 sound samples of the audio filecastanets.wav,
and plot the values of the resulting DWT-coefficients. Compare the values of the co-
efficients from V0 with those from W0 and W1.

11. In this exercise we will experiment with applying an m-level DWT to a sound
file.

a. Write a function playDWT which takes m, a DWT kernel, an IDWT kernel,
and a variable lowres as input, and

1. reads the audio file castanets.wav,
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2. performs an m-level DWT to the first 217 sound samples of x using the
function DWTImpl with the given DWT kernel,

3. sets all wavelet coefficients representing detail to zero if lowres is true
(i.e. keep only the coordinates fromφ0 in the basis (φ0,ψ0,ψ1, . . . ,ψm−2,ψm−1)),

4. sets all low-resolution coefficients to seros if lowres is false (i.e. zero
out the coordinates fromφ0 and keep the others),

5. performs an IDWT on the resulting coefficients using the functionIDWTImpl
with the given IDWT kernel,

6. plays the resulting sound.

b. Run the function playDWTwith DWTKernelHaar and IDWTKernelHaar as
inputs, and for different values of m, when the low-resolution approximation
is chosen. For which m can you hear that the sound gets degraded? How does
it get degraded? Compare with what you heard through the function playDFT
in Example 2.30, where you performed a DFT on the sound sample instead,
and set some of the DFT coefficients to zero.

c. Do the sound samples returned by playDWT lie in [−1,1]?

12. Attempt to construct a (nonzero) sound where the function playDWT form the
previous exercise does not change the sound for m = 1,2.

13. Repeat the listening experiment from Exercise 11, but this time instead keep
only wavelet coefficients from the detail spaces W0,W1, . . .. What kind of sound do
you hear? Can you recognize the original sound in what you hear?

14. Compute the wavelet detail coefficients analytically for the functions in Exam-
ple 5.20, i.e. compute the quantities wm,n = ∫ N

0 f (t )ψm,n(t )d t similarly to how this
was done in Example 5.21.

15. Compute the wavelet detail coefficients analytically for the functions f (t ) =( t
N

)k
, i.e. compute the quantities wm,n = ∫ N

0

( t
N

)k
ψm,n(t )d t similarly to how this

was done in Example 5.21. How do these compare with the coefficients from the
Exercise 14?

16. Suppose that we have the vector x with length 210 = 1024, defined by xn = 1 for
n even, xn = −1 for n odd. What will be the result if you run a 10-level DWT on x?
Use the function DWTImpl to verify what you have found.
Hint: We defined ψ by ψ(t ) = (φ1,0(t )−φ1,1(t ))/

p
2. From this connection it follows

thatψ9,n = (φ10,2n −φ10,2n+1)/
p

2, and thus φ10,2n −φ10,2n+1 =
p

2ψ9,n . Try to couple
this identity with the alternating sign you see in x .

17. Use the results from exercise 8 in Section 5.2 to rewrite the implementations
DWTKernelHaar and IDWTKernelHaar so that they also work in the case when N is
odd.

18. Show that the coordinates in φm after an in-place m-level DWT end up at in-
dices k2m , k = 0,1,2, . . .. Show similarly that the coordinates inψm after an in-place
m-level DWT end up at indices 2m−1 +k2m , k = 0,1,2, . . .. Find these indices in the
code for the function reorganize_coefficients.
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(b) The two functions φ(t ) and φ(t −3).

Figure 5.13: Some piecewise linear functions.

5.4 A wavelet based on piecewise linear functions

Unfortutately, piecewise constant functions are too simple to provide good approxi-
mations. In this section we are going to extend the construction of wavelets to piece-
wise linear functions. The advantage is that piecewise linear functions are better for
approximating smooth functions and data than piecewise constants, which should
translate into smaller components (errors) in the detail spaces in many practical sit-
uations. As an example, this would be useful if we are interested in compression. In
this new setting it turns out that we loose the orthonormality we had for the Haar
wavelet. On the other hand, we will see that the new scaling functions and mother
wavelets are symmetric functions. We will later see that this implies that the corre-
sponding DWT and IDWT have simple implementations with higher precision. Our
experience from deriving Haar wavelets will guide us in the construction of piece-
wise linear wavelets. The first task is to define the new resolution spaces.

Definition 5.22 (Resolution spaces of piecewise linear functions). The space
Vm is the subspace of continuous functions on R which are periodic with period
N , and linear on each subinterval of the form [n2−m , (n +1)2−m).

Any f ∈ Vm is uniquely determined by its values on [0, N ). Figure 5.13(a) shows
an example of a piecewise linear function in V0 on the interval [0,10]. We note that
a piecewise linear function in V0 is completely determined by its value at the inte-
gers, so the functions that are 1 at one integer and 0 at all others are particularly
simple and therefore interesting, see Figure 5.13(b). These simple functions are all
translates of each other and can therefore be built from one scaling function, as is
required for a multiresolution analysis.
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Lemma 5.23. Let the function φ be defined by

φ(t ) =
{

1−|t |, if −1 ≤ t ≤ 1;

0, otherwise;
(5.26)

and for any m ≥ 0 set

φm,n(t ) = 2m/2φ(2m t −n) for n = 0, 1, . . . , 2m N −1,

andφm = {φm,n}2m N−1
n=0 . φm is a basis for Vm , andφ0,n(t ) is the function in V0 with

smallest support that is nonzero at t = n.

Proof: The proof is similar for all the resolution spaces, so it is sufficient to con-
sider the proof in the case of V0. The function φ is clearly linear between each pair
of neighbouring integers, and it is also easy to check that it is continuous. Its restric-
tion to [0, N ] therefore lies in V0. And as we noted aboveφ0,n(t ) is 0 at all the integers
except at t = n where its value is 1.

A general function f in V0 is completely determined by its values at the integers
in the interval [0, N ] since all straight line segments between neighbouring integers
are then fixed. Note that we can also write f as

f (t ) =
N−1∑
n=0

f (n)φ0,n(t ) (5.27)

since this function agrees with f at the integers in the interval [0, N ] and is linear on
each subinterval between two neighbouring integers. This means that V0 is spanned
by the functions {φ0,n}N−1

n=0 . On the other hand, if f is identically 0, all the coefficients
in (5.27) are also 0, so {φ0,n}N−1

n=0 are linearly independent and therefore a basis for V0.
Suppose that the function g ∈ V0 has smaller support than φ0,n , but is nonzero

at t = n. Then g must be identically zero either on [n −1,n) or on [n,n +1], since a
straight line segment cannot be zero on just a part of an interval between integers.
But then g cannot be continuous, which contradicts the fact the it lies in V0.

The functionφ and its translates and dilates are often referred to as hat functions
for obvious reasons. Note that the new function φ is nonzero for small negative x-
values, contrary to theφwe defined in Chapter 5. If we plotted the function on [0, N ),
we would see the nonzero parts at the beginning and end of this interval, due to the
period N , but we will mostly plot on an interval around zero, since such an interval
captures the entire support of the function. A formula like (5.27) is also valid for
functions in Vm :

Lemma 5.24. A function f ∈Vm may be written as

f (t ) =
2m N−1∑

n=0
f (n/2m)2−m/2φm,n(t ). (5.28)
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Figure 5.14: Howφ(t ) can be decomposed as a linear combination ofφ1,−1,φ1,0, and
φ1,1.

An essential property also here is that the spaces are nested.

Lemma 5.25. The piecewise linear resolution spaces are nested,

V0 ⊂V1 ⊂ ·· · ⊂Vm ⊂ ·· · .

Proof: We only need to prove that V0 ⊂ V1 since the other inclusions are simi-
lar. But this is immediate since any function in V0 is continuous, and linear on any
subinterval in the form [n/2,(n +1)/2).

In the piecewise constant case, we saw in Lemma 5.5 that the scaling functions
were automatically orthogonal since their supports did not overlap. This is not the
case in the linear case, but we could orthogonalise the basis φm with the Gram-
Schmidt process from linear algebra. The disadvantage is that we lose the nice local
behaviour of the scaling functions and end up with basis functions that are nonzero
over all of [0, N ]. And for most applications, orthogonality is not essential; we just
need a basis. The next step in the derivation of wavelets is to find formulas that let
us express a function given in the basisφ0 for V0 in terms of the basisφ1 for V1.

Lemma 5.26. The functions φ0,n satisfy the relation

φ0,n = 1p
2

(
1

2
φ1,2n−1 +φ1,2n + 1

2
φ1,2n+1

)
. (5.29)

Proof: Since φ0,n is in V0 it may be expressed in the basisφ1 with formula (5.28),

φ0,n(t ) = 2−1/2
2N−1∑
k=0

φ0,n(k/2)φ1,k (t ).
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The relation (5.29) now follows since

φ0,n
(
(2n −1)/2

)=φ0,n
(
(2n +1)/2

)= 1/2, φ0,n(2n/2) = 1,

and φ0,n(k/2) = 0 for all other values of k.
The relationship given by Equation 5.29 is shown in Figure 5.14.

5.4.1 Detail spaces and wavelets

The next step in our derivation of wavelets for piecewise linear functions is the defi-
nition of the detail spaces. We need to determine a space W0 that is linearly indepen-
dent from V0, and so that V1 = V0 ⊕W0. In the case of piecewise constant functions
we started with a function g1 in V1, computed the least squares approximation g0

in V0, and then defined the error function e0 = g1 − g0, with e0 ∈ W0 and W0 as the
orthogonal complement of V0 in V1.

It turns out that this strategy is less appealing in the case of piecewise linear
functions. The reason is that the functions φ0,n are not orthogonal anymore (see
Exercise 1). Due to this we have no simple, orthogonal basis for the set of piecewise
linear functions, so that the orthogonal decomposition theorem fails to give us the
projection onto V0 in a simple way. It is therefore no reason to use the orthogonal
complement of V0 in V1 as our error space, since it is hard to write a piecewise lin-
ear function as a sum of two other piecewise linear functions which are orthogonal.
Instead of using projections to find low-resolution approximations, and orthogonal
complements to find error functions, we will attempt the following simple approxi-
mation method:

Definition 5.27. Let g1 be a function in V1 given by

g1 =
2N−1∑
n=0

c1,nφ1,n . (5.30)

The approximation g0 = P (g1) in V0 is defined as the unique function in V0 which
has the same values as g1 at the integers, i.e.

g0(n) = g1(n), n = 0, 1, . . . , N −1. (5.31)

It is easy to show that P (g1) actually is different from the projection of g1 onto
V0: If g1 = φ1,1, then g1 is zero at the integers, and then clearly P (g1) = 0. But
in Exercise 2 you will be asked to compute the projection onto V0 using different
means than the orthogonal decomposition theorem, and the result will be seen to
be nonzero. It is also very easy to see that the coordinates of g0 inφ0 can be obtained
by dropping every second coordinate of g0 in φ1. To be more precise, the following
holds:
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Lemma 5.28. We have that

P (φ1,n) =
{p

2φ0,n/2, if n is an even integer;

0, otherwise.

Once this approximation method is determined, it is straightforward to deter-
mine the detail space as the space of error functions.

Lemma 5.29. Define

W0 = { f ∈V1 | f (n) = 0, for n = 0, 1, . . . , N −1},

and

ψ(t ) = 1p
2
φ1,1(t ) ψm,n(t ) = 2m/2ψ(2m t −n). (5.32)

Suppose that g1 ∈V1 and that g0 = P (g1). Then

1. the error e0 = g1 − g0 lies in W0,

2. ψ= {ψ0,n}N−1
n=0 is a basis for W0.

3. V0 and W0 are linearly independent, and V1 =V0 ⊕W0.

Proof: Since g0(n) = g1(n) for all integers n, e0(n) = (g1 − g0)(n) = 0, so that e0 ∈
W0. This proves the first statement.

For the second statement, note first that

ψ0,n(t ) =ψ(t −n) = 1p
2
φ1,1(t −n) =φ(2(t −n)−1) =φ(2t − (2n +1)) = 1p

2
φ1,2n+1(t ).

(5.33)

ψ0 is thus a linearly independent set, since it corresponds to a subset of φ1. Since
φ1,2n+1 is nonzero only on (n,n+1), it follows that all ofψ0 lies in W0. Conversely, if
f ∈W0, we have that

f (t ) = 2−1/2
2N−1∑
n=0

f (k/2)φ1,n(t ) = 2−1/2
∑

n odd
f (k/2)φ1,n(t )

= 2−1/2
N−1∑
n=0

f (n +1/2)φ1,2n+1(t ) =
N−1∑
n=0

f (n +1/2)ψ0,n(t ),

so thatψ0 spans W0.
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Condiser finally a linear combination fromφ0 andψ0 which gives zero:

N−1∑
n=0

anφ0,n +
N−1∑
n=0

bnψ0,n = 0.

If we evaluate this at t = k, we see that ψ0,n(k) = 0, φ0,n(k) = 0 when n 6= k, and
φ0,k (k) = 1. When we evaluate at k we thus get ak , which must be zero. If we then
evaluate at t = k +1/2 we get in a similar way that all bn = 0, and it follows that V0

and W0 are linearly independent. That V1 =V0⊕W0 follows from the fact that V1 has
dimension 2N , and V0 and W0 both have dimension N .

We can define Wm in a similar way for m > 0, and generalize the lemma to Wm .
We can thus state the following analog to Theorem 5.16 for writing gm ∈ Vm as a
sum of a low-resolution approximation gm−1 ∈Vm−1, and a detail/error component
em−1 ∈Wm−1.

Theorem 5.30. The space Vm can be decomposed as the direct sum Vm =Vm−1⊕
Wm−1 where

Wm−1 = { f ∈Vm | f (n/2m−1) = 0, for n = 0, 1, . . . , 2m−1N −1}.

Wm has the baseψm = {ψm,n}2m N−1
n=0 , and Vm has the two bases

φm = {φm,n}2m N−1
n=0 , and (φm−1,ψm−1) = (

{φm−1,n}2m−1N−1
n=0 , {ψm−1,n}2m−1N−1

n=0

)
.

With this result we can define the DWT and the IDWT with their stages as before,
but the matrices thesemselves are now different. For the IDWT (i.e. Pφ1←(φ0,ψ0)), the
columns in the matrix can be found from equations (5.29) and (5.33), i.e.

φ0,n = 1p
2

(
1

2
φ1,2n−1 +φ1,2n + 1

2
φ1,2n+1

)
ψ0,n = 1p

2
φ1,2n+1. (5.34)

For the DWT we can find the columns in the matrix by rewriting these equations to

1p
2
φ1,2n =φ0,n − 1

2
p

2
φ1,2n−1 − 1

2
p

2
φ1,2n+1

1p
2
φ1,2n+1 =ψ0,n ,

so that

φ1,2n =p
2φ0,n − 1

2
φ1,2n−1 − 1

2
φ1,2n+1 =−

p
2

2
ψ0,n−1 +

p
2φ0,n −

p
2

2
ψ0,n (5.35)

φ1,2n+1 =
p

2ψ0,n . (5.36)
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Figure 5.15: The error (i.e. the contribution from W0 ⊕W1 ⊕·· ·⊕Wm−1) in the sound
file castanets.wav, for different values of m.

Example 5.31. Later we will write algorithms which performs the DWT/IDWT for
the piecewise linear wavelet, similarly to how we implemented the Haar wavelet
transformation in the previous chapter. This gives us new kernel transformations,
which we will call DWTKernelpwl0, IDWTKernelpwl0 (The 0 stands for 0 vanishing
moments. We will define vanishing moments later). Using these new kernels, let us
plot the detail/error in the test audio file castanets.wav for different resolutions,
as we did in Example 5.19. The result is shown in Figure 5.15. When comparing with
Figure 5.10 we see much of the same, but it seems here that the error is bigger than
before. In the next section we will try to explain why this is the case, and construct
another wavelet based on piecewise linear functions which remedies this. ♣
Example 5.32. Let us also repeat Exercise 5.20, where we plotted the detail/error at
different resolutions, for the samples of a mathematical function. Figure 5.16 shows
the new plot. With the square wave we see now that there is an error. The reason
is that a piecewise constant function can not be represented exactly by piecewise
linear functions, due to discontinuity. For the second function we see that there is
no error. The reason is that this function is piecewise linear, so there is no error when
we represent the function from the space V0. With the third function, hoewever, we
see an error. ♣

What you should have learnt in this section

Definition of scaling function, mother wavelet, resolution spaces, and detail spaces
for the wavelet of piecewise linear functions.

Exercises for Section 5.4

1. Show that, for f ∈V0 we have that [ f ]φ0
= ( f (0), f (1), . . . , f (N −1)). This general-

izes the result for piecewise constant functions.

2. Show that the pojection of φ1,1 onto V0 is ..
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(a) A square wave
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(b) f (t ) = 1−2|1/2− t/N |
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(c) f (t ) = 1/2+cos(2πt/N )/2

Figure 5.16: The error (i.e. the contribution from W0 ⊕W1 ⊕·· ·⊕Wm−1) for N = 1024
for different functions f (t ), for different values of m.

3. Show that

〈φ0,n ,φ0,n〉 = 2

3
〈φ0,n ,φ0,n±1〉 = 1

6
〈φ0,n ,φ0,n±k〉 = 0 for k > 1.

As a consequence, the {φ0,n}n are neither orthogonal, nor have norm 1.

4. The convolution of two functions defined on (−∞,∞) is defined by

( f ∗ g )(x) =
∫ ∞

−∞
f (t )g (x − t )d t .

Show that we can obtain the piecewise linear φ we have defined as φ = χ[−1/2,1/2) ∗
χ[−1/2,1/2) (recall that χ[−1/2,1/2) is the function which is 1 on [−1/2,1/2) and 0 else-
where). This gives us a nice connection between the piecewise constant scaling
function (which is similar to χ[−1/2,1/2)) and the piecewise linear scaling function
in terms of convolution.

188



5.5 Alternative wavelet based on piecewise linear func-
tions

For the scaling function used for piecewise linear functions, {φ(t −n)}0≤n<N were
not orthogonal anymore, contrary to the case for piecewise constant functions. We
were still able to construct what we could call resolution spaces and detail spaces.
We also mentioned that having many vanishing moments is desirable for a mother
wavelet, and that the scaling function used for piecewise constant functions had one
vanishing moment. It is easily checked, however, that the mother wavelet we now
introduced for piecewise linear functions (i.e. ψ(t ) = 1p

2
φ1,1(t )) has no vanishing

moments. Therefore, this is not a very good choice of mother wavelet. We will at-
tempt the following adjustment strategy to construct an alternative mother wavelet
ψ̂ which has two vanishing moments, i.e. one more than the Haar wavelet.

Idea 5.33. Adjust the wavelet construction in Theorem 5.30 to

ψ̂=ψ−αφ0,0 −βφ0,1 (5.37)

and choose α,β so that ∫ N

0
ψ̂(t )d t =

∫ N

0
tψ̂(t )d t = 0, (5.38)

and defineψm = {ψ̂m,n}N 2m−1
n=0 , and Wm as the space spanned byψm .

We thus have two free variables α,β in Equation (5.37), to enforce the two con-
ditions in Equation (5.38). In Exercise 1 you are taken through the details of solving
this as two linear equations in the two unknowns α and β, and this gives the follow-
ing result:

Lemma 5.34. The function

ψ̂(t ) =ψ(t )− 1

4

(
φ0,0(t )+φ0,1(t )

)
(5.39)

satisfies the conditions (5.38).

Using Equation (5.29), which stated that

φ0,n(t ) = 1p
2

(
1

2
φ1,2n−1 +φ1,2n + 1

2
φ1,2n+1

)
, (5.40)
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Figure 5.17: The function ψ̂ we constructed as an alternative wavelet for piecewise
linear functions.

we get

ψ̂0,n(t ) =ψ0,n(t )− 1

4

(
φ0,n(t )+φ0,n+1(t )

)
= 1p

2
φ1,2n+1(t )− 1

4

1p
2

(
1

2
φ1,2n−1 +φ1,2n + 1

2
φ1,2n+1

)
(5.41)

− 1

4

1p
2

(
1

2
φ1,2n+1 +φ1,2n+2 + 1

2
φ1,2n+3

)
= 1p

2

(
−1

8
φ1,2n−1 − 1

4
φ1,2n + 3

4
φ1,2n+1 − 1

4
φ1,2n+2 − 1

8
φ1,2n+3

)
(5.42)

Note that what we did here is equivalent to finding the coordinates of ψ̂ in the basis
φ1: Equation (5.39) says that

[ψ̂](φ0,ψ0) = (−1/4,−1/4,0, . . . ,0)⊕ (1,0, . . . ,0). (5.43)

Since the IDWT is the change of coordinates from (φ0,ψ0) toφ1, we could also have
computed [ψ̂]φ1

by taking the IDWT of (−1/4,−1/4,0, . . . ,0)⊕ (1,0, . . . ,0). In the next
section we will consider more general implementations of the DWT and the IDWT,
which we thus can use instead of performing the computation above.

In summary we have

φ0,n(t ) = 1p
2

(
1

2
φ1,2n−1 +φ1,2n + 1

2
φ1,2n+1)

ψ̂0,n(t ) = 1p
2

(
−1

8
φ1,2n−1 − 1

4
φ1,2n + 3

4
φ1,2n+1 − 1

4
φ1,2n+2 − 1

8
φ1,2n+3

)
, (5.44)

which gives us the change of coordinate matrix Pφ1←(φ0,ψ0). The new function ψ̂ is
plotted in Figure 5.17. We see that ψ̂ has support (−1,2), and consist of four linear
segments glued together. This is in contrast with the oldψ, which was simpler in that
it had the shorther support (0,1), and consisted of only two linear segments glued
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Figure 5.18: The error (i.e. the contribution from W0 ⊕W1 ⊕·· ·⊕Wm−1) in the sound
file castanets.wav, for different values of m.

together. It may therefore seem surprising that ψ̂ is better suited for approximating
functions thanψ. This is indeed a more complex fact, which may not be deduced by
simply looking at plots of the functions.
Example 5.35. Also in this case we will see later how to write kernel transforma-
tions for the alternative piecewise wavelet. We will call these DWTKernelpwl2 and
IDWTKernelpwl2 (2 stands for 2 vanishing moments). Using these we can plot the
detail/error in the test audio file castanets.wav for different resolutions for our
alternative wavelet, as we did in Example 5.19. The result is shown in Figure 5.18.
Again, when comparing with Figure 5.10 we see much of the same. It is difficult
to see an improvement from this figure. However, this figure also clearly shows a
smaller error than the wavelet of the preceding section. A partial explanation is that
the wavelet we now have constructed has two vanishing moments, while the previ-
ous one had not. ♣
Example 5.36. Let us also repeat Exercise 5.20 for our alternative wavelet, where we
plotted the detail/error at different resolutions, for the samples of a mathematical
function. Figure 5.19 shows the new plot. Again for the square wave there is an
error, which seems to be slightly lower than for the previous wavelet. For the second
function we see that there is no error, as before. The reason is the same as before,
since the function is piecewise linear. With the third function there is an error. The
error seems to be slightly lower than for the previous wavelet, which fits well with
tha fact that this new wavelet has a bigger number of vanishing moments. ♣
Example 5.37. In Exercise 11 we implemented a functionplayDWTwhich could play
the low resolution part in a sound, and we tested this for the Haar wavelet. Let us
now also test this for the two piecewise linear wavelets we have constructed, and
the new wavelet kernels we have implemented. Code which plays the low resolution
part for all three wavelet kernels can look as follows:
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(b) f (t ) = 1−2|1/2− t/N |
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(c) f (t ) = 1/2+cos(2πt/N )/2

Figure 5.19: The error (i.e. the contribution from W0 ⊕W1 ⊕·· ·⊕Wm−1) for N = 1024
for different functions f (t ), for different values of m.

% Play lowres approx for the Haar wavelet
playDWT(m, @DWTKernelHaar, @IDWTKernelHaar, 1);

% Play lowres approx for the piecewise linear wavelet
playDWT(m, @DWTKernelpwl0, @IDWTKernelpwl0, 1);

% Play lowres approx for the alternative piecewise linear wavelet
playDWT(m, @DWTKernelpwl2, @IDWTKernelpwl2, 1);

The first call to playDWT plays the low-resolution part using the Haar wavelet. The
code then moves on to the two piecewise linear wavelets. We clearly hear different
sounds when we run this code for different m, so that the three wavelets act differ-
ently on the sound (if you want, you can here write a for-loop around the code,
running through different m). Perhaps the alternative piecewise wavelet gives a bit
better quality. ♣
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What you should have learnt in this section

How one alters the mother wavelet for piecewise linear functions, in order to add a
vanishing moment.

Exercises for Section 5.5

1. In this exercise we will show that there is a unique function on the form (5.37)
which has two vanishing moments.

a. Show that, when ψ̂ is defined by (5.37), we have that

ψ̂(t ) =



−αt −α for −1 ≤ t < 0

(2+α−β)t −α for 0 ≤ t < 1/2

(α−β−2)t −α+2 for 1/2 ≤ t < 1

βt −2β for 1 ≤ t < 2

0 for all other t

b. Show that∫ N

0
ψ̂(t )d t = 1

2
−α−β,

∫ N

0
tψ̂(t )d t = 1

4
−β.

c. Explain why there is a unique function on the form (5.37) which has two
vanishing moments, and that this function is given by Equation (5.39).

2. In the previous exercise we ended up with a lot of calculations to find α,β in
Equation (5.37). Let us try to make a program which does this for us, and which also
makes us able to generalize the result.

a. Define

ak =
∫ 1

−1
t k (1−|t |)d t , bk =

∫ 2

0
t k (1−|t −1|)d t , ek =

∫ 1

0
t k (1−2|t −1/2|)d t ,

for k ≥ 0. Explain why findingα,β so that we have two vanishing moments in
Equation 5.37 is equivalent to solving the following equation:(

a0 b0

a1 b1

)(
α

β

)
=

(
e0

e1

)
Write a program which sets up and solves this system of equations, and use
this program to verify the values for α,β we previously have found.
Hint: you can integrate functions in Matlab with the function quad. As an ex-
ample, the function φ(t ), which is nonzero only on [−1,1], can be integrated
as follows:

193



quad(@(t)t.^k.*(1-abs(t)),-1,1)

b. The procedure where we set up a matrix equation in a. allows for gener-
alization to more vanishing moments. Define

ψ̂=ψ0,0 −αφ0,0 −βφ0,1 −γφ0,−1 −δφ0,2. (5.45)

We would like to choose α,β,γ,δ so that we have 4 vanishing moments. De-
fine also

gk =
∫ 0

−2
t k (1−|t +1|)d t , dk =

∫ 3

1
t k (1−|t −2|)d t

for k ≥ 0. Show that α,β,γ,δ must solve the equation
a0 b0 g0 d0

a1 b1 g1 d1

a2 b2 g2 d2

a3 b3 g3 d3



α

β

γ

δ

=


e0

e1

e2

e3

 ,

and solve this with your computer.

c. Plot the function defined by (5.45), which you found in b.
Hint: If t is the vector of t-values, and you write

(t >= 0).*(t <= 1).*(1-2*abs(t-0.5))

you get the points φ1,1(t ).

d. Explain why the coordinate vector of ψ̂ in the basis (φ0,ψ0) is

[ψ̂](φ0,ψ0) = (−α,−β,−δ,0, . . . ,0−γ)⊕ (1,0, . . . ,0).

Hint: You can also compare with Equation (5.43) here. The placement of −γ
may seem a bit strange here, and has to with that φ0,−1 is not one of the basis
functions {φ0,n}N−1

n=0 . However, we have that φ0,−1 = φ0,N−1, i.e. φ(t + 1) =
φ(t − N + 1), since we always assume that the functions we work with have
period N .

e. Sketch a more general procedure than the one you found in b., which can
be used to find wavelet bases where we have even more vanishing moments.

3. Let φ(t ) be the function we used when we defined the Haar-wavelet.

a. Compute projV0
( f (t )), where f (t ) = t 2, and where f is defined on [0, N ).

b. Find constants α,β so that ψ̂(t ) =ψ(t )−αφ0,0(t )−βφ0,1(t ) has two van-
ishing moments, i.e. so that 〈ψ̂,1〉 = 0, and 〈ψ̂, t〉 = 0. Plot also the function ψ̂.
Hint: Start with computing the integrals

∫
ψ(t )d t ,

∫
tψ(t )d t ,

∫
φ0,0(t )d t ,

∫
φ0,1(t )d t ,

and
∫

tφ0,0(t )d t ,
∫

tφ0,1(t )d t .
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c. Express φ and ψ̂ with the help of functions from φ1, and use this to write
down the change of coordinate matrix from (φ0,ψ̂0) toφ1.

4. It is also possible to add more vanishing moments to the Haar wavelet. Define

ψ̂=ψ0,0 −a0φ0,0 −·· ·−ak−1φ0,k−1.

Define also cr,l =
∫ l+1

l t r d t , and er =
∫ 1

0 t rψ(t )d t .

a. Show that ψ̂ has k vanishing moments if and only if a0, . . . , ak−1 solves the
equation 

c0,0 c0,1 · · · c0,k−1

c1,0 c1,1 · · · c1,k−1
...

...
...

...
ck−1,0 ck−1,1 · · · ck−1,k−1




a0

ï¿¡a1
...

ak−1

=


e0

e1
...

ek−1

 (5.46)

b. Write a functionvanishingmomshaarwhich takes k as input, solves Equa-
tion 5.46, and returns the vector a = (a0, a1, . . . , ak−1).

5. Run the function playDWT for different m for the Haar wavelet, the piecewise
linear wavelet, and the alternative piecewise linear wavelet, but listen to the detail
components W0⊕W1⊕·· ·⊕Wm−1 instead. Describe the sounds you hear for different
m, and try to explain why the sound seems to get louder when you increase m.

5.6 Multiresolution analysis: A generalization

Let us summarize the properties of the spaces Vm . In both our examples we showed
that they were nested, i.e.

V0 ⊂V1 ⊂V2 ⊂ ·· · ⊂Vm ⊂ ·· · .

We also showed that continuous functions could be approximated arbitrarily well
from Vm , as long as m was chosen large enough. Moreover, the space V0 is closed
under all translates, at least if we view the functions in V0 as periodic with period N .
In the following we will always identify a function with this periodic extension, just
as we did in Fourier analysis. When performing this identification, we also saw that
f (t ) ∈Vm if and only if g (t ) = f (2t ) ∈Vm+1. We have therefore shown that the scaling
functions we have considered fit into the following general framework.

Definition 5.38 (Multiresolution analysis). A Multiresolution analysis, or MRA,
is a nested sequence of function spaces

V0 ⊂V1 ⊂V2 ⊂ ·· · ⊂Vm ⊂ ·· · , (5.47)

called resolution spaces, so that
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1. Any function can be approximated arbitrarily well from Vm , as long as m is
large enough,

2. f (t ) ∈V0 if and only if f (2m t ) ∈Vm ,

3. f (t ) ∈V0 if and only if f (t −n) ∈V0 for all n.

4. There is a function φ, called a scaling function, so that φ= {φ(t −n)}0≤n<N

is a basis for V0. .

Whenφ is an orthonormal basis we say that the MRA is orthonormal.

The wavelet of piecewise constant functions was an orthonormal MRA, while
the wavelets for piecewise linear functions were not. Although the definition above
states that any function can be approximated with MRA’s, in practice one needs to
restrict to certain functions: Certain pathological functions may be difficult to ap-
proximate. In the literature one typically requires that the function is in L2(R), and
also that the scaling function and the spaces Vm are in L2(R). MRA’s are much used,
and one can find a wide variety of functions φ, not only piecewise constant func-
tions, which give rise to MRA’s.

In the examples we have considered we also chose a mother wavelet. The term
wavelet is used in very general terms. However, the term mother wavelet is quite
concrete, and is what gives rise to the theory of wavelets. This was necessary in order
to efficiently decompose the gm ∈ Vm into a low resolution approximation gm−1 ∈
Vm−1, and a detail/error em−1 in a detail space we called Wm−1. We have freedom
in how we define these detail spaces, as well as how we define a mother wavelet
whose translates span the detail space (in general we choose a mother wavelet which
simplifies the computation of the decomposition gm = gm−1 +em−1, but we will see
later that it also is desirable to choose a ψ with other properties). Once we agree on
the detail spaces and the mother wavelet, we can perform a change of coordinates
to find detail and low resolution approximations. We thus have the following general
recipe.

Idea 5.39 (Recipe for constructing wavelets). In order to construct MRA’s which
are useful for practical purposes, we need to do the following:

1. Find a function φ which can serve as the scaling function for an MRA,

2. Find a function ψ so that ψ = {ψ(t −n)}0≤n<N and φ = {φ(t −n)}0≤n<N to-
gether form an orthonormal basis for V1. The function ψ is also called a
mother wavelet.

With V0 the space spanned byφ= {φ(t −n)}0≤n<N , and W0 the space spanned by
ψ= {ψ(t−n)}0≤n<N ,φ andψ should be chosen so that we easily can compute the
decomposition of g1 ∈V1 into g0+e0, where g0 ∈V0 and e0 ∈W0. If we can achieve
this, the Discrete Wavelet Transform is defined as the change of coordinates from
φ1 to (φ0,ψ0).
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More generally, if

f (t ) =∑
n

cm,nφm,n =∑
n

c0,nφ0,n + ∑
m′<m,n

wm′,nψm′,n ,

then the m-level DWT is defined by DWT(c m) = (c 0, w 0, . . . , w m−1). It is useful to in-
terpret m as frequency, n as time, and wm,n as the contribution at frequency m and
time n. In this sense, wavelets provide a time-frequency representation of signals.
This is what can make them more useful than Fourier analysis, which only provides
frequency representations.

While there are in general many possible choices of detail spaces, in the case of
an orthonormal wavelet we saw that it was natural to choose the detail space Wm−1

as the orthogonal complement of Vm−1 in Vm , and obtain the mother wavelet by
projecting the scaling function onto the detail space. Thus, for orthonormal MRA’s,
the low-resolution approximation and the detail can be obtained by computing pro-
jections, and the least squares approximation of f from Vm can be computed as

projVm
( f ) =∑

n
〈 f ,φm,n〉φm,n(t ).

5.6.1 Working with the samples of f instead of f

In the MRA-setting it helps to think about the continuous-time function f (t ) as the
model for an image, which is the object under study. f itself may not be in any Vm ,
however (this corresponds to that detail is present in the image for infinitely many
m), and increasing m corresponds to that we also include the detail we see when we
zoom in on the image. But how can we obtain useful approximations to f from Vm?
In case of an orthonormal MRA we can compute the least squares approximation as
above, but we then need to compute the integrals 〈 f ,φm,n〉, so that all function val-
ues are needed. However, as before we have only access to some samples f (2−mn),
0 ≤ n < 2m N . These are called pixel values in the context of images, so that we can
only hope to obtain a good approximation to f (m) (and thus f ) from the pixel values.
The following result explains how we can obtain this.

Theorem 5.40. If f is continuous, and φ has compact support, we have that, for
all t ,

f (t ) = lim
m→∞

2m N−1∑
n=0

2−m∫ N
0 φm,0(t )d t

f (n/2m)φm,n(t ).

Proof: We have that

2−m
2m N−1∑

n=0
φm,n =

2m N−1∑
n=0

2−mφm,0(t −2−mn).

We recognize this as a Riemann sum for the integral
∫ N

0 φm,0(t )d t . Therefore,

lim
m→∞

2m N−1∑
n=0

2−mφm,n =
∫ N

0
φm,0(t )d t .
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Also, finitely many n contribute in this sum since φ has compact support. We now
get that

2m N−1∑
n=0

2−m f (n/2m)φm,n(t ) = ∑
n so that 2−m n≈t

2−m f (n/2m)φm,n(t )

≈ ∑
n so that 2−m n≈t

2−m f (t )φm,n(t )

= f (t )
∑

n so that 2−m n≈t
2−mφm,n(t ) ≈ f (t )

∫ N

0
φm,0(t )d t .

where we have used the continuity of f and that

lim
m→∞

2m N−1∑
n=0

2−mφm,n =
∫ N

0
φm,0(t )d t .

The result follows. Note that here we have not used the requirement that {φ(t −n)}n

are orthogonal.

The coordinate vector x =
(

2−m∫ N
0 φm,0(t )d t

f (n/2m)

)2m N−1

n=0
in φm is therefore a can-

didate to an approximation of both f and f (m) from Vm , using only the pixel values.
Normally one drops the leading constant 2−m∫ N

0 φm,0(t )d t
, so that one simply considers

the sample values f (n/2m) as a coordinate vector inφm . This is used as the input to
the DWT.

5.6.2 Increasing the precision of the DWT

Even though the samples of f give a good approximation to f as above, the approx-
imation and f are still different, so that we obtain different output from the DWT. In
Section 7.1 we will argue that the output from the DWT is equivalent to sampling the
output from certain analog filters. We would like the difference in the output from
these analog filters to be as small as possible. If the functions φ,ψ are symmetric
around 0, we will also see that the analog filters are symmetric (a filter is symmetric
if and only if the convolution kernel is symmetric around 0), in which case we know
that such a high precision implementation is possible using the simple technique of
symmetric extension. Let us summarize this as the following idea.

Idea 5.41. If the functions φ,ψ in a wavelet are symmetric around 0, then we can
obtain an implementation of the DWT with higher precision when we consider
symmetric extensions of the input.

Unfortunately, the piecewise constant scaling function we encountered was not
symmetric. However, the piecewise linear scaling function was, and so are also
many other interesting scaling functions we will encounter later. For a symmetric
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Figure 5.20: A vector and its symmetric extension. Note that the period of the vector
is now 2N −2, while it was 2N for the vector shown in Figure 4.1.

function, denote as before the symmetric extension of the input f with f̆ . If the in-
put x to the DWT are the samples ( f (n/2m))2m N−1

n=0 , we create a vector x̆ representing

the samples of f̆ . It is clear that this vector should be

x̆ =
(
( f (n/2m))2m N−1

n=0 , lim
t→N−

f (t ), ( f ((2m N −n)/2m))2m N−1
n=1

)
.

In this vector there is symmetry around entry 2m N , so that the vector is determined
from the 2m N+1 first elements. Also the boundary is not duplicated, contrary to the
previous symmetric extension given by Definition 4.1. We are thus lead to define a
symmetric extension in the following way instead:

Definition 5.42 (Symmetric extension of a vector). By the symmetric extension
of x ∈RN , we mean x̆ ∈R2N−2 defined by

x̆k =
{

xk 0 ≤ k < N
x2N−2−k N ≤ k < 2N −3

(5.48)

With this notation, N −1 is the symmetry point in all symmetric extensions. This
is illustrated in Figure 5.20 From Chapter 4 it follows that symmetric filters preserve
the symmetry around N −1 when applied to such vectors. We can now define the
symmetric restriction Sr as before, with the definition of symmetric extension re-
placed with the above. We now have the following analog to Theorem 4.9. The proof
of this is left as an exercise.
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Theorem 5.43. With S =
(
S1 S2

S3 S4

)
∈ R2N−2 ×R2N−2 a symmetric filter, with S1 ∈

RN ×RN , S2 ∈RN ×RN−2, we have that Sr = S1 +
(
0 (S2) f 0

)
.

With the Haar wavelet we succeeded in finding a functionψwhich could be used
in the recipe above. Note, however, that there may be many other ways to define a
function ψ which can be used in the recipe. In the next chapter we will follow the
recipe in order to contruct other wavelets, and we will try to express which pairs of
functionφ,ψ are most interesting, and which resolution spaces are most interesting.

What you should have learnt in this section

Definition of a multiresolution analysis.

Exercises for Section 5.6

1. Prove Theorem 5.43. Use the proof of Theorem 4.9 as a guide.

2. In this exercise we will establish an orthonormal basis for the symmetric exten-
sions, as defined by Definition 5.42. This parallels Theorem 4.6.

a. Explain why, if x ∈ R2N−2 is a symmetric extension (according to defini-
tion 4.1), then (x̂)n = zne−πi n , where z is a real vectors which satisfies zn =
z2N−2−n

b. Show that {
e0,

{
1p
2

(e i +e2N−2−i )

}N−2

n=1
,eN−1

}
(5.49)

is an orthonormal basis for the vectors on the form x̂ with x ∈ R2N−2 a sym-
metric extension.

c. Show that

1p
2N −2

cos

(
2π

0

2N −2
k

)
{

1p
N −1

cos
(
2π

n

2N −2
k
)}N−2

n=1

1p
2N −2

cos

(
2π

N −1

2N −2
k

)
(5.50)

is an orthonormal basis for the symmetric extensions in R2N−2.

d. Assume that S is symmetric. Show that the vectors listed in (5.50) are
eigenvectors for Sr , when the vectors are viewed as vectors in RN , and that
they are linearly independent. This shows that Sr is diagonalizable.
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3. Let us explain how the matrix Sr can be diagonalized, similarly to how we previ-
ously diagonalized using the DCT. In Exercise 2 we showed that the vectors{

cos
(
2π

n

2N −2
k
)}N−1

n=0
(5.51)

inRN is a basis of eigenvectors for Sr when S is symmetric. Sr itself is not symmetric,
however, so that this basis can not possibly be orthogonal (S is symmetric if and only
if it is orthogonally digonalizable). However, when the vectors are viewed in R2N−2

we showed in Exercise 2.c an orthogonality statement which can be written as

2N−3∑
k=0

cos
(
2π

n1

2N −2
k
)

cos
(
2π

n2

2N −2
k
)
= (N −1)×


2 if n1 = n2 ∈ {0, N −1}

1 if n1 = n2 6∈ {0, N −1}

0 if n1 6= n2

.

(5.52)

a. Show that

(N −1)×


1 if n1 = n2 ∈ {0, N −1}
1
2 if n1 = n2 6∈ {0, N −1}

0 if n1 6= n2

= 1p
2

cos
(
2π

n1

2N −2
·0

) 1p
2

cos
(
2π

n2

2N −2
·0

)
+

N−2∑
k=1

cos
(
2π

n1

2N −2
k
)

cos
(
2π

n2

2N −2
k
)

+ 1p
2

cos
(
2π

n1

2N −2
(N −1)

) 1p
2

cos
(
2π

n2

2N −2
(N −1)

)
.

Hint: Use that cos x = cos(2π−x) to pair the summands k and 2N −2−k.

Now, define the vector d (I)
n as

dn,N

(
1p
2

cos
(
2π

n

2N −2
·0

)
,
{

cos
(
2π

n

2N −2
k
)}N−2

k=1
,

1p
2

cos
(
2π

n

2N −2
(N −1)

))
,

and define d (I)
0,N = d (I)

N−1,N = 1/
p

N −1, and d (I)
n,N = p

2/(N −1) when n > 1. The or-

thogonal N ×N matrix where the rows are d (I)
n is called the DCT-I, and we will de-

note it by D (I)
N . DCT-I is also much used, just as the DCT-II of Chapter 4. The main

difference from the previous cosine vectors is that 2N has been replaced by 2N −2.

b. Explain that the vectors d (I)
n are orthonormal, and that the matrix

√
2

N −1


1/
p

2 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1/

p
2


(
cos

(
2π n

2N−2 k
))


1/
p

2 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1/

p
2


is orthogonal.
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c. Explain from b. that
(
cos

(
2π n

2N−2 k
))−1

can be written as

2

N −1


1/2 0 · · · 0 0

0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1/2


(
cos

(
2π n

2N−2 k
))


1/2 0 · · · 0 0

0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1/2


With the expression we found in c., Sr can now be diagonalized as(

cos
(
2π n

2N−2 k
))

D
(
cos

(
2π n

2N−2 k
))−1

.

Summary

We started this chapter by motivating the theory of wavelets as a different function
approximation scheme, which solved some of the shortcomings of Fourier series.
While one approximates functions with trigonometric functions in Fourier theory,
with wavelets one instead approximates a function in several stages, where one at
each stage attempts to capture information at a given resolution, using a function
prototype. This prototype is localized in time, contrary to the Fourier basis func-
tions, and this makes the theory of wavelets suitable for time-frequency represen-
tations of signals. We used an example based on Google Earth™to illustrate that
the wavelet-based scheme can represent an image at different resolutions in a scal-
able way, so that passing from one resolution to another simply mounts to adding
some detail information to the lower resolution version of the image. This also made
wavelets useful for compression, since the images at different resolutions can serve
as compressed versions of the image.

We defined the simplest wavelet, the Haar wavelet, which is a function approxi-
mation scheme based on piecewise constant functions, and deduced its properties.
We defined the Discrete Wavelet Transform (DWT) as a change of coordinates cor-
responding to the function spaces we defined. This transform is the crucial object
to study when it comes to more general wavelets also, since it is the object which
makes wavelets useful for computation. In the following chapters, we will see that
reordering of the source and target bases of the DWT will aid in expressing connec-
tions between wavelets and filters, and in constructing optimized implementations
of the DWT.

We then defined another wavelet, which corresponded to a function approxi-
mation scheme based on piecewise linear functions, instead of piecewise constant
functions. There were several differences with the new wavelet when compared to
the previous one. First of all, the basis functions were not orthonormal, and we did
not attempt to make them orthonormal. The resolution spaces we noe defined were
not defined in terms of orthogonal bases, and we had some freedom on how we de-
fined the detail spaces, since they are not defined as orthogonal complements any-
more. Similarly, we had some freedom on how we define the mother wavelet, and
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we mentioned that we could define it so that it is more suitable for approximation
of functions, by adding what we called vanishing moments.

From these examples of wavelets and their properties we made a generalization
to what we called a multiresolution analysis (MRA). In an MRA we construct suc-
cessively refined spaces of functions that may be used to approximate functions ar-
bitrarily well. We will continue in the next chapter to construct even more general
wavelets, within the MRA framework.

The book [21] goes through developments for wavelets in detail. While wavelets
have been recognized for quite some time, it was with the important work of Daubechies [8,
9] that they found new arenas in the 80’s. Since then they found important applica-
tions. The main application we will focus on in later chapters is image processing.
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Chapter 6
The filter representation of
wavelets

Previously we saw that analog filters restricted to the Fourier spaces gave rise to dig-
ital filters. These digital filters sent the samples of the input function to the samples
of the output function, and are easily implementable, in contrast to the analog fil-
ters. We have also seen that wavelets give rise to analog filters. This leads us to be-
lieve that the DWT also can be implemented in terms of digital filters. In this chapter
we will prove that this is in fact the case.

There are some differences between the Fourier and wavelet settings, however:

1. The DWT is not constructed by looking at the samples of a function, but rather
by looking at coordinates in a given basis.

2. The function spaces we work in (i.e. Vm) are different from the Fourier spaces.

3. The DWT gave rise to two different types of analog filters: The filter defined
by Equation (7.12) for obtaining cm,n , and the filter defined by Equation (7.13)
for obtaining wm,n . We want both to correspond to digital filters.

Due to these differences, the way we realize the DWT in terms of filters will be a bit
different. Despite the differences, this chapter will make it clear that the output of
a DWT can be interpreted as the combined output of two different filters, and each
filter will have an interpretation in terms of frequency representations. We will also
see that the IDWT has a similar interpretation in terms of filters.

In this chapter we will also see that expressing the DWT in terms of filters will
also enable us to define more general transforms, where even more filters are used.
It is fruitful to think about each filter as concentrating on a particular frequency
range, and that these transforms thus simply splits the input into different frequency
bands. Such transforms have important applications to the processing and com-
pression of sound, and we will show that the much used MP3 standard for compres-
sion of sound takes use of such transforms.
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6.1 The filters of a wavelet transformation

We will make the connection with digital filters by looking again at the different ex-
amples of wavelet bases we have seen: The ones for piecewise constant and piece-
wise linear functions. For the Haar wavelet we have noted that G and H are block-

diagonal with

( 1p
2

1p
2

1p
2

− 1p
2

)
repeated along the diagonal. For the piecewise linear

wavelet, Equation (5.34) gives that the first two columns in G = Pφm←Cm take the
form

1p
2



1 0
1/2 1

0 0
...

...
0 0

1/2 0


. (6.1)

The remaining columns are obtained by shifting this, as in a circulant Toeplitz ma-
trix. Similarly, Equation (5.36) gives that the first two columns in H = PCm←φm

take
the form

p
2



1 0
−1/2 1

0 0
...

...
0 0

−1/2 0


. (6.2)

Also here, the remaining columns are obtained by shifting this, as in a circulant
Toeplitz matrix. For the alternative piecewise linear wavelet, Equation (5.44) give
all columns in the change of coordinate matrix G = Pφm←Cm also. In particular, the
first two columns in this matrix are

1p
2



1 −1/4
1/2 3/4

0 −1/4
0 −1/8
0 0
...

...
0 0

1/2 −1/8


. (6.3)

The first column is the same as before, since there was no change in the definition
of φ. The remaining columns are obtained by shifting this, as in a circulant Toeplitz
matrix. We will explain later how the change of coordinate matrix H = PCm←φm

also
can be computed.

In each case above it turned out that the kernel transformations G = Pφm←Cm ,
H = PCm←φm

had a special structure: They were obtained by repeating the first two
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columns in a circulant way, similarly to how we did in a circulant Toeplitz matrix.
The matrices were not exactly circulant Toeplitz matrices, however, since there are
two different columns repeating. The change of coordinate matrices occuring in the
stages in a DWT are thus not digital filters, but they seem to be related. Let us start
by giving these new matrices names:

Definition 6.1 (MRA-matrices). An N × N -matrix T , with N even, is called an
MRA-matrix if the columns are translates of the first two columns in alternating
order, in the same way as the columns of a circulant Toeplitz matrix.

From our previous calculations it is clear that, onceφ andψ are given through an
MRA, the corresponding change of coordinate matrices will always be MRA-matrices.
The MRA-matrices is our connection between filters and wavelets. Let us make the
following definition:

Definition 6.2. We denote by H0 the (unique) filter with the same first row as H ,
and by H1 the (unique) filter with the same second row as H . H0 and H1 are also
called the DWT filter components.

Using this definition it is clear that

(Hc m)k =
{

(H0c m)k when k is even

(H1c m)k when k is odd,

since the left hand side depends only on row k in the matrix H , and this is equal to
row k in H0 (when k is even) or row k in H1 (when k is odd). This means that Hc m

can be computed with the help of H0 and H1 as follows:

Theorem 6.3 (DWT expressed in terms of filters). Let c m be the coordinates in
φm , and let H0, H1 be defined as above. Any stage in a DWT can ble implemented
in terms of filters as follows:

1. Compute H0c m . The even-indexed entries in the result are the cordinates
c m−1 inφm−1.

2. Compute H1c m . The odd-indexed entries in the result are the coordinates
w m−1 inψm−1.

This gives an important connection between wavelets and filters: The DWT cor-
responds to applying two filters, H0 and H1, and the result from the DWT is pro-
duced by assembling half of the coordinates from each. Keeping only every second
coordinate is called downsampling (with a factor of two). Had we not performed
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downsampling, we would have ended up with twice as many coordinates as we
started with. Downsampling with a factor of two means that we end up with the
same number of samples as we started with. We also say that the output of the two
filters is critically sampled. Due to the critical sampling, it is inefficient to compute
the full application of the filters. We will return to the issue of making efficient im-
plementations of critically sampled filter banks later.

We can now complement Figure 5.2.2 by giving names to the arrows as follows:

φm
H0 //

H1

##

φm−1
H0 //

H1

$$

φm−2
H0 //

H1

$$

· · · H0 // φ1
H0 //

H1

  

φ0

ψm−1 ψm−2 ψm−3 ψ0

Let us make a similar anlysis for the IDWT, and let us first make the following
definition:

Definition 6.4. We denote by G0 the (unique) filter with the same first column as
G , and by G1 the (unique) filter with the same second column as G . G0 and G1 are
also called the IDWT filter components.

These filters are uniquely determined, since any filter is uniquely determined
from one of its columns. We can now write

c m =G



cm−1,0

wm−1,0

cm−1,1

wm−1,1

· · ·
cm−1,2m−1N−1
wm−1,2m−1N−1


=G





cm−1,0

0
cm−1,1

0
· · ·

cm−1,2m−1N−1
0


+



0
wm−1,0

0
wm−1,1

· · ·
0

wm−1,2m−1N−1





=G



cm−1,0

0
cm−1,1

0
· · ·

cm−1,2m−1N−1
0


+G



0
wm−1,0

0
wm−1,1

· · ·
0

wm−1,2m−1N−1



=G0



cm−1,0

0
cm−1,1

0
· · ·

cm−1,2m−1N−1
0


+G1



0
wm−1,0

0
wm−1,1

· · ·
0

wm−1,2m−1N−1


.
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Here we have split a vector into its even-indexed and odd-indexed elements, which
correspond to the coefficients from φm−1 and ψm−1, respectively. In the last equa-
tion, we replaced with G0,G1, since the multiplications with G depend only on the
even and odd columns in that matrix (due to the zeros inserted), and these columns
are equal in G0,G1. We can now state the following characterization of the inverse
Discrete Wavelet transform:

Theorem 6.5 (IDWT expressed in terms of filters). Let G0,G1 be defined as
above. Any stage in an IDWT can be implemented in terms of filters as follows:

c m =G0



cm−1,0

0
cm−1,1

0
· · ·

cm−1,2m−1N−1
0


+G1



0
wm−1,0

0
wm−1,1

· · ·
0

wm−1,2m−1N−1


. (6.4)

Making a new vector where zeroes have been inserted in this way is also called
upsampling (with a factor of two). We can now also complement Figure 5.2.2 for the
IDWT with named arrows as follows:

φm φm−1G0

oo φm−2G0

oo · · ·
G0

oo φ1G0

oo φ0G0

oo

ψm−1

G1

cc

ψm−2

G1

dd

ψm−3

G1

dd

ψ0

G1

`` (6.5)

Note that the filters G0,G1 were defined in terms of the columns of G , while the fil-
ters H0, H1 were defined in terms of the rows of H . This difference is seen from the
computations above to come from that the change of coordinates one way splits the
coordinates into two parts, while the inverse change of coordinates performs the
opposite. Let us summarize what we have found as follows.

Fact 6.6. The DWT can be computed with the help of two filters H0, H1, as ex-
plained in Theorem 6.3. Any linear transformation computed from two filters
H0, H1 in this way is called a forward filter bank transform. The IDWT can be
computed with the help of two filters G0,G1 as explained in Theorem 6.5. Any lin-
ear transformation computed from two filters G0,G1 in this way is called a reverse
filter bank transform.

In Chapter 8 we will go through how any forward and reverse filter bank trans-
form can be implemented, once we have the filters H0, H1, G0, and G1. When we
are in a wavelet setting, the filter coefficients in these four filters can be found from
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the relations between the bases φ1 and (φ0,ψ0). The filters H0, H1,G0,G1 can also
be constructed from outside a wavelet setting, i.e. that they do not originate from
change of coordinate matrices between certain function bases. The important point
is that the matrices invert each other, but in a signal processing setting it may also
be meaningful to allow for the reverse transform not to invert the forward transform
exactly. This corresponds to some loss of information when we attempt to recon-
struct the original signal using the reverse transform. A small such loss can, as we
will see at the end of this chapter, be acceptable.

That the reverse transform inverts the forward transform means that G H = I . If
we transpose this expression we get that H T GT = I . Clearly H T is a reverse filter
bank transform with filters (H0)T , (H1)T , and GT is a forward filter bank transform
with filters (G0)T , (G1)T . Due to their usefulness, these transforms have their own
name:

Definition 6.7 (Dual filter bank transforms). Assume that H0, H1 are the filters
of a forward filter bank transform, and that G0,G1 are the filters of a reverse filter
bank transform. By the dual transforms we mean the forward filter bank trans-
form with filters (G0)T , (G1)T , and the reverse filter bank transform with filters
(H0)T , (H1)T .

In Section 5.3 we used a parameter dual in our call to the DWT amd IDWT kernel
functions. This parameter can now be explained as follows:

Fact 6.8. (The dual-parameter in DWT kernel functions).

1. If the dual parameter is false, the DWT is computed as the forward filter
bank transform with filters H0, H1, and the IDWT is computed as the reverse
filter bank transform with filters G0,G1.

2. If the dual parameter is true, the DWT is computed as the forward filter
bank transform with filters (G0)T , (G1)T , and the IDWT is computed as the
reverse filter bank transform with filters (H0)T , (H1)T .

Note that, even though the reverse filter bank transform G can be associated with
certain function bases, it is not clear if the reverse filter bank transform H T also can
be associated with such bases. We will see in the next chapter that such bases can in
many cases be found. We will also denote these bases as dual bases.

Note that Figure 6.1 and 6.5 do not indicate the additional downsampling and
upsampling steps described in Theorem 6.3 and 6.5. If we indicate downsampling
with ↓2, and upsampling with ↑2, the algorithms given in Theorem 6.3 and 6.5 can
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also be summarized as follows:

H0c 1
// ↓2

// c 0
// ↑2

// (cm−1,0,0,cm−1,1,0, · · · )
G0

��
c 1

OO

��

⊕

H1c 1
// ↓2

// w 0
// ↑2

// (0, wm−1,0,0, wm−1,1, · · · )
G1

OO

(6.6)

Her ⊕ represents summing the elements which point inwards to the plus sign. In
this figure, the left side represents the DWT, the right side the IDWT. In the litera-
ture, wavelet transforms are more often illustrated in this way using filters, since it
makes alle steps involved in the process more clear. This type of figure also opens
for generalization. We will shortly look into this.

There are several reasons why it is smart to express a wavelet transformation in
terms of filters. First of all, it enables us to reuse theoretical results from the world
of filters in the world of wavelets, and to give useful interpretations of the wavelet
transform in terms of frequencies. Secondly, and perhaps most important, it en-
ables us to reuse efficient implementations of filters in order to compute wavelet
transformations. A lot of work has been done in order to establish efficient imple-
mentations of filters, due to their importance.

In Example 5.19 we argued that the elements in Vm−1 correspond to frequen-
cies at lower frequencies than those in Vm , since V0 = Span({φ0,n}n) should be in-
terpreted as content of lower frequency than the φ1,n , with W0 = Span({ψ0,n}n) the
remaining high frequency detail. To elaborate more on this, we have that

φ(t ) =
2N−1∑
n=0

(G0)n,0φ1,n(t ) (6.7)

ψ(t ) =
2N−1∑
n=0

(G1)n,1φ1,n(t )., (6.8)

where (Gk )i , j are the entries in the matrix Gk . Similar equations are true for φ(t −
k),ψ(t − k). Due to Equation (6.7), the filter G0 should have lowpass characteris-
tics, since it extracts the information at lower frequencies. Similarly, G1 should have
highpass characteristics due to Equation (6.8).

Let us verify these lowpass/highpass characteristics of G0 and G1 for the wavelets
we have considered up to now by plotting their frequency responses. In order to
do this we should make a final remark on how these frequency responses can be
plotted. For all wavelets we look at the filter coefficients are computed, so that the
frequency responses can be easily calculated. However, when we use a wavelet for
computation, we applied it by means of a kernel transformation. We will later see
that the most efficient such kernel transformations do not apply the filter coeffi-
cients directly, but rather a factorization into smaller components (but see Exer-
cise 12 on how we can produce kernel transformations which use the filter coeffi-
cients directly). So how can we find and plot the frequency response when only the
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kernel transformation is known? First of all, since the first column of G is identical to
the first column of G0, the first column of G0 can be obtained by applying the IDWT
kernel to the vector e0. We can then use theorem 3.9 to find the vector frequency
response of the filter (i.e. applying an FFT), and then Theorem 3.16 to find the val-
ues of the continuous frequency response in the points 2πn/N for 0 ≤ n < N . The
following code can thus be used to plot the frequency response of G0, when only the
IDWT kernel (called idwtkernel below) is known.

omega = 2*pi*(0:(N-1))/N;
g0 = [1; zeros(N - 1, 1)]; % Creates e_0
g0 = idwtkernel(g0, 0, 0); % Find the first column of G_0
plot(omega, abs(fft(g0)));

A similar procedure can be applied in order to plot the frequency response of G1 (just
replace e0 with e1 in order o exract the second column of G instead). The frequency
responses of H0 and H1 can be found by considering a dual wavelet transform, since
the reverse transform for the dual wavelet has filters (H0)T and (H1)T . In most of the
following examples in this book this procedure will be applied to plot all frequency
responses. We start with the Haar wavelet.
Example 6.9. For the Haar wavelet we saw that, in G , the matrix( 1p

2
1p
2

1p
2

− 1p
2

)
(6.9)

repeated along the diagonal. The filters G0 and G1 can be found directly from these
columns:

G0 = {1/
p

2,1/
p

2}

G1 = {1/
p

2,−1/
p

2}.

We have seen these filters previously: G0 is a movinge average filter of two elements
(up to multiplication with a constant). This is a lowpass filter. G1 is a bass-reducing
filter, which is a highpass filter. Up to a constant, this is also an approximation to the
derivative. Since G1 is constructed from G0 by adding an alternating sign to the filter
coefficients, we know from before that G1 is the highpass filter corresponding to the
lowpass filter G0, so that the frequency response of the second is given by a shift of
frequency with π in the first. The frequency responses are

λG0 (ω) = 1p
2
+ 1p

2
e−iω =p

2e−iω/2 cos(ω/2)

λG1 (ω) = 1p
2

e iω− 1p
2
=p

2i e iω/2 sin(ω/2).

The magnitude of these are plotted in Figure 6.1, where the lowpass/highpass char-
acteristics are clearly seen. By considering the filters where the rows in Equation (6.9),
it is clear that

H0 = {1/
p

2,1/
p

2}

H1 = {−1/
p

2,1/
p

2},
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(b) λG1 (ω)

Figure 6.1: The frequency responses for the MRA of piecewise constant functions.

so that the frequency responses for the DWT have the same lowpass/highpass char-
acteristics. ♣

It turns out that this connection between G0 and G1 as lowpass and highpass
filters corresponding to each other can be found in all orthonormal wavelets. We
will prove this in the next chapter.
Example 6.10. For the first wavelet for piecewise linear functions we looked at in
the previous section, Equation (6.1) gives that

G0 = 1p
2

{1/2,1,1/2}

G1 = 1p
2

{1}. (6.10)

G0 is again a filter we have seen before: Up to multiplication with a constant, it is the
treble-reducing filter with values from row 2 of Pascal’s triangle. We see something
different here when compared to the Haar wavelet, in that the filter G1 is not the
highpass filter corresponding to G0. The frequency responses are now

λG0 (ω) = 1

2
p

2
e iω+ 1p

2
+ 1

2
p

2
e−iω = 1p

2
(cosω+1)

λG1 (ω) = 1p
2

.

λG1 (ω) thus has magnitude 1p
2

at all points. The magnitude of λG0 (ω) is plotted in

Figure 6.2. Comparing with Figure 6.1 we see that here also the frequency response
has a zero at π. The frequency response seems also to be flatter around π. For the
DWT, Equation (6.2) gives us

H0 =
p

2{1}

H1 =
p

2{−1/2,1,−1/2}. (6.11)
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Figure 6.2: The frequency response λG0 (ω) for the first choice of wavelet for piece-
wise linear functions

Even though G1 was not the highpass filter corresponding to G0, we see that, up to
a constant, H1 is (it is a bass-reducing filter with values taken from row 2 of Pascals
triangle). ♣

Note that the role of H1 as the highpass filter corresponding to G0 is the case in
both previous examples. We will prove in the next chapter that this is a much more
general result which holds for all wavelets, not only for the orthonormal ones.

For the alternative wavelet for piecewise linear functions, we are only able to
find expressions for the filters G0,G1 at this stage (these can be extracted from Equa-
tion (6.3)). In the next chapter we will learn a general technique of computing the
transformations the opposite way from these, so this will be handled in the next
chapter.

6.1.1 The support of the scaling function and the mother wavelet

The scaling functions and mother wavelets we encounter will turn out to always
be functions with compact support. An interesting consequence of equations (6.7)
and (6.8) is that we can find the size of these supports from the number of filter
coefficients in G0 and G1:

Theorem 6.11. Assume that the filters G0,G1 have N0, N1 nonzero filter coeffi-
cients, respectively, and that φ and ψ have compact support. Then the support
size of φ is N0 −1, and the support size of ψ is (N0 +N1)/2−1. Moreover, when all
the filters are symmetric, the support ofφ is symmetric around 0, and the support
of ψ is symmetric around 1/2.

Proof: Let q be the support size of φ. Then the functions φ1,n all have support
size q/2. On the right hand side of Equation (6.7) we thus add N0 functions, all with
support size q/2. These functions are translated with 1/2 with respect to onean-
other, so that the sum has support size q/2+(N0−1)/2. Comparing with the support
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of the left hand side we get the equation q = q/2+ (N0 − 1)/2, so that q = N0 − 1.
Similarly, with Equation (6.8), the function on the right hand side has support size
q/2+ (N1 −1)/2 = (N0 +N1)/2−1, which thus is the support of ψ.

Assume now also that all filters are symmetric, so that the nonzero filter coeffi-
cients of G0 have indices −(N0−1)/2, . . . , (N0−1)/2. Ifφ has support [q1, q2],φ1,n has
support [(q1 +n)/2,(q2 +n)/2]. It follows that the right hand side of Equation (6.7)
has support [(q1 − (N0 −1)/2)/2,(q2 + (N0 −1)/2)/2], so that we obtain the equations

q1 = (q1 − (N0 −1)/2)/2, and q2 = (q2 + (N0 −1)/2)/2.

Solving these we obtain that q1 =−(N0 −1)/2, q2 = (N0 −1)/2, so that the support of
φ is symmetric around 0. Similarly, the right hand side of Equation (6.8) has support[

q1 − N1−3
2

2
,

q2 + N1+1
2

2

]
=

[−N0−1
2 − N1−3

2

2
,

N0−1
2 + N1+1

2

2

]

=
[
−

N0+N1
2 −1

2
,

N0+N1
2 −1

2

]
+1.

From this it is clear that ψ has support symmetric around 1/2.
Let us use this theorem to verify the supports for the scaling functions and mother

wavelets we have already encountered:

1. For the Haar wavelet, we know that both filters have 2 coefficients. From the-
orem 6.11 it follows that both φ and ψ have support size 1, which clearly is
true.

2. For the the piecewise linear wavelet, the filters were symmetric. G0 has 3 filter
coefficients so that φ has support size 3−1 = 2. G1 has one filter coefficient,
so that the support size of ψ is (3+ 1)/2− 1 = 1. We should thus have that
supp(φ) = [−1,1], and supp(ψ) = [0,1]. This is clearly true from our previous
plots of these functions

3. From Equation (6.3) we see that, for the alternative piecewise linear wavelet,
G0 and G1 have 3 and 5 filter coefficients, respectively. ψ has thus support size
(3+5)/2−1 = 3, so that the support is [−1,2], which also can be seen to be the
case from Figure 5.17.

6.1.2 Wavelets and symmetric extensions

In practice we want to apply the wavelet transform to a symmetric extension, since
then symmetric filters can give a better approximation to the underlying analog fil-
ters. In order to achieve this, the following result says that we only need to replace
the filters H0, H1, G0, and G1 in the wavelet transform with (H0)r , (H1)r , (G0)r , and
(G1)r .
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Theorem 6.12. If the filters H0, H1, G0, and G1 in a wavelet transform are sym-
metric, then the DWT/IDWT preserve symmetric extensions (as defined in Def-
inition 5.42). Also, applying the filters H0, H1, G0, and G1 to x̆ ∈ R2N−2 in the
DWT/IDWT is equivalent to applying (H0)r , (H1)r , (G0)r , and (G1)r to x ∈ RN in
the same way.

Proof: Since H0 and H1 are symmetric, their output from x̆ is also a symmetric
vector, and by assembling their outputs as the even- and odd-indexed entries, we see
that the output (c0, w0,c1, w1, . . .) of the MRA-matrix H also is a symmetric vector.
The same then applies for the matrix G , since it inverts the first. This proves the first
part.

Now, assume that x ∈ RN . By definition of (Hi )r , (Hi x̆)n = ((Hi )r x)n for 0 ≤
n ≤ N − 1. This means that we get the same first N output elements in a wavelet
transform if we repace H0, H1 with (H0)r , (H1)r . Since the vectors (c0,0,c1,0, . . .) and
(0, w0,0, w1, . . .) also are symmetric vectors when (c0, w0,c1, w1, . . .) is, it follows that
(G0)r , (G1)r will reproduce the same first N elements as G0,G1 also. In conclusion,
for symmetric vectors, the wavelet transform restricted to the first N elements pro-
duces the same result when we replace H0, H1, G0, and G1 with (H0)r , (H1)r , (G0)r ,
and (G1)r . This proves the result.

As in Chapter 4, it follows that when the filters of a wavelet are symmetric, ap-
plying (H0)r , (H1)r , (G0)r , and (G1)r to the input better approximates an underlying
analog filter.

In Section 5.3 we used a parameter symm in our call to the DWT amd IDWT kernel
functions. This parameter can now also be explained:

Fact 6.13 (The symm-parameter in DWT kernel functions). Assume that the fil-
ters H0, H1, G0, and G1 are symmetric. If the symm parameter is true, the sym-
metric versions (H0)r , (H1)r , (G0)r , and (G1)r should be applied in the DWT and
IDWT, rather than the filters H0, H1, G0, and G1 themselves. If symm is false, the
filters H0, H1, G0, and G1 are applied

In Chapter 8 we will also see how the symmetric versions (H0)r , (H1)r , (G0)r can
be implemented.

What you should have learnt in this section

How one can find the filters of a wavelet transformation by considering its matrix
and its inverse. Forward and reverse filter bank transforms. How one can implement
the DWT and the IDWT with the help of these filters. Plot of the frequency responses
for the filters of the wavelets we have considered, and their interpretation as lowpass
and highpass filters.
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Exercises for Section 6.1

1. Write down the corresponding filters G0 og G1 for Exercise 3 in Section 5.5. Plot
their frequency responses, and characterize the filters as lowpass- or highpass filters.

2. Find two symmetric filters, so that the corresponding MRA-matrix, constructed
with alternating rows from these two filters, is not a symmetric matrix.

3. Assume that an MRA-matrix is symmetric. Are the corresponding filters H0, H1,
G0, G1 also symmetric? If not, find a counterexample.

4. Assume that one stage in a DWT is given by the MRA-matrix

H =


1/5 1/5 1/5 0 0 0 · · · 0 1/5 1/5
−1/3 1/3 −1/3 0 0 0 · · · 0 0 0
1/5 1/5 1/5 1/5 1/5 0 · · · 0 0 0

0 0 −1/3 1/3 −1/3 0 · · ·0 0 0
...

...
...

...
...

...
...

...
...

...


Write down the compact form for the corresponding filters H0, H1, and compute and
plot the frequency responses. Are the filters symmetric?

5. Assume that one stage in the IDWT is given by the MRA-matrix

G =



1/2 −1/4 0 0 · · ·
1/4 3/8 1/4 1/16 · · ·

0 −1/4 1/2 −1/4 · · ·
0 1/16 1/4 3/8 · · ·
0 0 0 −1/4 · · ·
0 0 0 1/16 · · ·
0 0 0 0 · · ·
...

...
...

...
...

0 0 0 0 · · ·
1/4 1/16 0 0 · · ·


Write down the compact form for the filters G0,G1, and compute and plot the fre-
quency responses. Are the filters symmetric?

6. Assume that H0 = {1/16,1/4,3/8,1/4,1/16}, and H1 = {−1/4,1/2,−1/4}. Plot the
frequency responses of H0 and H1, and verify that H0 is a lowpass filter, and that H1

is a highpass filter. Also write down the change of coordinate matrix PC1←φ1
for the

wavelet corresponding to these filters.

7. Assume that G0 = 1
3 {1,1,1}, and G1 = 1

5 {1,−1,1,−1,1}. Plot the frequency re-
sponses of G0 and G1, and verify that G0 is a lowpass filter, and that G1 is a high-
pass filter. Also write down the change of coordinate matrix Pφ1←C1 for the wavelet
corresponding to these filters.

8. In Exercise 8 in Section 5.3 we computed the DWT of two very simple vectors x1

and x2, using the Haar wavelet.

a. Compute H0x1, H1x1, H0x2, and H1x2, where H0 and H1 are the filters
used by the Haar wavelet.
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b. Compare the odd-indexed elements in H1x1 with the odd-indexed ele-
ments in H1x2. From this comparison, attempt to find an explanation to why
the two vectors have very different detail components.

9. Suppose that we run the following algorithm on the sound represented by the
vector x:

N=size(x,1);
c = (x(1:2:N, :) + x(2:2:N, :))/sqrt(2);
w = (x(1:2:N, :) - x(2:2:N, :))/sqrt(2);

newx = [c; w];
newx = newx/max(abs(newx));
playerobj=audioplayer(newx,44100);
playblocking(playerobj)

a. Comment the code and explain what happens. Which wavelet is used?
What do the vectors c and w represent? Describe the sound you believe you
will hear.

b. Assume that we add lines in the code above which sets the elements in the
vector w to 0 before we compute the inverse operation. What will you hear if
you play the new sound you then get?

10. Let us return to the piecewise linear wavelet from Exercise 2 in Section 5.5.

a. With ψ̂ as defined as in Exercise 2 b. in Section 5.5, compute the coor-
dinates of ψ̂ in the basis φ1 (i.e. [ψ̂]φ1

) with N = 8, i.e. compute the IDWT
of

[ψ̂](φ0,ψ0) = (−α,−β,−δ,0,0,0,0,−γ)⊕ (1,0,0,0,0,0,0,0),

which is the coordinate vector you computed in Exercise 2 d. in Section 5.5.
For this, you should use the function IDWTImpl, with the kernel of the piece-
wise linear wavelet without symmetric extension as input. Explain that this
gives you the filter coefficients of G1.

b. Plot the frequency response of G1.

11. Repeat the previous exercise for the Haar wavelet as in exercise 4, and plot the
corresponding frequency responses for k = 2,4,6.

12. In Exercise 3 in Section 4.2 we implemented a symmetric filter applied to a vec-
tor, i.e. when a periodic extension is assumed. The corresponding function was
called filterS(t, x), and used the function conv.

a. Reimplement the function filter so that it also takes a third parame-
ter symm. If symm is false a periodic extension of x should be performed (i.e.
filtering as we have defined it, and as the previous version of filterS per-
forms it). If symm is true, symmetric extensions should be used (as given by
Definition 5.42).
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b. Implement functions tt DWTKernelFilters(H0, H1, G0, G1, x, symm, dual)
andIDWTKernelFilters(H0, H1, G0, G1, x, symm, dual)which com-
pute the DWT and IDWT kernels using theorems 6.3 and 6.5, respectively.
This function thus bases itself on that the filters of the wavelet are known.
The functions should call the function filterS from a.. Recall also the defi-
nition of the parameter dual from this section.

With the functions defined in b. you can now define standard DWT and IDWT ker-
nels in the following way, once the filters are known.

f = @(x, symm, dual) DWTKernelFilters(H0,H1,G0,G1,x,symm,dual);
invf = @(x, symm, dual) IDWTKernelFilters(H0,H1,G0,G1,x,symm,dual);

6.2 Properties of the filter bank transforms of a wavelet

We have now described the DWT/IDWT as linear transformations G , H so that G H =
I , and where two filters G0,G1 characterize G , two filters H0, H1 characterize H . G
and H are not Toeplitz matrices, however, so they are not filters. Since filters pro-
duce the same output frequency from an input frequency, we must have that G and
H produce other (undesired) frequencies in the output than those that are present in
the input. We will call this phenomenon aliasing. In order for G H = I , the undesired
frequencies must cancel each other, so that we end up with what we started with.
Thus, G H must have what we will refer to as alias cancellation. This is the same as
saying that G H is a filter. In order for G H = I , alias cancellation is not enough: We
also need that the amount at the given frequency is unchanged, i.e. that G Hφn =φn

for any Fourier basis vector φn . We then say that we have perfect reconstruction.
Perfect reconstruction is always the case for wavelets by construction, but in sig-
nal processing many interesting examples (G0,G1, H0, H1) exist, for which we do not
have perfect reconstruction. Historically, forward and reverse filter bank transforms
have been around long before they appeared in a wavelet context. Operations where
G Hφn = cnφn for all n may also be useful, in particular when cn is close to 1 for all
n. If cn is real for all n, we say that we have no phase distortion. If we have no phase
distortion, the output from G H has the same phase, even if we do not have perfect
reconstruction. Such “near-perfect reconstruction systems" have also been around
long before many perfect reconstruction wavelet systems were designed. In signal
processing, these transforms also exist in more general variants, and we will define
these later. Let us summarize as follows.

Definition 6.14. (Alias cancellation, phase distortion, and perfect reconstruc-
tion). We say that we have alias cancellation if, for any n,

G Hφn = cnφn ,

for some constant cn (i.e. G H is a filter). If all cn are real, we say that we no phase
distortion. If G H = I (i.e. cn = 1 for all n) we say that we have perfect reconstruc-
tion. If all cn are close to 1, we say that we have near-perfect reconstruction
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In signal processing, one also says that we have perfect- or near-perfect recon-
struction when G H equals Ed , or is close to Ed (i.e. the overall result is a delay). The
reason why a delay occurs has to do with that the transforms are used in real-time
processing, for which we may not be able to compute the output at a given time
instance before we know some of the following samples. Clearly the delay is un-
problematic, since one can still can reconstruct the input from the output. We will
encounter a useful example of near-perfect reconstruction soon in the MP3 stan-
dard.

Let us now find a criterium for alias cancellation: When do we have that G He2πi r k/N

is a multiplum of e2πi r k/N , for any r ? We first remark that

H(e2πi r k/N ) =
{
λH0,r e2πi r k/N k even

λH1,r e2πi r k/N k odd.

The frequency response of H(e2πi r k/N ) is

N /2−1∑
k=0

λH0,r e2πi r (2k)/N e−2πi (2k)n/N +
N /2−1∑

k=0
λH1,r e2πi r (2k+1)/N e−2πi (2k+1)n/N

=
N /2−1∑

k=0
λH0,r e2πi (r−n)(2k)/N +

N /2−1∑
k=0

λH1,r e2πi (r−n)(2k+1)/N

= (λH0,r +λH1,r e2πi (r−n)/N )
N /2−1∑

k=0
e2πi (r−n)k/(N /2).

Clearly,
∑N /2−1

k=0 e2πi (r−n)k/(N /2) = N /2 if n = r or n = r + N /2, and 0 else. The fre-
quency response is thus the vector

N

2
(λH0,r +λH1,r )er + N

2
(λH0,r −λH1,r )er+N /2,

so that

H(e2πi r k/N ) = 1

2
(λH0,r +λH1,r )e2πi r k/N + 1

2
(λH0,r −λH1,r )e2πi (r+N /2)k/N . (6.12)

Let us now turn to the reverse filter bank transform. We can write

(e2πi r ·0/N ,0,e2πi r ·2/N ,0, . . . ,e2πi r (N−2)/N ,0) = 1

2
(e2πi r k/N +e2πi (r+N /2)k/N )

(0,e2πi r ·1/N ,0,e2πi r ·3/N , . . . ,0,e2πi r (N−1)/N ) = 1

2
(e2πi r k/N −e2πi (r+N /2)k/N ).

This means that

G(e2πi r k/N ) =G0

(
1

2

(
e2πi r k/N +e2πi (r+N /2)k/N

))
+G1

(
1

2

(
e2πi r k/N −e2πi (r+N /2)k/N

))
=1

2
(λG0,r e2πi r k/N +λG0,r+N /2e2πi (r+N /2)k/N )+ 1

2
(λG1,r e2πi r k/N −λG1,r+N /2e2πi (r+N /2)k/N )

=1

2
(λG0,r +λG1,r )e2πi r k/N + 1

2
(λG0,r+N /2 −λG1,r+N /2)e2πi (r+N /2)k/N . (6.13)
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Now, if we combine equations (6.12) and (6.13), we get

G H(e2πi r k/N )

= 1

2
(λH0,r +λH1,r )G(e2πi r k/N )+ 1

2
(λH0,r −λH1,r )G(e2πi (r+N /2)k/N )

= 1

2
(λH0,r +λH1,r )

(
1

2
(λG0,r +λG1,r )e2πi r k/N + 1

2
(λG0,r+N /2 −λG1,r+N /2)e2πi (r+N /2)k/N )

)
+ 1

2
(λH0,r −λH1,r )

(
1

2
(λG0,r+N /2 +λG1,r+N /2)e2πi (r+N /2)k/N + 1

2
(λG0,r −λG1,r )e2πi r k/N )

)
= 1

4

(
(λH0,r +λH1,r )(λG0,r +λG1,r )+ (λH0,r −λH1,r )(λG0,r −λG1,r )

)
e2πi r k/N

+ 1

4

(
(λH0,r +λH1,r )(λG0,r+N /2 −λG1,r+N /2)+ (λH0,r −λH1,r )(λG0,r+N /2 +λG1,r+N /2)

)
e2πi (r+N /2)k/N

= 1

2
(λH0,rλG0,r +λH1,rλG1,r )e2πi r k/N + 1

2
(λH0,rλG0,r+N /2 −λH1,rλG1,r+N /2)e2πi (r+N /2)k/N .

If we also replace with the continuous frequency response, we obtain the following:

Theorem 6.15. We have that

G H(e2πi r k/N ) =1

2
(λH0,rλG0,r +λH1,rλG1,r )e2πi r k/N

+ 1

2
(λH0,rλG0,r+N /2 −λH1,rλG1,r+N /2)e2πi (r+N /2)k/N . (6.14)

In particular, we have alias cancellation if and only if

λH0 (ω)λG0 (ω+π) =λH1 (ω)λG1 (ω+π). (6.15)

We will refer to this as the alias cancellation condition. If in addition

λH0 (ω)λG0 (ω)+λH1 (ω)λG1 (ω) = 2, (6.16)

we also have perfect reconstruction. We will refer to as the condition for perfect
reconstruction.

No phase distortion means that we have alias cancellation, and that

λH0 (ω)λG0 (ω)+λH1 (ω)λG1 (ω) is real.

Now let us turn to how we can construct wavelets/perfect reconstruction systems
from FIR-filters (recall from Chapter 3 that FIR filters where filters with a finite num-
ber of filter coefficients). We will have use for some theorems which allow us to
construct wavelets from prototype filters. In particular we show that, when G0 and
H0 are given lowpass filters which satisfy a certain common property, we can define
unique (up to a constant) highpass filters H1 and G1 so that the collection of these
four filters can be used to implement a wavelet. We first state the following general
theorem.
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Theorem 6.16. The following statements are equivalent for FIR filters
H0, H1,G0,G1:

1. H0, H1,G0,G1 give perfect reconstruction,

2. there exist α ∈R and d ∈Z so that

(H1)n = (−1)nα−1(G0)n−2d (6.17)

(G1)n = (−1)nα(H0)n+2d (6.18)

2 =λH0,nλG0,n +λH0,n+N /2λG0,n+N /2 (6.19)

Let us translate this to continuous frequency responses. We first have that

λH1 (ω) =∑
k

(H1)k e−i kω =∑
k

(−1)kα−1(G0)k−2d e−i kω

=α−1
∑
k

(−1)k (G0)k e−i (k+2d)ω =α−1e−2i dω
∑
k

(G0)k e−i k(ω+π)

=α−1e−2i dωλG0 (ω+π).

We have a similar computation for λG1 (ω). We can thus state the following:

Theorem 6.17. The following statements are equivalent for FIR filters
H0, H1,G0,G1:

1. H0, H1,G0,G1 give perfect reconstruction,

2. there exist α ∈R and d ∈Z so that

λH1 (ω) =α−1e−2i dωλG0 (ω+π) (6.20)

λG1 (ω) =αe2i dωλH0 (ω+π) (6.21)

2 =λH0 (ω)λG0 (ω)+λH0 (ω+π)λG0 (ω+π) (6.22)

Proof: Let us prove first that equations (6.20)- (6.22) for a FIR filter implies that we
have perfect reconstruction. Equations (6.20)-(6.21) mean that the alias cancellation
condition (6.15) is satisfied, since

λH1 (ω)λG1 (ω+π) =α−1e−2i dωλG0 (ω+π)(α)e2i d(ω+πλH0 (ω)

=λH0 (ω)λG0 (ω+π).

Inserting this in the perfect reconstruction condition (6.22), we get

2 =λH0 (ω)λG0 (ω)+λG0 (ω+π)λH0 (ω+π)

=λH0 (ω)λG0 (ω)+α−1e−2i dωλG0 (ω+π)αe2i dωλH0 (ω+π)

=λH0 (ω)λG0 (ω)+λH1 (ω)λG1 (ω),
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which is Equation (6.16), so that equations (6.20)- (6.22) imply perfect reconstruc-
tion. We therefore only need to prove that any set of FIR filters which give perfect re-
construction, also satisfy these equations. Due to the calculation above, it is enough
to prove that equations (6.20)-(6.21) are satisfied. The proof of this will wait till sec-
tion 8.1, since it uses some techniques we have not introduced yet.

Note that, even though conditions (6.20) and (6.21) together ensure that the alias
cancellation condition is satisfied, alias cancellation can occur also if these condi-
tions are not satisfied. Conditions (6.20) and (6.21) thus give a stronger requirement
than alias cancellation. We will be particularly concerned with wavelets where the
filters are symmetric, for which we can state the following corollary.

Corollary 6.18. The following statements are equivalent:

1. H0, H1,G0,G1 are the filters of a symmetric wavelet,

2. λH0 (ω),λH1 (ω),λG0 (ω),λG1 (ω) are real functions, and

λH1 (ω) =α−1λG0 (ω+π) (6.23)

λG1 (ω) =αλH0 (ω+π) (6.24)

2 =λH0 (ω)λG0 (ω)+λH0 (ω+π)λG0 (ω+π). (6.25)

Thw delay d is thus 0 for symmetric wavelets.

Proof: Since H0 is symmetric, (H0)n = (H0)−n , and from equations (6.17) and (6.18)
it follows that

(G1)n−2d = (−1)n−2dα(H0)n = (−1)nα−1(H0)−n

= (−1)(−n−2d)α−1(H0)(−n−2d)+2d = (G1)−n−2d

This shows that G1 is symmetric about both −2d , in addition to being symmetric
about 0 (by assumption). We must thus have that d = 0, so that (H1)n = (−1)nα(G0)n

and (G1)n = (−1)nα−1(H0)n . We now get that

λH1 (ω) =∑
k

(H1)k e−i kω =α−1
∑
k

(−1)k (G0)k e−i kω

=α−1
∑
k

e−i kπ(G0)k e−i kω =α−1
∑
k

(G0)k e−i k(ω+π)

=α−1λG0 (ω+π),

which proves Equation (6.23). Equation (6.23) follows similarly.
When constructing a wavelet it may be that we know one of the two pairs (G0,G1),

(H0, H1), and that we would like to construct the other two. This can be achieved if
we can find the constants d and α from above. If the filters are symmetric we just
saw that d = 0. If G0, G1 are known, it follows from from equations (6.17) and(6.18)
that

1 =∑
n

(G1)n(H1)n =∑
n

(G1)nα
−1(−1)n(G0)n =α−1

∑
n

(−1)n(G0)n(G1)n ,
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so that α=∑
n(−1)n(G0)n(G1)n . On the other hand, if H0, H1 are known instead, we

must have that

1 =∑
n

(G1)n(H1)n =∑
n
α(−1)n(H0)n(H1)n =α∑

n
(−1)n(H0)n(H1)n ,

so that α= 1/(
∑

n(−1)n(H0)n(H1)n). Let us use these observations to state the filters
for the alternative wavelet of piecewise linear functions, which is the only wavelet
we have gone through we have not computed the filters and the frequency response
for.
Example 6.19. In Equation (6.3) we wrote down the first two columns in Pφm←Cm

for the alternative piecewise linear wavelet. This gives us that the filters G0 ans G1

are

G0 = 1p
2

{1/2,1,1/2}

G1 = 1p
2

{−1/8,−1/4,3/4,−1/4,−1/8}. (6.26)

Here G0 was as for the wavelet of piecewise linear functions since we use the same
scaling function. G1 was changed, however. Let us use Theorem 6.17 and the re-
mark above to compute the two remaining filters H0 and H1. These filters are also
symmetric, since G0,G1 were. From the simple computation above we get that

α=∑
n

(−1)n(G0)n(G1)n = 1

2

(
−1

2

(
−1

4

)
+1 · 3

4
− 1

2

(
−1

4

))
= 1

2
.

Theorem 6.17 now gives

(H0)n =α−1(−1)n(G1)n = 2(−1)n(G1)n

(H1)n =α−1(−1)n(G0)n = 2(−1)n(G0)n , (6.27)

so that

H0 =
p

2{−1/8,1/4,3/4,1/4,−1/8}

H1 =
p

2{−1/2,1,−1/2}. (6.28)

We now have that

λG1 (ω) =−1/(8
p

2)e2iω−1/(4
p

2)e iω+3/(4
p

2)−1/(4
p

2)e−iω−1/(8
p

2)e−2iω

=− 1

4
p

2
cos(2ω)− 1

2
p

2
cosω+ 3

4
p

2
.

The magnitude of λG1 (ω) is plotted in Figure 6.3. Clearly, G1 now has highpass char-
acteristics, while the lowpass characteristic of G0 has been preserved. The filters
G0,G1, H0, H1 are particularly important in applications: Apart from the scaling fac-
tors 1/

p
2,

p
2 in front, we see that the filter coefficients are all dyadic fractions, i.e.

they are on the form β/2 j . Arithmetic operations with dyadic fractions can be car-
ried out exactly on a computer, due to representations as binary numbers in com-
puters. These filters are thus important in applications, since they can be used as
transformations for lossless coding. The same argument can be made for the Haar
wavelet, but this wavelet had one less vanishing moment. ♣
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Figure 6.3: The frequency response λG1 (ω) for the alternative wavelet for piecewise
linear functions.

In the literature, two particular cases of filter banks have been important. They
are both refered to as Quadrature Mirror Filter banks, or QMF filter banks, and some
confusion exist between the two. Let us therefore make precise definitions of the
two.

Definition 6.20 (Classical QMF filter banks). In the classical definition of a QMF
filter banks it is required that G0 = H0 and G1 = H1 (i.e. the filters in the forward
and reverse transforms are equal), and that

λH1 (ω) =λH0 (ω+π). (6.29)

It is straightforward to check that, for a classical QMF filter bank, the forward and
reverse transforms are equal (i.e. G = H). It is easily checked that conditions (6.20)
and (6.21) are satisfied with α= 1,d = 0 for a classical QMF filter bank. In particular,
the alias cancellation condition is satisfied. The perfect recontruction condition can
be written as

2 =λH0 (ω)λG0 (ω)+λH1 (ω)λG1 (ω) =λH0 (ω)2 +λH0 (ω+π)2. (6.30)

Unfortunately, it is impossible to find non-trivial FIR-filters which satisfy this quadra-
ture formula (Exercise 1). Therefore, classical QMF filter banks which give perfect
reconstruction do not exist. Nevertheless, one can construct such filter banks which
give close to perfect reconstruction [19], and this together with the fulfillment of the
alias cancellation condition still make them useful. In fact, we will see in Section 8.3
that the MP3 standard take use of such filters, and this explains our previous obser-
vation that the MP3 standard does not give perfect reconstruction. Note, however,
that if the filters in a classical QMF filter bank are symmetric (so that λH0 (ω) is real),
we have no phase distortion.

The second type of QMF filter bank is defined as follows.
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Definition 6.21 (Alternative QMF filter banks). In the alternative definition of a
QMF filter bank it is required that G0 = (H0)T and G1 = (H1)T (i.e. the filter coeffi-
cients in the forward and reverse transforms are reverse of oneanother), and that

λH1 (ω) =λH0 (ω+π). (6.31)

The perfect reconstruction condition for an alternative QMF filter bank can be
written as

2 =λH0 (ω)λG0 (ω)+λH1 (ω)λG1 (ω) =λH0 (ω)λH0 (ω)+λH0 (ω+π)λH0 (ω+π)

= |λH0 (ω)|2 +|λH0 (ω+π)|2.

We see that the perfect reconstruction property of the two definitions of QMF filter
banks only differ in that the latter take absolute values. It turns out that the latter
also has many interesting solutions, as we will see in Chapter 7. If we in in condi-
tion (6.20) substitute G0 = (H0)T we get

λH1 (ω) =α−1e−2i dωλG0 (ω+π) =α−1e−2i dωλH0 (ω+π).

If we set α= 1,d = 0, we get equality here. A similar computation follows for Condi-
tion (6.21). In other words, also alternative QMF filter banks satisfy the alias cancel-
lation condition. In the literature, a wavelet is called orthonormal if G0 = (H0)T ,G1 =
(H1)T . From our little computation it follows that alternative QMF filter banks with
perfect reconstruction are examples of orthonormal wavelets, and correpond to or-
thonormal wavelets which satisfy α= 1,d = 0.

For the Haar wavelet it is easily checked that G0 = (H0)T ,G1 = (H1)T , but it does
not satisfy the relation λH1 (ω) =λH0 (ω+π). Instead it satsifies the relation λH1 (ω) =
−λH0 (ω+π). In other words, the Haar wavelet is not an alternative QMF filter bank-
the way we have defined them. The difference lies only in a sign, however. This
is the reason why the Haar wavelet is still listed as an alternative QMF filter bank
in the literature. The additional sign leads to orthonormnal wavelets which satisfy
α=−1,d = 0 instead.

The following is clear for orthonormal wavelets.

Theorem 6.22. A DWT matrix is orthogonal (i.e. the IDWT equals the transpose
of the DWT) if and only if the filters satisfy G0 = (H0)T ,G1 = (H1)T , i.e. if and only
if the MRA equals the dual MRA.

This can be proved simply by observing that, if we transpose the DWT-matrix,
Theorem 6.25 says that we get an IDWT matrix with filters (H0)T , (H1)T , and this is
equal to the IDWT if and only if G0 = (H0)T ,G1 = (H1)T . It follows that QMF filter
banks with perfect reconstruction give rise to orthonormal wavelets.
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Exercises for Section 6.2

1. Show that it is impossible to find a non-trivial FIR-filter which satisfies Equa-
tion (6.30).

2. Show that the Haar wavelet satisfies λH1 (ω) =−λH0 (ω+π), and G0 = (H0)T , G1 =
(H1)T . The Haar wavelet can thus be considered as an alternative QMF filter bank.

6.3 A generalization of the filter representation, and its
use in audio coding

It turns out that the filter representation, which we now have used for an alternative
representation of a wavelet transformation, can be generalized in such a way that it
also is useful for audio coding. In this section we will first define this generalization.
We will then state how the MP3 standard encodes and decodes audio, and see how
our generalization is connected to this. Much literature fails to elaborate on this
connection. We will call our generalizations filter bank transforms, or simply filter
banks. Just as for wavelets, filters are applied differently for the forward and reverse
transforms.

We start by defining the forward filter bank transform and its filters.

Definition 6.23 (Forward filter bank transforms). Let H0, H1, . . . , HM−1 be N ×
N -filters. A forward filter bank transform H produces output z ∈ RN from the
input x ∈RN in the following way:

1. zi M = (H0x)i M for any i so that 0 ≤ i M < N .

2. zi M+1 = (H1x)i M+1 for any i so that 0 ≤ i M +1 < N .

3. . . .

4. zi M+(M−1) = (HM−1x)i M+(M−1) for any i so that 0 ≤ i M + (M −1) < N .

In other words, the output of a forward filter bank transform is computed by ap-
plying filters H0, H1, . . . , HM−1 to the input, and by downsampling and assembling
these so that we obtain the same number of output samples as input samples
(also in this more general setting this is called critical sampling). H0, H1, . . . , HM−1

are also called analysis filter components, the output of filter Hi is called channel
i channel, and M is called the number of channels. The output samples zi M+k are
also called the subband samples of channel k.

Clearly this definition generalizes the DWT and its analysis filters, since these
can be obtained by setting M = 2. The DWT is thus a 2-channel forward filter bank

transform. While the DWT produces the output

(
c m−1

w m−1

)
from the input c m , an

M-channel forward filter bank transform splits the output into M components, in-
stead of 2. Clearly, in the matrix of a forward filter bank transform the rows repeat
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cyclically with period M , similarly to MRA-matrices. In practice, the filters in a for-
ward filter bank transform are chosen so that they concentrate on specific frequency
ranges. This parallels what we saw for the filters of a wavelet, where one concen-
trated on high frequencies, one on low frequencies. Using a filter bank to split a
signal into frequency components is also called subband coding. But the filters in
a filter bank are usually not ideal bandpass filters. There exist a variety of different
filter banks, for many different purposes [37, 30]. In Chapter 7 we will say more on
how one can construct filter banks which can be used for subband coding.

Let us now turn to reverse filter bank transforms.

Definition 6.24 (Reverse filter bank transforms). Let G0,G1, . . . ,GM−1 be N ×N -
filters. An reverse filter bank transform G produces x ∈ RN from z ∈ RN in the
following way:

1. Define zkR
N as the vector where (zk )i M+k = z i M+k for all i so that 0 ≤ i M +

k < N , and (zk )s = 0 for all other s.

2.
x =G0z0 +G1z1 + . . .+GM−1z M−1. (6.32)

G0,G1, . . . ,GM−1 are also called synthesis filter components.

Again, this generalizes the IDWT and its synthesis filters, and the IDWT can be
seen as a 2-channel reverse filter bank transform. Also, in the matrix of a reverse fil-
ter bank transform, the columns repeat cyclically with period M , similarly to MRA-
matrices. Also in this more general setting the filters Gi are in general different from
the filters Hi . But we will see that, just as we saw for the Haar wavelet, there are im-
portant special cases where the analysis and synthesis filters are equal, and where
their frequency responses are simply shifts of oneanother. It is clear that defini-
tions 6.23 and 6.24 give the following diagram for computing forward and reverse
filter bank transforms:

H0x
↓M // zi M

↑M // z0

G0

��

H1x
↓M // zi M+1

↑M // z1

G1
  

x

==

EE

!!

��

...
...

... ⊕ // x

HM−2x
↓M // zi M+(M−2)

↑M // z M−2

GM−2

>>

HM−1x
↓M // zi M+(M−1)

↑M // z M−1

GM−1

FF

(6.33)
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Here ↓M and ↑M means that we extract every M ’th element in the vector, and add
M −1 zeros between the elements, respectively, similarly to how we previously de-
fined ↓2 and ↑2. Comparing Figure 6.6 with Figure 6.33 makes the similarities be-
tween wavelet transformations and the transformation used in the MP3 standard
very visible: Although the filters used are different, they are subject to the same kind
of processing, and can therefore be subject to the same implementations.

In general it may be that the synthesis filters do not invert exactly the analysis fil-
ters. If the synthesis system exactly inverts the analysis system, we say that we have
a perfect reconstruction filter bank. Since the analysis system introduces undesired
frequencies in the different channels, these have to cancel in the inverse transform,
in order to reconstruct the input exactly.

We will have use for the following simple connection between forward and re-
verse filter bank transforms, which follows imemdiately from the definitions.

Theorem 6.25 (Connection between forward and reverse filter bank transforms).
Assume that H is a forward filter bank transform with filters H0, . . . , HN−1. Then
H T is a reverse filter bank transform with filters G0 = (H0)T , . . . ,GN−1 = (HN−1)T .

6.3.1 Forward filter bank transform used for encoding in the MP3
standard

Now, let us turn to the MP3 standard. The MP3 standard document states that it
applies a filter bank, and explains the following procedure for applying this filter
bank, see p. 67 of the standard document (the procedure is slightly modified with
mathematical terminology adapted to this book):

1. Input 32 audio samples at a time.

2. Build an input sample vector X ∈ R512, where the 32 new samples are placed
first, all other samples are delayed with 32 elements. In particular the 32 last
samples are taken out.

3. Multiply X componentwise with a vector C (this vector is defined through a
table in the standard), to obtain a vector Z ∈ R512. The standard calls this
windowing.

4. Compute the vector Y ∈ R64 where Yi =∑7
j=0 Zi+64 j . The standard calls this a

partical calculation.

5. Calculate S = MY ∈R32, where M is the 32×64- matrix where Mi k = cos((2i +
1)(k −16)π/64). S is called the vector of output samples, or output subband
samples. The standard calls this matrixing.

The standard does not motivate these steps, and does not put them into the filter
bank transform framework which we have established. Also, the standard does not
explain how the values in the vector C have been constructed.
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Let us start by proving that the steps above really corresponds to applying a for-
ward filter bank transform, and let us state the corresponding filters of this trans-
form. The procedure computes 32 outputs in each iteration, and each of them
is associated with a subband. Therefore, from the standard we would guess that
we have M = 32 channels, and we would like to find the corresponding 32 filters
H0, H1, . . . , H31.

It may seem strange to use the name matrixing here, for something which ob-
viously is matrix multiplication. The reason for this name must be that the at the
origin of the procedure come from outside a linear algebra framework. The name
windowing is a bit strange, too. This really does not correspond to applying a win-
dow to the sound samples as we explained in Section 3.3.1. We will see that it rather
corresponds to applying a filter coefficient to a sound sample. A third and final thing
which seems a bit strange is that the order of the input samples is reversed, since we
are used to having the first sound samples in time with lowest index. This is perhaps
more usual to do in an engineering context, and not so usual in a mathematical con-
text. FIFO.

Clearly, the procedure above defines a linear transformation, and we need to
show that this linear transformation coincides with the procedure we defined for a
forward filter bank transform, for a set of 32 filters. The input to the transforma-
tion are the audio samples, which we will denote by a vector x . At iteration s of the
procedure above the input audio samples are x32s−512, x32s−510, . . . , x32s−1, and Xi =
x32s−i−1 due to the reversal of the input samples. The output to the transformation
at iteration s of the procedure are the S0, . . . ,S31. We assemble these into a vector z ,
so that the output at iteration s are z32(s−1) = S0, z32(s−1)+1 = S1,. . . ,z32(s−1)+31 = S31.

We will have use for the following cosine-properties, which are easily verified:

cos(2π(n +1/2)(k +2N r )/(2N )) = (−1)r cos(2π(n +1/2)k/(2N )) (6.34)

cos(2π(n +1/2)(2N −k)/(2N )) =−cos(2π(n +1/2)k/(2N )) . (6.35)

With the terminology above and using Property (6.34) the transformation can be
written as

z32(s−1)+n =
63∑

k=0
cos((2n +1)(k −16)π/64)Yk =

63∑
k=0

cos((2n +1)(k −16)π/64)
7∑

j=0
Zk+64 j

=
63∑

k=0

7∑
j=0

(−1) j cos((2n +1)(k +64 j −16)π/64)Zk+64 j

=
63∑

k=0

7∑
j=0

cos((2n +1)(k +64 j −16)π/64)(−1) j Ck+64 j Xk+64 j

=
63∑

k=0

7∑
j=0

cos((2n +1)(k +64 j −16)π/64)(−1) j Ck+64 j x32s−(k+64 j )−1.

Now, if we define {hr }511
r=0 by hk+64 j = (−1) j Ck+64 j , 0 ≤ j < 8,0 ≤ k < 64, and h(n) as

the filter with coefficients {cos((2n+1)(k−16)π/64)hk }511
k=0, the above can be simpli-
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fied as

z32(s−1)+n =
511∑
k=0

cos((2n +1)(k −16)π/64)hk x32s−k−1 =
511∑
k=0

(h(n))k x32s−k−1

= (h(n)x)32s−1 = (En−31h(n)x)32(s−1)+n .

This means that the output of the procedure stated in the MP3 standard can be com-
puted as a forward filter bank transform, and that we can choose the analysis filters
as Hn = En−31h(n).

Theorem 6.26 (Forward filter bank transform for the MP3 standard). Define
{hr }511

r=0 by hk+64 j = (−1) j Ck+64 j , 0 ≤ j < 8,0 ≤ k < 64, and h(n) as the filter with
coefficients {cos((2n + 1)(k − 16)π/64)hk }511

k=0. If we define Hn = En−31h(n), the
procedure stated in the MP3 standard corresponds to applying the corresponding
forward filter bank transform.

The filters Hn were shown in Example 3.37 as examples of filters which concen-
trate on specific frequency ranges. The hk are the filter coefficients of what is called a
prototype filter. This kind of filter bank is also called a cosine-modulated filter bank.
The multiplication with cos(2π(n +1/2)(k −16)/(2N ))hk , modulated the filter co-
efficients so that the new filter has a frequency response which is simply shifted
in frequency in a symmetric manner: In Exercise 9 in Section 3.5, we saw that, by
multiplying with a cosine, we could contruct new filters with real filter coefficients,
which also corresponded to shifting a prototype filter in frequency. Of course, multi-
plication with a complex exponential would also shift the frequency response (such
filter banks are called DFT-modulated filter banks), but the problem with this is that
the new filter has complex coefficients: It will turn out that cosine-modulated filter
banks can also be constructed so that they are invertible, and that one can find such
filter banks where the inverse is easily found.

The effect of the delay in the definition of Hn is that, for each n, the multipli-
cations with the vector x are “aligned”, so that we can save a lot of multiplications
by performing this multiplication first, and summing these. We actually save even
more multiplications in the sum where j goes from 0 to 7, since we here multiply
with the same cosines. The steps defined in the MP3 standard are clearly motivated
by the desire to reduce the number of multiplications due to these facts. A simple
arithmetic count illutrates these savings: For every 32 output samples, we have the
following number of multiplications:

1. The first step computes 512 multiplications.

2. The second step computes 64 sums of 8 elements each, i.e. a total of 7×64 =
448 additions (note that q = 512/64 = 8).

The standard says nothing about how the matrix multiplication in the third step can
be implemented. A direct multiplication would yield 32×64 = 2048 multiplications,
leaving a total number of multiplications at 2560. In a direct implementation of the
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forward filter bank transform, the computation of 32 samples would need 32×512 =
16384 multiplications, so that the procedure sketched in the standard gives a big
reduction.

The standard does not mention all possibilities for saving multiplications, how-
ever: We can reduce the number of multiplications even further, since clearly a DCT-
type implementation can be used for the matrixing operation. We already have an
efficient implementation for multiplication with a 32×32 type-III cosine matrix (this
is simply the IDCT). We have seen that this implementation can be chosen to reduce
the number of multiplications to N log2 N /2 = 80, so that the total number of multi-
plications is 512+80 = 592. Clearly then, when we use the DCT, the first step is the
computationally most intensive part.

6.3.2 Reverse filter bank transform used for decoding in the MP3
standard

Let us now turn to how decoding is specified in the MP3 standard, and see that we
can associate this with a reverse filter bank transform. The MP3 standard also states
the following procedure for decoding:

1. Input 32 new subband samples as the vector S.

2. Change vector V ∈ R512, so that all elements are delayed with 64 elements. In
particular the 64 last elements are taken out.

3. Set the first 64 elements of V as N S ∈R64, where N is the 64×32- matrix where
Ni k = cos((16+ i )(2k +1)π/64). The standard also calls this matrixing.

4. Build the vector U ∈R512 from V from the formulas U64i+ j =V128i+ j , U64i+32+ j =
V128i+96+ j for 0 ≤ i ≤ 7 and 0 ≤ j ≤ 31, i.e. U is the vector where V is first split
into segments of length 132, and U is constructed by assembling the first and
last 32 elements of each of these segments.

5. Multiply U componentwise with a vector D (this vector is defined in the stan-
dard), to obtain a vector W ∈R512. The standard also calls this windowing.

6. Compute the 32 next sound samples as
∑15

i=0 W32i+ j .

To interpret this also in terms of filters, rewrite first steps 4 to 6 as

x32(s−1)+ j =
15∑

i=0
W32i+ j =

15∑
i=0

D32i+ jU32i+ j

=
7∑

i=0
D64i+ jU64i+ j +

7∑
i=0

D64i+32+ jU64i+32+ j

=
7∑

i=0
D64i+ j V128i+ j +

7∑
i=0

D64i+32+ j V128i+96+ j . (6.36)
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The elements in V are obtained by “matrixing” different segments of the vector z .
More precisely, at iteration s we have that

V64r

V64r+1
...

V64r+63

= N


z32(s−r−1)

z32(s−r−1)+1
...

z32(s−r−1)+31

 ,

so that

V64r+ j =
31∑

k=0
cos((16+ j )(2k +1)π/64)z32(s−r−1)+k

for 0 ≤ j ≤ 63. Since also

V128i+ j =V64(2i )+ j V128i+96+ j =V64(2i+1)+ j+32,

we can rewrite Equation (6.36) as

7∑
i=0

D64i+ j

31∑
k=0

cos((16+ j )(2k +1)π/64)z32(s−2i−1)+k

+
7∑

i=0
D64i+32+ j

31∑
k=0

cos((16+ j +32)(2k +1)π/64)z32(s−2i−2))+k .

Again using Relation (6.34), this can be written as

31∑
k=0

7∑
i=0

(−1)i D64i+ j cos((16+64i + j )(2k +1)π/64)z32(s−2i−1)+k

+
31∑

k=0

7∑
i=0

(−1)i D64i+32+ j cos((16+64i + j +32)(2k +1)π/64)z32(s−2i−2)+k .

Now, if we define {gr }511
r=0 by g64i+s = (−1)i C64i+s , 0 ≤ i < 8,0 ≤ s < 64, and g (k) as the

filter with coefficients {cos((r +16)(2k +1)π/64)gr }511
r=0, the above can be simplified

as

31∑
k=0

7∑
i=0

(g (k))64i+ j z32(s−2i−1)+k +
31∑

k=0

7∑
i=0

(g (k))64i+ j+32z32(s−2i−2)+k

=
31∑

k=0

(
7∑

i=0
(g (k))32(2i )+ j z32(s−2i−1)+k +

7∑
i=0

(g (k))32(2i+1)+ j z32(s−2i−2)+k

)

=
31∑

k=0

15∑
r=0

(g (k))32r+ j z32(s−r−1)+k ,

where we observed that 2i and 2i +1 together run through the values from 0 to 15
when i runs from 0 to 7. Since z has the same values as zk on the indices 32(s − r −
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1)+k, this can be written as

=
31∑

k=0

15∑
r=0

(g (k))32r+ j (zk )32(s−r−1)+k

=
31∑

k=0
(g (k)zk )32(s−1)+ j+k =

31∑
k=0

((E−k g (k))zk )32(s−1)+ j .

By substituting a general s and j we see that x = ∑31
k=0(E−k g (k))zk . We have thus

proved the following.

Theorem 6.27 (Reverse filter bank transform for the MP3 standard). Define
{gr }511

r=0 by g64i+s = (−1)i C64i+s , 0 ≤ i < 8,0 ≤ s < 64, and g (k) as the filter with coef-

ficients {cos((r +16)(2k +1)π/64)gr }511
r=0. If we define Gk = E−k g (k), the procedure

stated in the MP3 standard corresponds to applying the corresponding reverse
filter bank transform.

In other words, both procedures for encoding and decoding stated in the MP3
standard both correspond to filter banks: A forward filter bank transform for the en-
coding, and a reverse filter bank transform for the decoding. Moreover, both filter
banks can be constructed by cosine-modulating prototype filters, and the coeffi-
cients of these prototype filters are stated in the MP3 standard (up to multiplication
with an alternating sign). Note, however, that the two prototype filters may be dif-
ferent. When we compare the two tables for these coefficients in the standard they
do indeed seem to be different. At closer inspection, however, one sees a connec-
tion: If you multiply the values in the D-table with 32, and reverse them, you get the
values in the C -table. This indicates that the analysis and synthesis prototype filters
are the same, up to multiplication with a scalar. This connection will be explained
in Section 8.3.

While the steps defined in the MP3 standard for decoding seem a bit more com-
plex than the steps for encoding, they are clearly also motivated by the desire to
reduce the number of multiplications. In both cases (encoding and decoding), the
window tables (C and D) are in direct connection with the filter coefficients of the
prototype filter: one simply adds a sign which alternates for every 64 elements. The
standard document does not mention this connection, and it is perhaps not so sim-
ple to find this connection in the literature (but see [26]).

The forward and reverse filter bank transforms are clearly very related. The fol-
lowing result clarifies this.

Theorem 6.28. (Connection between the forward and reverse filter bank trans-
forms in the MP3 standard). Assume that a forward filter bank transform has
filters on the form Hi = Ei−31h(i ) for a prototype filter h. Then G = E481H T is a
reverse filter bank transform with filters on the form Gk = E−k g (k), where g is a
prototype filter where the elements equal the reverse of those in h. Vice versa,
H = E481GT .
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Proof: From Theorem 6.25 we know that H T is a reverse filter bank transform
with filters

(Hi )T = (Ei−31h(i ))T = E31−i (h(i ))T .

(h(i ))T has filter coefficients cos((2i+1)(−k−16)π/64))h−k . If we delay all (Hi )T with
481 = 512−31 elements as in the theorem, we get a total delay of 512−31+31− i =
512− i elements, so that we get the filter

E512−i {cos((2i +1)(−k −16)π/64))h−k }k

= E−i {cos((2i +1)(−(k −512)−16)π/64))h−(k−512)}k

= E−i {cos((2i +1)(k +16)π/64))h−(k−512)}k .

Now, we define the prototype filter g with elements gk = h−(k−512). This has, just
as h, its support on [1,511], and consists of the elements from h in reverse order. If
we define g (i ) as the filter with coefficients cos((2i +1)(k +16)π/64))gk , we see that
E481H T is a reverse filter bank transform with filters E−i g (i ). Since g (k) now has been
defined as for the MP3 standard, and its elements are the reverse of those in h, the
result follows.

We will have use for this result in Section 8.3, when we find conditions on the
protototype filter in order for the reverse transform to invert the forward transform.
Preferably, the reverse filter bank transform inverts exactly the forward filter bank
transform. In Exercise 2 we construct examples which show that this is not the case.
In the same exercise we also find many examples where the reverse transform does
what we would expect. These examples will also be explained in Section 8.3, where
we also will see how one can get around this so that we obtain a system with perfect
reconstruction. It may seem strange that the MP3 standard does not do this.

In the MP3 standard, the output from the forward filter bank transform is pro-
cessed further, before the result is compressed using a lossless compression method.

Exercises for Section 6.3

1. The values Cq ,Dq can be found by calling the functions mp3ctable, mp3dtable
which can be found on the book’s webpage.

a. Use your computer to verify the connection we stated between the tables
C and D , i.e. that Di = 32Ci for all i .

b. Plot the frequency responses of the corresponding prototype filters, and
verify that they both are lowpass filters. Use the connection from Theorem (6.26)
to find the prototype filter coefficients from the Cq .

2. It is not too difficult to make implementations of the forward and reverse steps as
explained in the MP3 standard. In this exercise we will experiment with this. In your
code you can for simplicity assume that the input and output vectors to your meth-
ods all have lengths which are multiples of 32. Also, use the functions mp3ctable,
mp3dtable mentioned in the previous exercise.
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a. Write a function mp3forwardfbt which implements the steps in the for-
ward direction of the MP3 standard.

b. Write also a function mp3reversefbt which implements the steps in the
reverse direction.

Summary

We started this chapter by noting that, by reordering the target base of the DWT,
the change of coordinate matrix took a particular form. From this form we under-
stood that the DWT could be realized in terms of two filters H0 and H1, and that
the IDWT could be realized in a similar way in terms of two filters G0 and G1. This
gave rise to what we called the filter representation of wavelets. The filter represen-
tation gives an entirely different view on wavelets: instead of constructing function
spaces with certain properties and deducing corresponding filters from these, we
can instead construct filters with certain properties (such as alias cancellation and
perfect reconstruction), and attempt to construct corresponding mother wavelets,
scaling functions, and function spaces. This strategy, which replaces problems from
function theory with discrete problems, will be the subject of the next chapter. In
practice this is what is done.

We stated what is required for filter bank matrices to invert each other: The fre-
quency responses of the lowpass filters needed to satisfy a certain equation, and
once this is satsified the highpass filters can easily be obtained in the same way we
previously obtained highpass filters from lowpass filters. We will return to this equa-
tion in the next chapter.

A useful consequence of the filter representation was that we could reuse ex-
isting implementations of filters to implement the DWT and the IDWT, and reuse
existing theory, such as symmetric extensions. For wavelets, symmetric extensions
are applied in a slightly different way, when compared to the developments which
lead to the DCT. We looked at the frequency responses of the filters for the wavelets
we have encountered upto now. From these we saw that G0, H0 were lowpass filters,
and that G1, H1 were highpass filters, and we argued why this is typically the case for
other wavelets as well. The filter reprersentation was also easily generalized from
2 to M > 2 filters, and such transformations had a similar interpretation in terms
of splitting the input into a uniform set of frequencies. Such transforms were gen-
erally called filter bank transforms, and we saw that the processing performed by
the MP3 standard could be interpreted as a certain filter bank transform, called a
cosine-modulated filter bank. This is just one of many possible filter banks. In fact,
the filter bank of the MP3 standard is largely outdated, since it is too simple, and
as we will see it does not even give perfect reconstruction (only alias cancellation
and no phase distortion). It is merely chosen here since it is the simplest to present
theoretically, and since it is perhaps the best known standard for compression of
sound. Other filters banks with better properties have been constructed, and they
are used in more recent standards. In many of these filter banks, the filters do not
partition frequencies uniformly, and have been adapted to the way the human au-
ditory system handles the different frequencies. Different contruction methods are
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used to construct such filter banks. The motivation behind filter bank transforms
is that their output is more suitable for further processing, such as compression, or
playback in an audio system, and that they have efficient implementations.

We mentioned that the MP3 standard does not say how the prototype filters were
chosen. We will have more to say on what dictates their choice in Section 8.3.

There are several differences between the use of wavelet transformations in wavelet
theory, and the use of filter bank transforms in signal processing theory One is that
wavelet transforms are typically applied in stages, while filter bank transforms of-
ten are not. Nevertheless, such use of filter banks also has theoretical importance,
and this gives rise to what is called tree-structured filter banks [37]. Another differ-
ence lies in the use of the term perfect reconstruction system. In wavelet theory this
is a direct consequence of the wavelet construction, since the DWT and the IDWT
correspond to change of coordinates to and from the same bases. The alternative
QMF filter bank was used as an example of a filter bank which stems from signal
processing, and which also shows up in wavelet transformation. In signal process-
ing theory, one has a wider perspective, since one can design many useful systems
with fast implementations when one replaces the perfect reconstruction require-
ment with a near perfect reconstruction requirement. One instead requires that the
reverse transform gives alias cancellation. The classical QMF filter banks were an
example of this. The original definition of classical QMF filter banks are from [7],
and differ only in a sign from how they are defined here.

All filters we encounter in wavelets and filter banks in this book are FIR. This
is just done to limit the exposition. Much useful theory has been developed using
IIR-filters.
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Chapter 7
Constructing interesting wavelets

In the previous chapter we saw that, once we have an MRA with corresponding scal-
ing function and mother wavelet, we could write down corresponding forward and
reverse filter bank matrices. We also examplified this in terms of the wavelets we
have looked at. In practie, however, it is difficult to come up with good choices of
such functions. Constructing such matrices which invert each other is a discrete
problem, however, and may be more easily solved. It is therefore tempting to turn
the problem around and ask the following question: Can one, from usable filters
H0, H1,G0,G1, where the associated forward and reverse filter bank transforms re-
vert each other, also associate a scaling function φ and a mother wavelet ψ? Can
one also associate a scaling function and mother wavelet with the dual filter bank
transforms? If so we will denote these by φ̃ and ψ̃, respectively. And if we can do
this, what are the appropriate conditions to put on the filters in order for them to be
useful in approximation of functions?

To ensure that the mother wavelets have a given number of vanishing moments,
or that the scaling functions are differentaible? Answers to these questions would
certainly transfer even more of the theory of wavelets to the theory of filters.

In this chapter we will indeed see that we can find answers to these questions.
We will first see how we can associate scaling functions and mother wavelets from
filters, and for which filters this association can be done. There are two things we will
be concerned with. First of all, which filters produce scaling functions and mother
wavelets which are differentiable? This question is clearly important in cases where
we know something about the regularity of the function we approximate. Secondly,
which filters produce mother wavelets with a given number of vanishing moments?
It will also be clear why it is desirable for the mother wavelet to have many vanishing
moments, in terms of approximation of functions.

Finally, we will also solve for these properties to find the simplest filters with
a given number of vanishing moments, or a given degree of differentiability. Sev-
eral of these filters enjoy a widespread use in applications. We will look at two of
these. These are used for lossless and lossy compression in JPEG2000, which is a
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much used standard. These wavelets all have symmetric filters. We end the chapter
by looking at a family of orthonormal wavelets with different number of vanishing
moments.

7.1 From filters to scaling functions and mother wavelets

Let us turn to the first issue mentioned in the introduction: If we have filters H0, H1,
G0, G1 so that the corresponding forward and reverse filter bank transforms invert
oneanother, how can we associate scaling functions and mother wavelets (and their
duals) with these? And for which filters can this association be done?

Denote by φ, φ̃ the scaling functions for the transform and the dual transform,
respectively. Since (H0)T is the lowpass filter in the dual reverse transform we hope
that we can find unique functions φ, φ̃ satisfying (see Equation (6.7))

φ(t ) =
2N−1∑
n=0

(G0)n,0φ1,n(t ) (7.1)

φ̃(t ) =
2N−1∑
n=0

((H0)T )n,0φ̃1,n(t ) =
2N−1∑
n=0

(H0)0,nφ̃1,n(t ). (7.2)

We define as before the resolution space Vm as the space spanned byφm = {φm,n}n ,
but we now also define the “dual resolution space” Ṽm as the space spanned by
φ̃m = {φ̃m,n}n . Hopefully φ,φ̃ are bases when φ, φ̃ are defined in this way. Sim-
ilarly we denote by ψ,ψ̃ the mother wavelet for the transform and the dual trans-
form, respectively. We also hope that we can find unique functions φ, φ̃ satisfying
(see Equation (6.8))

ψ(t ) =
2N−1∑
n=0

(G1)n,1φ1,n(t ) (7.3)

ψ̃(t ) =
2N−1∑
n=0

((H1)T )n,1φ̃1,n(t ) =
2N−1∑
n=0

(H1)1,nφ̃1,n(t ). (7.4)

As before we define the detail space Wm as the space spanned by ψm =ψm,n , and
the “dual detail space” W̃m as the space spanned by ψ̃m = {ψ̃m,n}n . As was the
case for the wavelet of piecewise linear functions, W̃m is typically different from
the orthogonal complement of Ṽm−1 in Ṽm , but still constructed in such a way that
(Ṽm = Ṽm−1 ⊕ W̃m−1. The DWT and the dual DWT can now be defined as before,
assuming that these functions exist.
Example 7.1. Let us return to the alternative piecewise linear wavelet. In Exam-
ple 6.19 we found the filters H0, H1 for this wavelet, and these determine the dual
scaling function and the dual mother wavelet. We already know how the scaling
function and the mother wavelet look, but how do the dual functions look? It turns
out that there is usually no way to find analytical expressions for these dual functions
(as is the case for the scaling function and the mother wavelet itself in most cases),
but that there still is an algorithm we can apply in order to see how these functions
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Figure 7.1: Dual scaling function and dual mother wavelet for the alternative piece-
wise linear wavelet.

look. This algorithm is called the cascade algorithm, and works essentially by com-
puting the coordinates of φ,ψ (or φ̃,ψ̃) in φm (or φ̃m). By increasing m, we have
previously argued that these coordinates are good approximations to the samples of
the functions.

To be more specific, we start with the following observation for the dual func-
tions (similar observations hold for the scaling function and the mother wavelet
also):

1. the coordinates of φ̃ in (φ̃0,ψ̃0,ψ̃1 . . .) is the vector with 1 first, followed by
only zeros,

2. the coordinates of ψ̃ in (φ̃0,ψ̃0,ψ̃1 . . .) is the vector with N zeros first, then a
1, and then only zeros.

The length of these vectors is N 2m . The coordinates in φ̃m for φ̃ and ψ̃ can be ob-
tained by applying the m-level IDWT for the dual wavelet (i.e. the filters (H0)T , (H1)T

are used) to these vectors. In Exercise 1 we will study code which uses this approach
to approximate the scaling function and mother wavelet. In Figure 7.1 we have plot-
ted the resulting coordinates in φ̃10, and thus a good approximation to φ̃ and ψ̃. We
see that these functions look very irregular. Also, they are very different from the
original scaling function and mother wavelet. We will later argue that this is bad,
it would be much better if φ ≈ φ̃ and ψ ≈ ψ̃. From Theorem 6.11 it follows that
the support sizes of these dual functions are are 4 and 3, respectively, so that their
supports should be [−2,2] and [−1,2], respectively. This is the reason why we have
plotted the functions over [−2,2]. The plots seem to confirm the support sizes we
have computed. ♣

Let us formalize the cascade algorithm from the previous example as follows.
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Definition 7.2 (The cascade algorithm). The cascade algorithm applies a change
of coordinates for the functions φ̃,ψ̃ from (φ̃0,ψ̃0,ψ̃1 . . .) to φ̃m , and uses the new
coordinates as an an approximation to the function values of these functions.

While the previous example certainly shows that the dual functions can be visu-
alized if they exist, we need to investigate when the functional equations defining
them are solvable. In this direction, and let s be the analog filter with convolution
kernel φ. Using Equation (7.1), the frequency response of sφ is

λsφ (ν) =
∫ ∞

−∞
φ(t )e−2πiνt d t =

∫ ∞

−∞

(∑
n

(G0)n,0
p

2φ(2t −n)

)
e−2πiνt d t

=p
2
∑
n

∫ ∞

−∞
(G0)n,0φ(2t −n)e−2πiνt d t = 1p

2

∑
n

∫ ∞

−∞
(G0)n,0φ(t )e−2πiν(t+n)/2d t

= 1p
2

∑
n

∫ ∞

−∞
(G0)n,0e−2πiνn/2φ(t )e−2πi (ν/2)t )d t

= 1p
2

(∑
n

(G0)n,0e−2πiνn/2
)∫ ∞

−∞
φ(t )e−2πi (ν/2)t )d t = λG0 (2πν/2)p

2
λsφ (ν/2).

(7.5)

If we also define the analog filters sψ, sφ̃, sψ̃ as those with convolution kernelsψ, φ̃,ψ̃,
respectively, we get similarly

λsφ (ν) = λG0 (2πν/2)p
2

λsφ (ν/2) λsψ (ν) = e−2πiν/2λG1 (2πν/2)p
2

λsφ (ν/2)

λsφ̃ (ν) = λH0 (−2πν/2)p
2

λsφ̃ (ν/2) λsψ̃ (ν) = e−2πiν/2λH1 (−2πν/2)p
2

λsφ̃ (ν/2)

Clearly these expressions can be continued recursively, so that we obtain the follow-
ing:

Theorem 7.3. Define

gN (ν) =
N∏

s=1

λG0 (2πν/2s )p
2

χ[0,1](2−Nν) hN (ν) =
N∏

s=1

λH0 (−2πν/2s )p
2

χ[0,1](2−Nν).

(7.6)

Then on [0,2π2N ] we have that

λsφ (ν) = gN (ν)λsφ (ν/2N ) λsψ (ν) = e−2πiν/2λG1 (2πν/2)

λG0 (2πν/2)
λsφ (ν)

λsφ̃ (ν) = hN (ν)λsφ̃ (ν/2N ) λsψ̃ (ν) = e−2πiν/2λH1 (−2πν/2)

λH0 (−2πν/2)
λsφ̃ (ν)
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Here we have used that

λsψ (ν) = e−2πiν/2λG1 (2πν/2)

λG0 (2πν/2)

λG0 (2πν/2)p
2

λsφ (ν/2) = e−2πiν/2λG1 (2πν/2)

λG0 (2πν/2)
g1(ν)λsφ (ν/2)

= e−2πiν/2λG1 (2πν/2)

λG0 (2πν/2)
λsφ (ν)

λsψ̃ (ν) = e−2πiν/2λH1 (−2πν/2)

λH0 (−2πν/2)

λH0 (−2πν/2)p
2

λsφ̃ (ν/2) = e−2πiν/2λH1 (−2πν/2)

λH0 (−2πν/2)
h1(ν)λsφ̃ (ν/2)

= e−2πiν/2λH1 (−2πν/2)

λH0 (−2πν/2)
λsφ̃ (ν)

Note that gN+1(ν) = λG0 (2πν/2)p
2

gN (ν/2), hN+1(ν) = λH0 (−2πν/2)p
2

hN (ν/2). We will con-

tinue based on two assumptions:

1. There exist functions uN , vN defined on R so that gN =λsuN
and hN =λsvN

2. The limits limN→∞ uN (t ) and limN→∞ vN (t ) exist for all t .

If these are fulfilled we will define the scaling functions by φ(t ) = c limN→∞ uN (t )
and φ̃= 1

c limN→∞ vN (t ), where c is a constant we can choose as we wish. Following
the calculation above under these assumptions, we see that

uN+1(t ) =∑
n

(G0)n,0
p

2uN (2t −n) vN+1(t ) =∑
n

(H0)0,n
p

2vN (2t −n).

Note first that g0(ν) = h0(ν) =χ[0,1](ν), and that =χ[0,1](ν).
Note first that, since 〈u0, v0〉 = 〈g0,h0〉,∫ −∞

∞
u0(t )v0(t −k)d t =

∫ −∞

∞
g0(ν)h0(ν)e2πi kνdν=

∫ 2π

0
e−2πi kνdν= δk,0.

Now assume that we have proved that 〈uN (t ), vN (t −k)〉 = δk,0. We then get that

〈uN+1(t ), vN+1(t −k)〉 = 2
∑

n1,n2

(G0)n1,0(H0)0,n2〈uN (2t −n1), vN (2(t −k)−n2)〉

= 2
∑

n1,n2

(G0)n1,0(H0)0,n2〈uN (t ), vN (t +n1 −n2 −2k)〉

= ∑
n1,n2|n1−n2=2k

(G0)n1,0(H0)0,n2 =
∑
n

(H0)0,n−2k (G0)n,0

=∑
n

(H0)2k,n(G0)n,0 =
∑
n

H2k,nGn,0 = (HG)2k,0 = I2k,0 = δk,0

where we did the change of variables u = 2t −n1. Taking the limit as N →∞, we get
that 〈φ, φ̃0,k〉 = δk,0, regardless of c. From this it immediately follows that 〈φm,k , φ̃m,l 〉 =
δk,l for all k, l ,m, and

〈ψ0,k ,ψ̃0,l 〉 =
∑

n1,n2

(G1)n1,1(H1)1,n2〈φ1,n1+2k (t )φ̃1,n2+2l (t )〉

=∑
n

(G1)n,1(H1)1,n+2(k−l ) =
∑
n

(H1)1+2(l−k),n(G1)n,1 =
∑
n

H1+2(l−k),nGn,1

= (HG)1+2(l−k),1 = δk,0.

243



Similarly,

〈ψ0,k φ̃0,l 〉 =
∑

n1,n2

(G1)n1,1(H0)0,n2〈φ1,n1+2k (t )φ̃1,n2+2l (t )〉 =∑
n

(G1)n,1(H0)0,n+2(k−l )

=∑
n

(H0)2(l−k),n(G1)n,1 =
∑
n

H2(l−k),nGn,1 = (HG)2(l−k),1 = 0

〈φ0,kψ̃0,l 〉 =
∑

n1,n2

(G0)n1,0(H1)1,n2〈φ1,n1+2k (t )φ̃1,n2+2l (t )〉 =∑
n

(G0)n,0(H1)1,n+2(k−l )

=∑
n

(H1)1+2(l−k),n(G0)n,0 =
∑
n

H1+2(l−k),nGn,0 = (HG)1+2(l−k),0 = 0.

From this we also get with a simple change of coordinates that

〈ψm,k ,ψ̃m,l 〉 = 〈ψm,k , φ̃m,l 〉 = 〈φm,k ,ψ̃m,l 〉 = 0.

Finally, if m′ < m,φm′,k ′ ,ψm′,k can be written as a linear combination ofφm,l , so that
〈φm′,k ,ψ̃m,l 〉 = 〈ψm′,k ,ψ̃m,l 〉 = 0 due to what we showed above. Similarly, 〈φ̃m′,k ,ψm,l 〉 =
〈ψ̃m′,k ,ψm,l 〉 = 0. Before we summarize, let us make the following definition.

Definition 7.4 (Biorthogonal bases). We say that two bases { f n}, {g m} are
biorthogonal if 〈 f n , g m〉 = 0 whenever n 6= m.

Using this concept the above deductions can be summarized as follows.

Theorem 7.5. Let H0, H1,G0,G1 be filters so that the corresponding forward and
reverse filter bank transforms invert each other. Assume that the limits

φ(t ) = c lim
N→∞

uN (t ) φ̃(t ) = 1

c
lim

N→∞
vN (t ) (7.7)

exist, where uN , vN are so that gN =λsuN
and hN =λsvN

, with gN and hN defined
by Equation (7.6). Define also ψ,ψ̃ by equations (7.3)-(7.4). Then Equation (7.1)
is also fulfilled. Moreover,

1. the bases {φm,n}n and {φ̃m,n}n are biorthogonal,

2. the bases {ψm′,n ,φ0,n}n,m′<m and {ψ̃m′,n , φ̃0,n}n,m′<m are biorthogonal.

Thus, the source bases of the DWT and the dual DWT are biorthogonal, and the
target bases are also biorthogonal.

From this we can make the following definition as a generalization OF MRA.

Definition 7.6 (Dual multiresolution analysis). A Dual multiresolution analysis
consists of two nested sequence of function spaces

V0 ⊂V1 ⊂V2 ⊂ ·· · ⊂Vm ⊂ ·· · Ṽ0 ⊂ Ṽ1 ⊂ Ṽ2 ⊂ ·· · ⊂ Ṽm ⊂ ·· ·

so that
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1. There exist functionsφ, φ̃, called a scaling function and a dual scaling func-
tion, so that φ,φ̃ are bases for V0 and Ṽ0, respectively, and so that these
bases are biorthogonal.

2. The pairs (φ,Vm), (φ̃,Ṽm) both satisfy requirements 1-3 from Defini-
tion 5.38.

From our construction it is also clear that a perfect reconstruction filter bank
gives rise to a dual MRA, and how the associated mother wavelets are constructed.
Definition 7.6 has the original definition of an MRA (orthonormal MRA) as a special
case, since φ̃=φ then. Clearly, ifφ= φ̃ and the basis {φ(t −n)}0≤n<N is orthonormal,
the approximations above coincide with the projection of f onto Vm . When φ 6= φ̃,
however, there are no reasons to believe that these approximations equal the best
approximations to f from Vm . For non-orthonormal MRA’s, we have no procedure
for computing best approximations. Anyway, we have mentioned that Theorem 5.40
is valid also when {φ(t −n)}n are not orthogonal, i.e. 2−m∫ N

0 φm,0(t )d t
f (n/2m)φm,n(t ) has

validity as an approximation to f also in this more general setting. The following is
also clear from the theorem above.

Theorem 7.7. For all f ∈Vm , f̃ ∈ Ṽm , we can write

f (t ) =∑
n
〈 f (t ), φ̃m,n〉φm,n =∑

n
〈 f (t ), φ̃0,n〉φ0,n + ∑

m′<m,n

〈 f (t ),ψ̃m′,n〉ψm′,n

f̃ (t ) =∑
n
〈 f̃ (t ),φm,n〉φ̃m,n =∑

n
〈 f̃ (t ),φ0,n〉φ̃0,n + ∑

m′<m,n

〈 f̃ (t ),ψm′,n〉ψ̃m′,n .

Thus,

1. The input to the DWT is cm,n = 〈 f , φ̃m,n〉, and the output of the DWT is
c0,n = 〈 f , φ̃0,n〉 and wm′,n = 〈 f ,ψ̃m′,n〉

2. The input to the dual DWT is c̃m,n = 〈 f̃ ,φm,n〉, and the output of the dual
DWT is c̃0,n = 〈 f̃ ,φ0,n〉 and w̃m′,n = 〈 f̃ ,ψm′,n〉.

Since the DWT is the change of coordinates from φ1 to (φ0,ψ0), and similarly
for the IDWT, inserting these basis functions for f we obtain the following corollary.

Corollary 7.8. All entries in both the DWT and the IDWT matrices (and their dual
matrices, since these are obtained by transposing these matrices) can be written
as inner products. More precisely,

1. in the DWT matrix, column k has entries 〈φ1,k , φ̃0,l 〉, and 〈φ1,k ,ψ̃0,l 〉,
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2. in the IDWT matrix, column 2k has entries 〈φ0,k , φ̃1,l 〉, and column 2k +1
has entries 〈ψ0,k , φ̃1,l 〉.

Such expansions also make sense when the functions are not in Vm ,Ṽm . In fact,∑
n
〈 f (t ), φ̃m,n〉φm,n(t ) and

∑
n
〈 f (t ),φm,n〉φ̃m,n(t )

serve as approximations to f from Vm and Ṽm , respectively (although they are typi-
cally not the best approximations). To see why, if f (t ) =∑

n cnφm,n(t )+ε(t ) for ε(t ) a
small function, then the first approximation is∑

n
〈∑

n′
cn′φm,n′ (t )+ε(t ), φ̃m,n〉φm,n(t ) =∑

n
cnφm,n(t )+∑

n
〈ε(t ), φ̃m,n〉φm,n(t )

= f (t )+∑
n
〈ε(t ), φ̃m,n〉φm,n(t )−ε(t ).

Clearly, the difference
∑

n〈ε(t ), φ̃m,n〉φm,n(t )−ε(t ) from f is small, at least under suit-
able assumptions on the scaling function and the dual scaling function, and when ε
is small.

Now we need to say something about when the products gN (ν), hN (ν) converge.

Theorem 7.9. Assume that H0, H1, G0, G1 are FIR-filters, and that λG0 (0) =
λH0 (0) = p

2. Then limN→∞ gN (ν), limN→∞ hN (ν) exist for all ν, and the limits
are infinitely differentiable functions. Also, the following hold.

1. The multiplicity of a zero at ν= 0 for λsψ (ν) equals that of λG1 (ω) at ω= 0.

2. The multiplicity of a zero at ν= 0 for λsψ̃ (ν) equals that of λH1 (ω) at ω= 0.

Proof: Setting ν = 0 in equations (7.6), we see that we must have that λG0 (0) =
λH0 (0) =p

2, otherwise the infinite products above will not converge. This explains
the requirement λG0 (0) = λH0 (0) = p

2. Since the filters are FIR, λH0 (ω) and λG0 (ω)
are polynomials in e iω, and they must thus have a bounded derivative on [0,2π].
Since λG0 (0) =λH0 (0) =p

2, there exists c > 0 so that

|λG0 (ω)| ≤p
2+ c|ω| and |λH0 (ω)| ≤p

2+ c|ω|.

We have that∣∣∣∣ ∞∏
s=2

λH0 (−2πν/2s )p
2

∣∣∣∣≤ ∞∏
s=2

p
2+ cπν/2s−1

p
2

=
∞∏

s=2

(
1+ cπν/2s−3/2)

≤
∞∏

s=2
ecπν/2s−3/2 = e

∑∞
s=2 cπν/2s−3/2 = ecπν

p
2.
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It follows that the product converge. Differentiability follows from the fact that the
infinite product converges uniformly and absolutely on compact sets. The last state-
ment follows from the expressions, and from that λG0 (0) =λH0 (0) =p

2.
We also need to state why we can find functions uN , vN so that gN = λsuN

and

hN =λsvN
. Clearly, if g (ν) is integrable and decays faster than |ν|−1/2, then g ∈ L2(R),

and it follows from standard Fourier analysis that there exists a unique φ ∈ L2(R) so
that λsφ (ν) = g (ν). Moreover, φ can be recovered by

φ(t ) =
∫ ∞

−∞
g (ν)e2πiνt dν.

If also g decays faster than ν−1−z for some integer z ≥ 0, then φ is z times differen-
tiable. To prove this, the integral above is bounded by

∫ ∞
−∞ν−1−z e2πiνt dν, and if we

differentiate z times w.r.t. t we get
∫ ∞
−∞ν−1e iνt dν, which converges. We therefore

have the following result.

Theorem 7.10. It is possible to construct scaling functions φ, φ̃ ∈ L2(R) from
the filters G0, H0 when the infinite products limN→∞ gN (ν), limN→∞ hN (ν) decay
faster than |ν|−1/2. If they also decay faster than ν−1−z for some integer z ≥ 0, then
φ, φ̃ will also be z times differentiable.

We also prove the following result, which will turn out to be useful in the next
section.

Theorem 7.11. Assume that

λG0 (ν) =
(

1+e−iν

2

)N1

r1(ν) λH0 (ν) =
(

1+e−iν

2

)N2

r2(ν)

and that the ri (ν) are bounded by Bi < 2γi on [0,2π]. Then

g (ν) ≤C1(1+|ν|)−(N1−γ1)−ε1 h(ν) ≤C2(1+|ν|)−(N2−γ2)−ε2

where εi = γi − log2 Bi . In particular, φ is N1 −γ1 times differentiable, and φ̃ is
N2 −γ2 times differentiable.

We will not prove this. We refer instead to [8] for a proof. In that paper it is also
proved that there is a connection between the nonzero filter coefficients of H0,G0,
and the supports of φ, φ̃. Similarly, there exist ψ,ψ̃ so that λ2 =λs−ψ(−t ) , λ4 =λs−ψ̃(−t ) .
Finally we prove the following.

Exercises for Section 7.1

1. Let us consider the following code, which shows how the cascade algorithm can
be used to plot the scaling functions and the mother wavelet of a wavelet and its
dual wavelet with given kernels, over the interval [a,b].
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function plotwaveletfunctions(invf,a,b)
% Plot scaling functions and mother wavelets (dual or not),...
% using the cascade algorithm.
nres = 10;
t=linspace(a,b,(b-a)*2^nres);

coordsvm = zeros((b-a)*2^nres, 1);
coordsvm(1) = 1;
coordsvm = 2^(nres/2)*IDWTImpl(coordsvm, nres, invf, 0, 0);
subplot(2, 2, 1);
plot(t,coordsvm([(b*2^nres+1):((b-a)*2^nres) 1:(b*2^nres)]))
title(’\phi’)

coordsvm = zeros((b-a)*2^nres, 1);
coordsvm(b - a + 1) = 1;
coordsvm = 2^(nres/2)*IDWTImpl(coordsvm, nres, invf, 0, 0);
subplot(2, 2, 2);
plot(t,coordsvm([(b*2^nres+1):((b-a)*2^nres) 1:(b*2^nres)]))
title(’\psi’)

coordsvm = zeros((b-a)*2^nres, 1);
coordsvm(1) = 1;
coordsvm = 2^(nres/2)*IDWTImpl(coordsvm, nres, invf, 0, 1);
subplot(2, 2, 3);
plot(t,coordsvm([(b*2^nres+1):((b-a)*2^nres) 1:(b*2^nres)]))
title(’\phi~’)

coordsvm = zeros((b-a)*2^nres, 1);
coordsvm(b - a + 1) = 1;
coordsvm = 2^(nres/2)*IDWTImpl(coordsvm, nres, invf, 0, 1);
subplot(2, 2, 4);
plot(t,coordsvm([(b*2^nres+1):((b-a)*2^nres) 1:(b*2^nres)]))
title(’\psi~’)

If you now run

% Plot wavelet functions for alternative piecewise linear wavelet
plotwaveletfunctions(@IDWTKernelpwl2, -2, 6)

you will see the scaling functions and mother wavelets for the alternative piecewise
linear wavelet in Figure 7.1.

a. Explain that the input to IDWTImpl in the code above are the coordinates
of φ0,0, ψ0,0, φ̃0,0, and ψ̃0,0 in the basis (φ0,ψ0,ψ1,ψ2, · · · ,ψm−1), respec-
tively.

b. In the code above, we wanted the the functions to be plotted on [a,b].
Explain from this why the coordsvm-vector have been rearranged as on the
the line where the plot-command is called.

c. In the code above, we turned off symmetric extensions (thesymm-argument
is 0). Attempt to use symmetric extensions instead, and observe the new plots
you obtain. Can you explain why these new plots do not show the correct
functions, while the previous plots are correct?
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d. In the code you see that all values are scaled with the factor 2m/2 before
they are plotted. Can you think out an explanation to why this is done?

e. Use the function plotwaveletfunctions to plot all scaling functions
and mother wavelets for the Haar wavelets and the piecewise linear wavelet
also.

2. In Exercise 10 in Section 6.1 we constructed a new mother wavelet ψ̂ for piece-
wise linear functions by finding constants α,β,γ,δ so that

ψ̂=ψ−αφ0,0 −βφ0,1 −δφ0,2 −γφ0,N−1.

Use the cascade algorithm to plot ψ̂. Do this by using the wavelet kernel for the
piecewise linear wavelet (do not use the code above, since we have not implemented
kernels for this wavelet yet).

3. Since the dual of a wavelet is constructed by transposing filters, one may suspect
that taking the dual is the same as taking the transpose. However, show that the
DWT, the dual DWT, the transpose of the DWT, and the transpose of the dual DWT,
can be computed as follows:

DWTImpl( x, m, DWTkernel, 1, 0); % DWT
DWTImpl( x, m, DWTkernel, 1, 1); % Dual DWT
IDWTImpl(x, m, IDWTkernel, 1, 1); % Transpose of the DWT
IDWTImpl(x, m, IDWTkernel, 1, 0); % Transpose of the dual DWT

Similar statements hold for the IDWT as well.

7.2 Vanishing moments

The scaling functions and mother wavelets we constructed in Chapter 5 were very
simple. They were however, enough to provide scaling functions which were differ-
entiable. This may clearly be important for signal approximation, at least in cases
where we know certain things about the regularity of the functions we approximate.
However, there seemed to be nothing which dictated how the mother wavelet should
be chosen in order to be useul. To see that this may pose a problem, consider the
mother wavelet we hose for piecewise linear functions. Set N = 1 and consider the
space V10, which has dimension 210. When we apply a DWT, we start with a function
g10 ∈ V10. This may be a very good representation of the underlying data. However,
when we compute gm−1 we just pick every other coefficient from gm . By the time we
get to g0 we are just left with the first and last coefficient from g10. In some situations
this may be adequate, but usually not.

Idea 7.12. We would like a wavelet basis to be able to represent f efficiently. By
this we mean that the approximation f (m) =∑

n c0,nφ0,n +∑
m′<m,n wm′,nψm′,n to

f from Observation 7.15 should converge quickly for the f we work with, as m
increases. This means that, with relatively few ψm,n , we can create good approxi-
mations of f .
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In this section we will address a property which the mother wavelet must fulfill
in order to be useful in this respect. To motivate this property, let us first use Theo-
rem 7.7 to write f ∈Vm as

f =
N−1∑
n=0

〈 f , φ̃0,n〉φ0,n +
m−1∑
r=0

2r N−1∑
n=0

〈 f ,ψ̃r,n〉ψr,n . (7.8)

If f is s times differentiable, it can be represented as f = Ps (x)+Qs (x), where Ps

is a polynomial of degree s, and Qs is a function which is very small (Ps could for
instance be a Taylor series expansion of f ). If in addition 〈t k ,ψ̃〉 = 0, for k = 1, . . . , s,
we have also that 〈t k ,ψ̃r,t 〉 = 0 for r ≤ s, so that 〈Ps ,ψ̃r,t 〉 = 0 also. This means that
Equation (7.8) can be written

f =
N−1∑
n=0

〈Ps +Qs , φ̃0,n〉φ0,n +
m−1∑
r=0

2r N−1∑
n=0

〈Ps +Qs ,ψ̃r,n〉ψr,n

=
N−1∑
n=0

〈Ps +Qs , φ̃0,n〉φ0,n +
m−1∑
r=0

2r N−1∑
n=0

〈Ps ,ψ̃r,n〉ψr,n +
m−1∑
r=0

2r N−1∑
n=0

〈Qs ,ψ̃r,n〉ψr,n

=
N−1∑
n=0

〈 f , φ̃0,n〉φ0,n +
m−1∑
r=0

2r N−1∑
n=0

〈Qs ,ψ̃r,n〉ψr,n .

Here the first sum lies in V0. We see that the wavelet coefficients from Wr are 〈Qs ,ψ̃r,n〉,
which are very small since Qs is small. This means that the detail in the different
spaces Wr is very small, which is exactly what we aimed for. Let us summarize this
as follows:

Theorem 7.13 (Vanishing moments). If a function f ∈ Vm is r times differen-
tiable, and ψ̃ has r vanishing moments, then f can be approximated well from
V0. Moreover, the quality of this approximation improves when r increases.

Having many vanishing moments is thus very good for compression, since the
corresponding wavelet basis is very efficient for compression. In particular, if f is a
polynomial of degree less than or equal to k−1 and ψ̃has k vanishing moments, then
the detail coefficients wm,n are exactly 0. Since (φ,ψ) and (φ̃, ψ̃) both are wavelet
bases, it is equally important for both to have vanishing moments. We will in the
following concentrate on the number of vanishing moments of ψ.

The Haar wavelet has one vanishing moment, since ψ̃=ψ and
∫ N

0 ψ(t )d t = 0 as
we noted in Observation 5.14. It is an exercise to see that the Haar wavelet has only
one vanishing moment, i.e.

∫ N
0 tψ(t )d t 6= 0.

Theorem 7.14. Assume that the filters are chosen so that the scaling functions
exist. Then the following hold

1. The number of vanishing moments of ψ̃ equals the multiplicity of a zero at
ω=π for λG0 (ω).
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2. The number of vanishing moments of ψ equals the multiplicity of a zero at
ω=π for λH0 (ω).

number of vanishing moments of ψ, ψ̃ equal the multiplicities of the zeros of the
frequency responses λH0 (ω), λG0 (ω), respectively, at ω=π.

In other words, the flatter the frequency responses λH0 (ω) and λG0 (ω) are near
high frequencies (ω = π), the better the wavelet functions are for approximation
of functions. This is analogous to the smoothing filters we constructed previously,
where the use of values from Pascals triangle resulted in filters which behaved like
the constant function one at low frequencies. The frequency response for the Haar
wavelet had just a simple zero at π, so that it cannot represent functions efficiently.
The result also proves why we should consider G0, H0 as lowpass filters, G1, H1 as
highpass filters.

Proof: We have that

λs−ψ̃(−t ) (ν) =−
∫ ∞

−∞
ψ̃(−t )e−2πiνt d t . (7.9)

By differentiating this expression k times w.r.t. ν (differentiate under the integral
sign) we get

(λs−ψ̃(−t ) )(k)(ν) =−
∫

(−2πi t )kψ̃(t )e−2πiνt d t . (7.10)

Evaluating this at ν= 0 gives

(λs−ψ̃(−t ) )(k)(0) =−
∫

(−2πi t )kψ̃(t )d t . (7.11)

From this expression it is clear that the number of vanishing moments of ψ̃ equals
the multiplicity of a zero at ν= 0 for λs−ψ̃(−t ) (ν), which we have already shown equals
the multiplicity of a zero at ω= 0 for λH1 (ω). Similarly it follows that the number of
vanishing moments of ψ equals the multiplicity of a zero at ω = 0 for λG1 (ω). Since
we know that λG0 (ω) has the same number of zeros at π as λH1 (ω) has at 0, and
λH0 (ω) has the same number of zeros at π as λG1 (ω) has at 0, the result follows.

These results explain how we can construct φ, ψ, φ̃, ψ̃ from FIR-filters H0, G1,
G0, G1 satisfying the perfect reconstruction condition. Also, the results explain how
we can obtain such functions with as much differentiability and as many vanishing
moments as we want. We will use these results in the next section to construct inter-
esting wavelets. There we will also cover how we can construct the simplest possible
such filters.

There are some details which have been left out in this section: We have not
addressed why the wavelet bases we have constructed are linearly independent, and
why they span L2(R). Dual Riesz bases. These details are quite technical, and we
refer to [5] for them. Let us also express what we have found in terms of analog
filters.
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Observation 7.15. Let

f (t ) =∑
n

cm,nφm,n =∑
n

c0,nφ0,n + ∑
m′<m,n

wm′,nψm′,n ∈Vm .

cm,n and wm,n can be computed by sampling the output of an analog filter. To be
more precise,

cm,n = 〈 f , φ̃m,n〉 =
∫ N

0
f (t )φ̃m,n(t )d t =

∫ N

0
(−φ̃m,0(−t )) f (2−mn − t )d t

wm,n = 〈 f ,ψ̃m,n〉 =
∫ N

0
f (t )ψ̃m,n(t )d t =

∫ N

0
(−ψ̃m,0(−t )) f (2−mn − t )d t .

In other words, cm,n can be obtained by sampling s−φ̃m,0(−t )( f (t )) at the points
2−mn, wm,n by sampling s−ψ̃m,0(−t )( f (t )) at 2−mn, where the analog filters
s−φ̃m,0(−t ), s−ψ̃m,0(−t ) were defined in Theorem 1.40, i.e.

s−φ̃m,0(−t )( f (t )) =
∫ N

0
(−φ̃m,0(−s)) f (t − s)d s (7.12)

s−ψ̃m,0(−t )( f (t )) =
∫ N

0
(−ψ̃m,0(−s)) f (t − s)d s. (7.13)

A similar statement can be made for f̃ ∈ Ṽm . Here the convolution kernels of the
filters were as before, with the exception that φ,ψ were replaced by φ̃,ψ̃. Note also
that, if the functions φ̃, ψ̃ are symmetric, we can increase the precision in the DWT
with the method of symmetric extension also in this more general setting.

7.3 Characterization of wavelets w.r.t. number of van-
ishing moments

We have seen that wavelets are particularly suitable for approximation of functions
when the mother wavelet or the dual mother wavelet have vanishing moments. The
more vanishing moments they have, the more attractive they are. In this section we
will attempt to characterize wavelets which have a given number of vanishing mo-
ments. In particular we will characterize the simplest such, those where the filters
have few filters coefficients.

There are two particular cases we will look at. First we will consider the case
when all filters are symmetric. Then we will look at the case of orthonormal wavelets.
It turns out that these two cases are mutually disjoint (except for trivial examples),
but that there is a common result which can be used to characterize the solutions to
both problems. We will state the results in terms of the multiplicities of the zeros of
λH0 , λG0 at π, which we proved are the same as the number of vanishing moments.
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7.3.1 Symmetric filters

The main result when the filters are symmetric looks as follows.

Theorem 7.16. Assume that H0, H1,G0,G1 are the filters of a wavelet, and that

1. the filters are symmetric,

2. λH0 has a zero of multiplicity N1 at π,

3. λG0 has a zero of multiplicity N2 at π.

Then N1 and N2 are even, and there exist a polynomial Q which satisfies

u(N1+N2)/2Q(1−u)+ (1−u)(N1+N2)/2Q(u) = 2. (7.14)

so that λH0 (ω),λG0 (ω) can be written on the form

λH0 (ω) =
(

1

2
(1+cosω)

)N1/2

Q1

(
1

2
(1−cosω)

)
(7.15)

λG0 (ω) =
(

1

2
(1+cosω)

)N2/2

Q2

(
1

2
(1−cosω)

)
, (7.16)

where Q =Q1Q2.

Proof: Since the filters are symmetric, λH0 (ω) = λH0 (−ω) and λG0 (ω) = λG0 (−ω).
Since e i nω+e−i nω = 2cos(nω), and since cos(nω) is the real part of (cosω+ i sinω)n ,
which is a polynomial in cosk ωsinl ω with l even, and since sin2ω= 1−cos2ω, λH0

and λG0 can both be written on the form P (cosω), with P a real polynomial.
Note that a zero at π in λH0 ,λG0 corresponds to a factor of the form 1+ e−iω, so

that we can write

λH0 (ω) =
(

1+e−iω

2

)N1

f (e iω) = e−i N1ω/2 cosN1 (ω/2) f (e iω),

where f is a polynomial. In order for this to be real, we must have that f (e iω) =
e i N1ω/2g (e iω) where g is real-valued, and then we can write g (e iω) as a real poly-
nomial in cosω. This means that λH0 (ω) = cosN1 (ω/2)P1(cosω), and similarly for
λG0 (ω). Clearly this can be a polynomial in e iω only if N1 is even. Both N1 and N2

must then be even, and we can write

λH0 (ω) = cosN1 (ω/2)P1(cosω) = (cos2(ω/2))N1/2P1(1−2sin2(ω/2))

= (cos2(ω/2))N1/2Q1(sin2(ω/2)),

where we have used that cosω = 1 − 2sin2(ω/2), and defined Q1 by the relation
Q1(x) = P1(1−2x). Similarly we can write λG0 (ω) = (cos2(ω/2))N2/2Q2(sin2(ω/2)) for
another polynomial Q2. Using the identities

cos2 ω

2
= 1

2
(1+cosω) sin2 ω

2
= 1

2
(1−cosω),
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we see that λH0 and λG0 satisfy equations (7.15) and (7.16). With Q = Q1Q2, Equa-
tion (6.22) can now be rewritten as

2 =λG0 (ω)λH0 (ω)+λG0 (ω+π)λH0 (ω+π)

= (
cos2(ω/2)

)(N1+N2)/2
Q(sin2(ω/2))+ (

cos2((ω+π)/2)
)(N1+N2)/2

Q(sin2((ω+π)/2))

= (cos2(ω/2))(N1+N2)/2Q(sin2(ω/2))+ (sin2(ω/2))(N1+N2)/2Q(cos2(ω/2))

= (cos2(ω/2))(N1+N2)/2Q(1−cos2(ω/2))+ (1−cos2(ω/2))(N1+N2)/2Q(cos2(ω/2))

Setting u = cos2(ω/2) we see that Q must fulfill the equation

u(N1+N2)/2Q(1−u)+ (1−u)(N1+N2)/2Q(u) = 2,

which is Equation (7.14). This completes the proof.
While this result characterizes all wavelets with a given number of vanishing mo-

ments, it does not say which of these have fewest filter coefficients. The polynomial
Q decides the length of the filters H0,G0, however, so that what we need to do is to
find the polynomial Q of smallest degree. In this direction, note first that the polyno-
mials uN1+N2 and (1−u)N1+N2 have no zeros in common. Bezouts theorem, proved
in Section 7.3.3, states that the equation

uN q1(u)+ (1−u)N q2(u) = 1 (7.17)

has unique solutions q1, q2 with deg(q1),deg(q2) < (N1 +N2)/2. To find these solu-
tions, substituting 1−u for u gives the following equations:

uN q1(u)+ (1−u)N q2(u) = 1

uN q2(1−u)+ (1−u)N q1(1−u) = 1,

and uniqueness in Bezouts theorem gives that q1(u) = q2(1−u), and q2(u) = q1(1−
u). Equation (7.17) can thus be stated as

uN q2(1−u)+ (1−u)N q2(u) = 1,

and comparing with Equation (7.14) (set N = (N1+N2)/2) we see that Q(u) = 2q2(u).
uN q1(u)+ (1−u)N q2(u) = 1 now gives

q2(u) = (1−u)−N (1−uN q1(u)) = (1−u)−N (1−uN q2(1−u))

=
(

N−1∑
k=0

(
N +k −1

k

)
uk +O(uN )

)
(1−uN q2(1−u))

=
N−1∑
k=0

(
N +k −1

k

)
uk +O(uN ),

where we have used the first N terms in the Taylor series expansion of (1−u)−N

around 0. Since q2 is a polynomial of degree N −1, we must have that

Q(u) = 2q2(u) = 2
N−1∑
k=0

(
N +k −1

k

)
uk . (7.18)
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Define Q(N )(u) = 2
∑N−1

k=0

(N+k−1
k

)
uk . The first Q(N ) are

Q(1)(u) = 2 Q(2)(u) = 2+4u

Q(3)(u) = 2+6u +12u2 Q(4)(u) = 2+8u +20u2 +40u3,

for which we compute

Q(1)
(

1

2
(1−cosω)

)
= 2

Q(2)
(

1

2
(1−cosω)

)
=−e−iω+4−e iω

Q(3)
(

1

2
(1−cosω)

)
= 3

4
e−2iω− 9

2
e−iω+ 19

2
− 9

2
e iω+ 3

4
e2iω

Q(4)
(

1

2
(1−cosω)

)
=−5

8
e−3iω+5e−2iω− 131

8
e−iω+26− 131

8
e iω+5e2iω− 5

8
e3iω,

Thus in order to construct wavelets where λH0 ,λG0 have as many zeros at π as pos-
sible, and where there are as few filter coefficients as possible, we need to compute
the polynomials above, factorize them into polynomials Q1 and Q2, and distribute
these among λH0 and λG0 . Since we need real factorizations, we must in any case
pair complex roots. If we do this we obtain the factorizations

Q(1)
(

1

2
(1−cosω)

)
= 2

Q(2)
(

1

2
(1−cosω)

)
= 1

3.7321
(e iω−3.7321)(e−iω−3.7321)

Q(3)
(

1

2
(1−cosω)

)
= 3

4

1

9.4438
(e2iω−5.4255e iω+9.4438)

× (e−2iω−5.4255e−iω+9.4438)

Q(4)
(

1

2
(1−cosω)

)
= 5

8

1

3.0407

1

7.1495
(e iω−3.0407)(e2iω−4.0623e iω+7.1495)

× (e−iω−3.0407)(e−2iω−4.0623e−iω+7.1495), (7.19)

The factors in these factorizations can be distributed as factors in the frequency re-
sponses of λH0 (ω), and λG0 (ω). One possibility is to let one of these frequency re-
sponses absorb all the factors, another possibility is to split the factors as evenly as
possible across the two. When a frequency response absorbs more factors, the cor-
responding filter gets more filter coefficients. In the following examples, both factor
distribution strategies will be encountered. Note that it is straightforward to use
your computer to factor Q into a product of polynomials Q1 and Q2. First the roots
function can be used to find the roots in the polynomials. Then the conv function
can be used to multiply together factors corresponding to different roots, to obtain
the coefficients in the polynomials Q1 and Q2.
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7.3.2 Orthonormal wavelets

Now we turn to the case of orthonormal wavelets, i.e. where G0 = (H0)T , G1 = (H1)T .
For simplicity we will assume d = 0,α=−1 in conditions (6.20) and (6.21) (this corre-
sponded to requiringλH1 (ω) =−λH0 (ω+π) in the definition of alternative QMF filter
banks). We will also assume for simplicity that G0 is causal, meaning that t−1, t−2, . . .
all are zero (the other solutions can be derived from this). We saw that the Haar
wavelet was such an orthonormal wavelet. We have the following result:

Theorem 7.17. Assume that H0, H1,G0,G1 are the filters of an orthonormal
wavelet (i.e. H0 = (G0)T and H1 = (G1)T ) which also is an alternative QMF filter
bank (i.e. λH1 (ω) =−λH0 (ω+π)). Assume also that λG0 (ω) has a zero of multiplic-
ity N at π and that G0 is causal. Then there exists a polynomial Q which satisfies

uN Q(1−u)+ (1−u)N Q(u) = 2, (7.20)

so that if f is another polynomial which satisfies f (e iω) f (e−iω) =Q
( 1

2 (1−cosω)
)
,

λG0 (ω) can be written on the form

λG0 (ω) =
(

1+e−iω

2

)N

f (e−iω), (7.21)

We avoided stating λH0 (ω) in this result, since the relation H0 = (G0)T gives that

λH0 (ω) =λG0 (ω). In particular, λH0 (ω) also has a zero of multiplicity N at π. That G0

is causal is included to simplify the expression further.
Proof: The proof is very similar to the proof of Theorem 7.16. N vanishing mo-

ments and that G0 is causal means that we can write

λG0 (ω) =
(

1+e−iω

2

)N

f (e−iω) = (cos(ω/2))N e−i Nω/2 f (e−iω),

where f is a real polynomial. Also

λH0 (ω) =λG0 (ω) = (cos(ω/2))N e i Nω/2 f (e iω).

Condition (6.22) now says that

2 =λG0 (ω)λH0 (ω)+λG0 (ω+π)λH0 (ω+π)

= (cos2(ω/2))N f (e iω) f (e−iω)+ (sin2(ω/2))N f (e i (ω+π)) f (e−i (ω+π)).

Now, the function f (e iω) f (e−iω) is symmetric around 0, so that it can be written on
the form P (cosω) with P a polynomial, so that

2 = (cos2(ω/2))N P (cosω)+ (sin2(ω/2))N P (cos(ω+π))

= (cos2(ω/2))N P (1−2sin2(ω/2))+ (sin2(ω/2))N P (1−2cos2(ω/2)).
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If we as in the proof of Theorem 7.16 define Q by Q(x) = P (1−2x), we can write this
as

(cos2(ω/2))N Q(sin2(ω/2))+ (sin2(ω/2))N Q(cos2(ω/2)) = 2,

which again gives Equation (7.14) for finding Q. What we thus need to do is to com-
pute the polynomial Q

( 1
2 (1−cosω)

)
as before, and consider the different factoriza-

tions of this on the form f (e iω) f (e−iω). Since this polynomial is symmetric, a is a
root if and only 1/a is, and if and only if ā is. If the real roots are

b1, . . . .,bm ,1/b1, . . . ,1/bm ,

and the complex roots are

a1, . . . , an , a1, . . . , an and 1/a1, . . . ,1/an ,1/a1, . . . ,1/an ,

we can write

Q

(
1

2
(1−cosω)

)
= K (e−iω−b1) . . . (e−iω−bm)

× (e−iω−a1)(e−iω−a1)(e−iω−a2)(e−iω−a2) · · · (e−iω−an)(e−iω−an)

× (e iω−b1) . . . (e iω−bm)

× (e iω−a1)(e iω−a1)(e iω−a2)(e iω−a2) · · · (e iω−an)(e iω−an)

where K is a constant. We now can define the polynomial f by

f (e iω) =
p

K (e iω−b1) . . . (e iω−bm)

× (e iω−a1)(e iω−a1)(e iω−a2)(e iω−a2) · · · (e iω−an)(e iω−an)

in order to obtain a factorization Q
( 1

2 (1−cosω)
) = f (e iω) f (e−iω). This concludes

the proof.
In the previous proof we note that the polynomial f is not unique - we could pair

the roots in many different ways. The new algorithm is thus as follows:

1. As before, write Q
( 1

2 (1−cosω)
)

as a polynomial in e iω, and find the roots.

2. Split the roots into the two classes

{b1, . . . .,bm , a1, . . . , an , a1, . . . , an}

and
{1/b1, . . . ,1/bm ,1/a1, . . . ,1/an ,1/a1, . . . ,1/an},

and form the polynomial f as above.

3. Compute λG0 (ω) =
(

1+e−iω

2

)N
f (e−iω).

Clearly the filters obtained with this strategy are not symmetric since f is not sym-
metric. In Section 7.6 we will take a closer look at wavelets constructed in this way.
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7.3.3 The proof of Bezouts theorem

Theorem 7.18. If p1 and p2 are two polynomials, of degrees n1 and n2 respec-
tively, with no common zeros, then there exist unique polynomials q1, q2, of de-
gree less than n2,n1, respectively, so that

p1(x)q1(x)+p2(x)q2(x) = 1. (7.22)

Proof: We first establish the existence of q1, q2 satisfying Equation (7.22). Denote by
deg(P ) the degree of the polynomial P . Renumber the polynomials if necessary, so
that n1 ≥ n2. By polynomial division, we can now write

p1(x) = a2(x)p2(x)+b2(x),

where deg(a2) = deg(p1)−deg(p2), deg(b2) < deg (p2). Similarly, we can write

p2(x) = a3(x)b2(x)+b3(x),

where deg(a3) = deg(p2)−deg(b2), deg(b3) < deg(b2). We can repeat this procedure,
so that we obtain a sequence of polynomials an(x),bn(x) so that

bn−1(x) = an+1(x)bn(x)+bn+1(x), (7.23)

where deg an+1 = deg(bn−1)−deg(bn), deg (bn+1 < deg(bn). Since deg(bn) is strictly
decreasing, we must have that bN+1 = 0 and bN 6= 0 for some N , i.e. bN−1(x) =
aN+1(x)bN (x). Since bN−2 = aN bN−1 + bN , it follows that bN−2 can be divided by
bN , and by induction that all bn can be divided by bN , in particlar p1 and p2 can
be divided by bN . Since p1 and p2 have no common zeros, bN must be a nonzero
constant.

Using Equation (7.23), we can write recursively

bN = bN−2 −aN bN−1

= bN−2 −aN (bN−3 −aN−1bN−2)

= (1+aN aN−1)bN−2 −aN bN−3.

By induction we can write

bN = a(1)
N ,k bN−k +a(2)

N ,k bN−k−1.

We see that the leading order term for a(1)
N ,k is aN · · ·aN−k+1, which has degree

(deg(bN−2)−deg(bN−1)+·· ·+(deg(bN−k−1)−deg(bN−k ) = deg(bN−k−1)−deg(bN−1),

while the leading order term for a(2)
N ,k is aN · · ·aN−k+2, which similarly has order

deg(bN−k )−deg(bN−1). For k = N −1 we find

bN = a(1)
N ,N−1b1 +a(2)

N ,N−1b0 = a(1)
N ,N−1p2 +a(2)

N ,N−1p1, (7.24)
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with deg(a(1)
N ,N−1) = deg(p1)−deg(bN−1) < deg(p1) (since by construction deg(bN−1) >

0), and deg(a(2)
N ,N−1) = deg(p2)−deg(bN−1) < deg(p2). From Equation (7.24) it follows

that q1 = a(2)
N ,N−1/bN and q2a(1)

N ,N−1/bN satisfies Equation (7.22), and that they satisfy
the required degree constraints.

Now we turn to uniquness of solutions q1, q2. Assume that r1,r2 are two other
solutions to Equation (7.22). Then

p1(q1 − r1)+p2(q2 − r2) = 0.

Since p1 and p2 have no zeros in common this means that every zero of p2 is a zero
of q1−r1, with at least the same multiplicity. If q1 6= r1, this means that deg(q1−r1) ≥
deg(p2), which is impossible since deg(q1) < deg(p2), deg(r1) < deg(p2). Hence q1 =
r1. Similarly q2 = r2, establishing uniqueness.

Exercises for Section 7.3

1. Compute the filters H0, G0 in Theorem 7.16 when N = N1 = N2 = 4, and Q1 =
Q(4), Q2 = 1. Compute also filters H1,G1 so that we have perfect reconstruction (note
that these are not unique).

7.4 A design strategy suitable for lossless compression

We choose Q1 = Q, Q2 = 1. In this case there is no need to find factors in Q. The
frequency responses of the filters in the filter factorization are

λH0 (ω) =
(

1

2
(1+cosω)

)N1/2

Q(N )
(

1

2
(1−cosω)

)
λG0 (ω) =

(
1

2
(1+cosω)

)N2/2

, (7.25)

where N = (N1+N2)/2. Since Q(N ) has degree N−1, λH0 has degree N1+N1+N2−2 =
2N1+N2−2, and λG0 has degree N2. These are both even numbers, so that the filters
have odd length. The names of these filters are indexed by the filter lengths, and are
called Spline wavelets, since, as we now now will show, the scaling function for this
design strategy is the B-spline of order N2: we have that

λG0 (ω) = 1

2N2/2
(1+cosω)N2/2 = cos(ω/2)N2 .

Letting s be the analog filter with convolution kernel φ we can as in Equation (7.5)
write

λs ( f ) =λs ( f /2k )
k∏

i=1

λG0 (2π f /2i )

2
=λs ( f /2k )

k∏
i=1

cosN2 (π f /2i )

2

=λs ( f /2k )
k∏

i=1

(
sin(2π f /2i )

2sin(π f /2i )

)N2

=λs ( f /2k )

(
sin(π f )

2k sinπ f /2k

)N2

,
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where we have used the identity cosω = sin(2ω)
2sinω . If we here let k → ∞, and use the

identity lim f →0
sin f

f = 1, we get that

λs ( f ) =λs (0)

(
sin(π f )

π f

)N2

.

On the other hand, the frequency response of χ[−1/2,1/2)(t )

=
∫ 1/2

−1/2
e−2πi f t d t =

[
1

−2πi f
e−2πi f t

]1/2

−1/2

= 1

−2πi f
(e−πi f −eπi f ) = 1

−2πi f
2i sin(−π f ) = sin(π f )

π f
.

Due to this
(

sin(π f )
π f

)N2
is the frequency response of ∗N2

k=1χ[−1/2,1/2)(t ). By the unique-

ness of the frequency response we have that φ(t ) = φ̂(0)∗N2
k=1 χ[−1/2,1/2)(t ). In Exer-

cise 2 you will be asked to show that this scaling function gives rise to the multires-
olution analysis of functions which are piecewise polynomials which are differen-
tiable at the borders, also called splines. This explains why this type of wavelet is
called a spline wavelet. To be more precise, the resolution spaces are as follows

Definition 7.19 (Resolution spaces of piecewise polynomials). We define Vm as
the subspace of functions which are r −1 times continuously differentiable and
equal to a polynomial of degree r on any interval of the form [n2−m , (n +1)2−m].

Note that the piecewise linear wavelet can be considered as the first Spline wavelet.
This is further considered in the following example.
Example 7.20. For the case of N1 = N2 = 2 when the first design strategy is used,
equations (7.15) and (7.16) take the form

λG0 (ω) = 1

2
(1+cosω) = 1

4
e iω+ 1

2
+ 1

4
e−iω

λH0 (ω) = 1

2
(1+cosω)Q(1)

(
1

2
(1−cosω)

)
= 1

4
(2+e iω+e−iω)(4−e iω−e−iω)

=−1

4
e2iω+ 1

2
e iω+ 3

2
+ 1

2
e−iω− 1

4
e−2iω.

The filters G0, H0 are thus

G0 =
{

1

4
,

1

2
,

1

4

}
H0 =

{
−1

4
,

1

2
,

3

2
,

1

2
,−1

4

}
The length of the filters are 3 and 5 in this case, so that this wavelet is called the
Spline 5/3 wavelet. Up to a constant, the filters are seen to be the same as those of
the alternative piecewise linear wavelet, see Example 6.19. Now, how do we find the
filters (G1, H1)? Previously we saw how to find the constant α in Theorem 6.17 when
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we knew one of the two pairs (G0,G1), (H0, H1). This was the last part of information
we needed in order to construct the other two filters. Here we know (G0, H0) instead.
In this case it is even easier to find (G1, H1) since we can set α= 1. This means that
(G1, H1) can be obtained simply by adding alternating signs to (G0, H0), i.e. they are
the corresponding highpass filters. We thus can set

G1 =
{
−1

4
,−1

2
,

3

2
,−1

2
,−1

4

}
H1 =

{
−1

4
,

1

2
,−1

4

}
.

We have now found all the filters. It is clear that the forward and reverse filter bank
transforms here differ only by multiplication with a constant from those of the the
alternative piecewise linear wavelet, so that this gives the same scaling function and
mother wavelet as that wavelet. ♣

The coefficients for the Spline wavelets are always dyadic fractions, and are there-
fore suitable for lossless compression, as they can be computed using low precision
arithmetic and bitshift operations. The particular Spline wavelet from Example 7.20
is used for lossless compression in the JPEG2000 standard.

Exercises for Section 7.4

1. In this exercise we will see how we can view the frequency responses, scaling
functions and mother wavelets for any spline wavelet.

a. Write a function which takes N1 and N2 as input, computes the filter coef-
ficients of H0 and G0 using equation (7.25), and plots the frequency responses
of G0 and H0. Recall that the frequency response can be obtained from the fil-
ter coefficients by taking a DFT. You will have use for the conv function here,
and that the frequency response (1+ cosω)/2 corresponds to the filter with
coefficients {1/4,1/2,1/4}.

b. Recall that in Exercise 12 in Section 6.1 we implemented DWT and IDWT
kernels, which worked for any set of symmetric filters. Combine these kernels
with your computation of the filter coefficients from a., and use the function
plotwaveletfunctions to plot the corresponding scaling functions and mother
wavelets for different N1 and N2.

2. Show that Br (t ) =∗r
k=1χ[−1/2,1/2)(t ) is r−2 times differentiable, and equals a poly-

nomial of degree r −1 on subintervals of the form [n,n+1]. Explain why these func-
tions can be used as basis for the spaces V j of functions which are piecewise poly-
nomials of degree r −1 on intervals of the form [n2−m , (n +1)2−m], and r −2 times
differentiable. Br is also called the B-spline of order r .

7.5 A design strategy suitable for lossy compression

The factors of Q are split evenly among Q1 and Q2. In this case we need to fac-
torize Q into a product of real polynomials. This can be done by finding all roots,
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and pairing the complex conjugate roots into real second degree polynomials (if
Q is real, its roots come in conjugate pairs), and then distribute these as evenly as
possible among Q1 and Q2. These filters are called the CDF-wavelets, after Cohen,
Daubechies, and Feauveau, who discovered them.
Example 7.21. We choose N1 = N2 = 4. In Equation (7.19) we pair inverse terms to
obtain

Q(3)
(

1

2
(1−cosω)

)
= 5

8

1

3.0407

1

7.1495
(e iω−3.0407)(e−iω−3.0407)

× (e2iω−4.0623e iω+7.1495)(e−2iω−4.0623e−iω+7.1495)

= 5

8

1

3.0407

1

7.1495
(−3.0407e iω+10.2456−3.0407e−iω)

× (7.1495e2iω−33.1053e iω+68.6168−33.1053e−iω+7.1495e−2iω).

We can write this as Q1Q2 with Q1(0) =Q2(0) when

Q1(ω) =−1.0326e iω+3.4795−1.0326e−iω

Q2(ω) = 0.6053e2iω−2.8026e iω+5.8089−2.8026e−iω+0.6053e−2iω,

from which we obtain

λG0 (ω) =
(

1

2
(1+cosω)

)2

Q1(ω)

=−0.0645e3iω−0.0407e2iω+0.4181e iω+0.7885

+0.4181e−iω−0.0407e−2iω−0.0645e−3iω

λH0 (ω) =
(

1

2
(1+cosω)

)2

40Q2(ω)

= 0.0378e4iω−0.0238e3iω−0.1106e2iω+0.3774e iω+0.8527

+0.3774e−iω−0.1106e−2iω−0.0238e−3iω+0.0378e−4iω.

The filters G0, H0 are thus

G0 = {0.0645,0.0407,−0.4181,−0.7885,−0.4181,0.0407,0.0645}

H0 = {−0.0378,0.0238,0.1106,−0.3774,−0.8527,−0.3774,0.1106,0.0238,−0.0378}.

The corresponding frequency responses are plotted in Figure 7.2. It is seen that both
filters are lowpass filters also here, and that the are closer to an ideal bandpass filter.
Here, the frequency response acts even more like the constant zero function close to
π, proving that our construction has worked. We also get

G1 = {−0.0378,−0.0238,0.1106,0.3774,−0.8527,0.3774,0.1106,−0.0238,−0.0378}

H1 = {−0.0645,0.0407,0.4181,−0.7885,0.4181,0.0407,−0.0645}.

The length of the filters are 9 and 7 in this case, so that this wavelet is called the CDF
9/7 wavelet. This wavelet is for instance used for lossy compression with JPEG2000
since it gives a good tradeoff between complexity and compression.
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Figure 7.2: The frequency responses for the filters of Example 7.21.

In Example 6.19 we saw that we had analytical expressions for the scaling func-
tions and the mother wavelet, but that we could not obtain this for the dual func-
tions. For the CDF 9/7 wavelet it turns out that none of the four functions have
analytical expressions. Let us therefore use the cascade algorithm, as we did in Ex-
ample 7.1 to plot these functions. Note first that since G0 has 7 filter coefficients,
and G1 has 9 filter coefficients, it follows from Theorem 6.11 that supp(φ) = [−3,3],
supp(ψ) = [−3,4], supp(φ̃) = [−4,4], and supp(ψ̃) = [−3,4]. Plotting the scaling func-
tions and mother wavelets over these supports using the cascade algorithm gives the
plots in Figure 7.3. Again they have irregular shapes, but now at least the functions
and dual functions more resemble each other. ♣

In the above example there was a unique way of factoring Q into a product of
real polynomials. For higher degree polynomials there is no unique way to form to
distribute the factors, and we will not go into what strategy can be used for this. In
general, the steps we must go through are as follows:

1. Compute the polynomial Q, and find its roots.

2. Pair complex conjugate roots into real second degree polynomials, and form
polynomials Q1, Q2.

3. Compute the coefficients in equations (7.15) and (7.16).

Exercises for Section 7.5

1. Generate the plots from Figure 7.3 using the cascade algorithm. Reuse the code
from Exercise 1 in Section 7.1 in order to achieve this.

7.6 Orthonormal wavelets

Since the filters here are not symmetric, the method of symmetric extension does
not work in the same simple way as before. This partially explains why symmetric
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Figure 7.3: Scaling functions and mother wavelets for the CDF 9/7 wavelet.

filters are used more often: They may not be as efficient in representing functions,
since the corresponding basis is not orthogonal, but their simple implementation
still makes them attractive.

In Theorem 7.17 we characterized orthonormal wavelets where G0 was causal.
All our filters have an even number, say 2L, of filter coefficients. We can also find an
orthonormal wavelet where H0 has a minimum possible overweight of filter coeffi-
cients with negative indices, H1 a minimum possible overweight of positive indices,
i.e. that the filters can be written with the following compact notation:

H0 = {t−L , . . . , t−1, t0, t1, . . . , tL−1} H1 = {s−L+1, . . . , s−1, s0, s1, . . . , sL}. (7.26)

To see why, Theorem 6.17 says that we first can shift the filter coefficients of H0 so
that it has this form (we then need to shift G0 in the opposite direction). H1,G1 then
can be defined by α= 1 and d = 0. We will follow this convention for the orthonor-
mal wavelets we look at.

The polynomials Q(0), Q(1), and Q(2) require no further action to obtain the fac-
torization f (e iω) f (e−iω) = Q

( 1
2 (1−cosω)

)
. The polynomial Q(3) in Equation (7.19)
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can be factored further as

Q(3)
(

1

2
(1−cosω)

)
= 5

8

1

3.0407

1

7.1495
(e−3iω−7.1029e−2iω+19.5014−iω−21.7391)

× (e3iω−7.1029e2iω+19.5014iω−21.7391),

which gives that f (e iω) =
√

5
8

1
3.0407

1
7.1495 (e3iω − 7.1029e2iω + 19.5014iω − 21.7391).

This factorization is not unique, however. This gives the frequency responseλG0 (ω) =(
1+e−iω

2

)N
f (e−iω) as

1

2
(e−iω+1)

p
2

1

4
(e−iω+1)2

√
1

3.7321
(e−iω−3.7321)

1

8
(e−iω+1)3

√
3

4

1

9.4438
(e−2iω−5.4255e−iω+9.4438)

1

16
(e−iω+1)4

√
5

8

1

3.0407

1

7.1495
(e−3iω−7.1029e−2iω+19.5014−iω−21.7391),

which gives the filters

G0 = (H0)T =(
p

2/2,
p

2/2)

G0 = (H0)T =(−0.4830,−0.8365,−0.2241,0.1294)

G0 = (H0)T =(0.3327,0.8069,0.4599,−0.1350,−0.0854,0.0352)

G0 = (H0)T =(−0.2304,−0.7148,−0.6309,0.0280,0.1870,−0.0308,−0.0329,0.0106)

so that we get 2, 4, 6 and 8 filter coefficients in G0 = (H0)T . We see that the filter
coefficients when N = 1 are those of the Haar wavelet. The three next filters we have
not seen before. The filter G1 = (H1)T can be obtained from the relation λG1 (ω) =
−λG0 (ω+π), i.e. by reversing the elements and adding an alternating sign, plus an
extra minus sign, so that

G1 = (H1)T =(
p

2/2,−p2/2)

G1 = (H1)T =(0.1294,0.2241,−0.8365,0.4830)

G1 = (H1)T =(0.0352,0.0854,−0.1350,−0.4599,0.8069,−0.3327)

G1 = (H1)T =(0.0106,0.0329,−0.0308,−0.1870,0.0280,0.6309,−0.7148,0.2304).

Frequency responses are shown in Figure 7.4 for N = 1 to N = 6. It is seen that the
frequency responses get increasingly flatter as N increases. The frequency responses
are now complex, so their magnitudes are plotted. Clearly these filters have lowpass
characteristic. We also see that the highpass characteristics resemble the lowpass
characteristics. We also see that the frequency response gets flatter near the high
and low frequencies, as N increases. One can verify that this is the case also when
N is increased further. The shapes for higher N are very similar to the frequency
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Figure 7.4: The magnitude of the frequency responses λG0 (ω) = λH0 (ω) for the first
orthonormal wavelets with vanishing moments.

responses of those filters used in the MP3 standard (see Figure 3.8). One difference
is that the support of the latter is concentrated on a smaller set of frequencies.

The way we have defined the filters, one can show in the same way as in the
proof of Theorem 6.11 that, when all filters have 2N coefficients, φ= φ̃ has support
[−N+1, N ],ψ= ψ̃ has support [−N+1/2, N−1/2] (i.e. the support ofψ is symmetric
about the origin). In particular we have that

1. for N = 2: supp(φ) = [−1,2], supp(ψ) = [−3/2,3/2],

2. for N = 3: supp(φ) = [−2,3], supp(ψ) = [−5/2,5/2],

3. for N = 4: supp(φ) = [−3,4], supp(ψ) = [−7/2,7/2].

The scaling functions and mother wavelets are shown in Figure 7.5. All functions
have been plotted over [−4,4], so that all these support sizes can be verified. Also
here we have used the cascade algorithm to approximate the functions.
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Summary

We started the section by showing how filters from filter bank matrices can give rise
to scaling functions and mother wavelets. We saw that we obtained dual function
pairs in this way, which satisfied a mutual property called biorthogonality. We then
saw how differentiable scaling functions or mother wavelets with vanishing mo-
ments could be constructed, and we saw how we could construct the simplest such.
These could be found in terms of the frequency responses of the involved filters.
Finally we studied some examples with applications to image compression.

For the wavelets we constructed in this chapter, we also plotted the correspond-
ing scaling functions and mother wavelets (see figures 7.1, 7.3, 7.5). The importance
of these functions are that they are particularly suited for approximation of regular
functions, and providing a compact representation of these functions which is lo-
calized in time. It seems difficult to guess that these strange shapes are connected
to such approximation. Moreover, it may seem strange that, although these func-
tions are useful, we can’t write down exact expressions for them, and they are only
approximated in terms of the Cascade Algorithm.

In the literature, the orthonormal wavelets with compact support we have con-
structed were first constructed in [8]. Biorthogonal wavelets were first constructed
in [5].
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(a) φ for N = 2
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(b) ψ for N = 2
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(c) φ for N = 3
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(d) ψ for N = 3
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(e) φ for N = 4
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(f) ψ for N = 4

Figure 7.5: The scaling functions and mother wavelets for the first orthonormal
wavelets with vanishing moments.
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Chapter 8
The polyphase representation
and wavelets

In Chapter 6 we saw that we could express wavelet transformations and more gen-
eral transformations in terms of filters. Through this we obtained intuition for what
information the different parts of a wavelet transformation represent, in terms of
lowpass and highpass filters. We also obtained some insight into the filters used in
the transformation used in the MP3 standard. We expressed the DWT and IDWT
implementations in terms of what we called kernel transformations, and these were
directly obtained from the filters of the wavelet.

We have looked at many wavelets, however, but have only stated the kernel trans-
formation for the Haar wavelet. In order to use these wavelets in sound and image
processing, or in order to use the cascade algorithm to plot the corresponding scal-
ing functions and mother wavelets, we need to make these kernel transformations.
This will be one of the goals in this chapter. This will be connected to what we will
call the polyphase representation of the wavelet. This representation will turn out
to be useful for different reasons than the filter representation as well. First of all,
with the polyphase representation, transformations can be viewed as block matri-
ces where the blocks are filters. This allows us to prove results in a different way than
for filter bank transforms, since we can prove results through block matrix manipu-
lation. There will be two major results we will prove in this way.

First, in Section 8.1 we obtain a factorization of a wavelet transformation into
sparse matrices, called elementary lifting matrices. We will show that this factoriza-
tion reduces the number of arithmetic operations, and also enables us to compute
the DWT in-place, in a similar way to how the FFT could be computed in-place af-
ter a bit-reversal. This is important: recall that we previously factored a filter into
a product of smaller filters which is useful for efficient hardware implementations.
But this did not address the fact that only every second component of the filters
needs to be evaluated in the DWT, something any efficient implementation of the
DWT should take into account. The factorization into sparse matrices will be called
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the lifting factorization, and it will be clear from this factorization how the wavelet
kernels and their duals can be implemented. We will also see how we can use the
polyphase representation to prove the remaining parts of Theorem 6.17.

Secondly, in Section 8.3 we will use the polyphase representation to analyze how
the forward and reverse filter bank transforms from the MP3 standard can be chosen
in order for us to have perfect or near perfect reconstruction. Actually, we will obtain
a factorization of the polyphase representation into block matrices also here, and
the conditions we need to put on the prototype filters will be clear from this.

The examples in this chapter can be run from the notebook
notebook_wavlifting.m.

8.1 The polyphase representation and the lifting factor-
ization

Let us start by defining the basic concepts in the polyphase representation.

Definition 8.1 (Polyphase components and representation). Assume that S is a
matrix, and that M is a number. By the polyphase components of S we mean the

matrices S(i , j ) defined by S(i , j )
r1,r2

= Si+r1M , j+r2M , i.e. the matrices obtained by tak-
ing every M ’th component of S. By the polyphase representation of S we mean the
block matrix with entries S(i , j ).

The polyphase representation applies in particular for vectors. Since a vector x
only has one column, we write x (p) for its polyphase components.
Example 8.2. Consider the 6×6 MRA-matrix

S =



2 3 0 0 0 1
4 5 6 0 0 0
0 1 2 3 0 0
0 0 4 5 6 0
0 0 0 1 2 3
6 0 0 0 4 5

 . (8.1)

The polyphase components of S are

S(0,0) =
 2 0 0

0 2 0
0 0 2

 S(0,1) =
 3 0 1

1 3 0
0 1 3


S(1,0) =

 4 6 0
0 4 6
6 0 4

 S(1,1) =
 5 0 0

0 5 0
0 0 5


♣
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We will mainly be concerned with polyphase representations of MRA matrices.
For such matrices we have the following result (this result can be stated more gener-
ally for any filter bank transform).

Theorem 8.3. When S is an MRA-matrix, the polyphase components S(i , j ) are
filters (in general different from the filters considered in Chapter 6), i.e. the
polyphase representation is a 2×2-block matrix where all blocks are filters. Also, S
is similar to its polyphase representation, through a permutation matrix P which
places the even-indexed elements first.

To see why, note that when P is the permutation matrix defined above, then PS
consists of S with the even-indexed rows grouped first, and since also SP T = (PST )T ,
SP T groups the even-indexed columns first. From these observations it is clear that
PSP T is the polyphase representation of S, so that S is similar to its polyphase rep-
resentation.

We also have the following result on the polyphase representation. This result
is easily proved from manipulation with block matrices, and is therefore left to the
reader.

Theorem 8.4. Let A and B be (forward or reverse) filter bank transforms, and
denote the corresponding polyphase components by A(i , j ), B (i , j ). The following
hold

1. C = AB is also a filter bank transform, with polyphase components C (i , j ) =∑
k A(i ,k)B (k, j ).

2. AT is also a filter bank transform, with polyphase components
((AT )(i , j ))k,l = (A( j ,i ))l ,k .

Also, the polyphase components of the identity matrix is the M ×M-block matrix
with the identity matrix on the diagonal, and 0 elsewhere.

To see an application of the polyphase representation, let us prove the final in-
gredient of Theorem 6.17. We need to prove the following:

Theorem 8.5. For any set of FIR filters H0, H1,G0,G1 which give perfect recon-
struction, there exist α ∈R and d ∈Z so that

λH1 (ω) =α−1e−2i dωλG0 (ω+π) (8.2)

λG1 (ω) =αe2i dωλH0 (ω+π). (8.3)

Proof: Let H (i , j ) be the polyphase components of H , G (i , j ) the polyphase com-
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ponents of G . G H = I means that(
G (0,0) G (0,1)

G (1,0) G (1,1)

)(
H (0,0) H (0,1)

H (1,0) H (1,1)

)
=

(
I 0
0 I

)
.

If we here multiply with

(
G (1,1) −G (0,1)

−G (1,0) G (0,0)

)
on both sides to the left, or with

(
H (1,1) −H (0,1)

−H (1,0) H (0,0)

)
on both sides to the right, we get

(
G (1,1) −G (0,1)

−G (1,0) G (0,0)

)
=

(
(G (0,0)G (1,1) −G (1,0)G (0,1))H (0,0) (G (0,0)G (1,1) −G (1,0)G (0,1))H (0,1)

(G (0,0)G (1,1) −G (1,0)G (0,1))H (1,0) (G (0,0)G (1,1) −G (1,0)G (0,1))H (1,1)

)
(

H (1,1) −H (0,1)

−H (1,0) H (0,0)

)
=

(
(H (0,0)H (1,1) −H (1,0)H (0,1))G (0,0) (H (0,0)H (1,1) −H (1,0)H (0,1))G (0,1)

(H (0,0)H (1,1) −H (1,0)H (0,1))G (1,0) (H (0,0)H (1,1) −H (1,0)H (0,1))G (1,1)

)
Now since G (0,0)G (1,1) −G (1,0)G (0,1) and H (0,0)H (1,1) − H (1,0)H (0,1) also are circulant
Toeplitz matrices, the expressions above give that

l (H (0,0)) ≤ l (G (1,1)) ≤ l (H (0,0))

l (H (0,1)) ≤ l (G (0,1)) ≤ l (H (0,1))

l (H (1,0)) ≤ l (G (1,0)) ≤ l (H (1,0))

so that we must have equality here, and with both

G (0,0)G (1,1) −G (1,0)G (0,1) and H (0,0)H (1,1) −H (1,0)H (0,1)

having only one nonzero diagonal. In particular we can define the diagonal matrix
D = H (0,0)H (1,1) −H (0,1)H (1,0) =α−1Ed (for some α,d), and we have that(

G (0,0) G (0,1)

G (1,0) G (1,1)

)
=

(
αE−d H (1,1) −αE−d H (0,1)

−αE−d H (1,0) αE−d H (0,0)

)
.

The first columns here state a relation between G0 and H1, while the second columns
state a relation between G1 and H0. It is straightforward to show that these relations
imply equation (8.2)-(8.3). The details for this can be found in Exercise 1.

In the following we will find factorizations of 2 × 2-block matrices where the
blocks are filters, into simpler such matrices. The importance of Theorem 8.3 is
then that MRA-matrices can be written as a product of simpler MRA matrices. These
simpler MRA matrices will be called elementary lifting matrices, and will be of the
following type.

Definition 8.6 (Elementary lifting matrices). A matrix on the form

(
I S
0 I

)
where

S is a filter is called an elementary lifting matrix of even type. A matrix on the form(
I 0
S I

)
is called an elementary lifting matrix of odd type.
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The following are the most useful properties of elementary lifting matrices:

Lemma 8.7. The following hold:

1.

(
I S
0 I

)T

=
(

I 0
ST I

)
, and

(
I 0
S I

)T

=
(

I ST

0 I

)
,

2.

(
I S1

0 I

)(
I S2

0 I

)
=

(
I S1 +S2

0 I

)
, and

(
I 0

S1 I

)(
I 0

S2 I

)
=

(
I 0

S1 +S2 I

)
,

3.

(
I S
0 I

)−1

=
(

I −S
0 I

)
, and

(
I 0
S I

)−1

=
(

I 0
−S I

)

These statements follow directly from Theorem 8.4. Due to Property 2, one can
assume that odd and even types of lifting matrices appear in alternating order, since
matrices of the same type can be grouped together. The following result states why
elementary lifting matrices can be used to factorize general MRA-matrices:

Theorem 8.8. Any invertible matrix on the form S =
(
S(0,0) S(0,1)

S(1,0) S(1,1)

)
, where the

S(i , j ) are filters with a finite numer of filter coefficients, can be written on the form

Λ1 · · ·Λn

(
α0Ep 0

0 α1Eq

)
, (8.4)

where Λi are elementary lifting matrices, p, q are integers, α0,α1 are nonzero
scalars, and Ep ,Eq are time delay filters. The inverse is given by(

α−1
0 E−p 0

0 α−1
1 E−q

)
(Λn)−1 · · · (Λ1)−1. (8.5)

Note that (Λi )−1 can be computed with the help of Property 3 of Lemma 8.7.
Proof: The proof will use the concept of the length of a filter, as defined in Defi-

nition 3.25. Let S =
(

S(0,0) S(0,1)

S(1,0) S(1,1)

)
be an arbitrary invertible matrix. We will incre-

mentally find an elementary lifting matrix Λi with filter Si in the lower left or upper
right corner so that Λi S has filters of lower length in the first column. Assume first
that l (S(0,0)) ≥ l (S(1,0)), where l (S) is the length of a filter as given by Definition 3.25.
IfΛi is of even type, then the first column inΛi S is(

I Si

0 I

)(
S(0,0)

S(1,0)

)
=

(
S(0,0) +Si S(1,0)

S(1,0)

)
. (8.6)
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Si can now be chosen so that l (S(0,0) + Si S(1,0)) < l (S(1,0)). To see how, recall that
we in Section 3.4 stated that multiplying filters corresponds to multiplying polyno-
mials. Si can thus be found from polynomial division with remainder: when we
divide S(0,0) by S(1,0), we actually find polynomials Si and P with l (P ) < l (S(1,0)) so
that S(0,0) = Si S(1,0) +P , so that the length of P = S(0,0) −Si S(1,0) is less than l (S(1,0)).
The same can be said if Λi is of odd type, in which case the first and second com-
ponents are simply swapped. This procedure can be continued until we arrive at a
product

Λn · · ·Λ1S

where either the first or the second component in the first column is 0. If the first
component in the first column is 0, the identity(

I 0
−I I

)(
I I
0 I

)(
0 X
Y Z

)
=

(
Y X +Z
0 −X

)
explains that we can bring the matrix to a form where the second element in the
first column is zero instead, with the help of the additional lifting matrices Λn+1 =(

I I
0 I

)
, and Λn+2 =

(
I 0
−I I

)
, so that we always can assume that the second

element in the first column is 0, i.e.

Λn · · ·Λ1S =
(

P Q
0 R

)
,

for some matrices P,Q,R. From the proof of Theorem 6.17 we will see that in order
for S to be invertible, we must have that S(0,0)S(1,1) −S(0,1)S(1,0) = −α−1Ed for some

nonzero scalarα and integer d . Since

(
P Q
0 R

)
is also invertible, we must thus have

that PR must be on the form αEn . When the filters have a finite number of filter
coefficients, the only possibility for this to happen is when P = α0Ep and R = α1Eq

for some p, q,α0,α1. Using this, and also isolating S on one side, we obtain that

S = (Λ1)−1 · · · (Λn)−1
(
α0Ep Q

0 α1Eq

)
, (8.7)

Noting that (
α0Ep Q

0 α1Eq

)
=

(
1 1

α1
E−qQ

0 1

)(
α0Ep 0

0 α1Eq

)
,

we can rewrite Equation (8.7) as

S = (Λ1)−1 · · · (Λn)−1
(

1 1
α1

E−qQ
0 1

)(
α0Ep 0

0 α1Eq

)
,

which is a lifting factorization of the form we wanted to arrive at. The last matrix in
the lifting factorization is not really a lifting matrix, but it too can easily be inverted,
so that we arrive at Equation (8.5). This completes the proof.
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Factorizations on the form given by Equation (8.4) will be called lifting factoriza-
tions. Assume that we have applied Theorem 8.8 in order to get a factorization of the
polyphase representation of the DWT kernel of the form

Λn · · ·Λ2Λ1H =
(
α 0
0 β

)
. (8.8)

Theorem 8.7 then immediately gives us the following factorizations.

H = (Λ1)−1(Λ2)−1 · · · (Λn)−1
(
α 0
0 β

)
(8.9)

G =
(
1/α 0

0 1/β

)
Λn · · ·Λ2Λ1 (8.10)

H T =
(
α 0
0 β

)
((Λn)−1)T ((Λn−1)−1)T · · · ((Λ1)−1)T (8.11)

GT = (Λ1)T (Λ2)T · · · (Λn)T
(
1/α 0

0 1/β

)
. (8.12)

Since H T and GT are the kernel transformations of the dual IDWT and the dual
DWT, respectively, these formulas give us recipes for computing the DWT, IDWT,
dual IDWT, and the dual DWT, respectively. All in all, everything can be computed
by combining elementary lifting steps.

In practice, one starts with a given wavelet with certain proved properties such
as the ones from Chapter 7, and applies an algorithm to obtain a lifting factorization
of the polyphase representation of the kernels. The algorihtm can easily be written
down from the proof of Theorem 8.8. The lifting factorization is far from unique,
and the algorithm only gives one of them.

It is desirable for an implementation to obtain a lifting factorization where the
lifting steps are as simple as possible. Let us restrict to the case of wavelets with
symmetric filters, since the wavelets used in most applications are symmetric. In
particular this means that S(0,0) is a symmetric matrix, and that S(1,0) is symmetric
about −1/2 (see Exercise 1).

Assume that we in the proof of Theorem 8.8 add an elementary lifting of even
type. At this step we then compute S(0,0) +Si S(1,0) in the first entry of the first col-
umn. Since S(0,0) is now assumed symmetric, Si S(1,0) must also be symmetric in
order for the length to be reduced. And since the filter coefficients of S(1,0) are as-
sumed symmetric about −1/2, Si must be chosen with symmetry around 1/2.

For most of our wavelets we will consider in the following examples it will turn
out the filters in the first column differ in the number of filter coefficients by 1 at all
steps. When this is the case, we can choose a filter of length 2 to reduce the length
by 2, so that the Si in an even lifting step can be chosen on the form Si = λi {1,1}.
Similarly, for an odd lifting step, Si can be chosen on the form Si = λi {1,1}. Let us
summarize this as follows:
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Theorem 8.9. When the filters in a wavelet are symmetric and the lengths of the
filters in the first column differ by 1 at all steps in the lifting factorization, the lift-

ing steps of even type take the simplified form

(
I λi {1,1}
0 I

)
, and the lifting steps

of odd type take the simplified form

(
I 0

λi {1,1} I

)
.

The lifting steps mentioned in this theorem are quickly computed due to their
simple structure. The corresponding MRA matrices are

1 λ 0 0 · · · 0 0 λ

0 1 0 0 · · · 0 0 0
0 λ 1 λ · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · λ 1 λ

0 0 0 0 · · · 0 0 1


and



1 0 0 0 · · · 0 0 0
λ 1 λ 0 · · · 0 0 0
0 0 1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 0 1 0
λ 0 0 0 · · · 0 λ 1


,

respectively, or

1 2λ 0 0 · · · 0 0 0
0 1 0 0 · · · 0 0 0
0 λ 1 λ · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · λ 1 λ

0 0 0 0 · · · 0 0 1


and



1 0 0 0 · · · 0 0 0
λ 1 λ 0 · · · 0 0 0
0 0 1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 0 1 0
0 0 0 0 · · · 0 2λ 1


(8.13)

if we use symmetric extensions as defined by Definition 5.42 (we have used Theo-
rem 5.43). Each lifting step leaves every second element unchanged, while for the
remaining elements, we simply add the two neighbours. Clearly these computations
can be computed in-place, without the need for extra memory allocations. From this
it is also clear how we can compute the entire DWT/IDWT in-place. We simply avoid
the reorganizing into the (φm−1,ψm−1)-basis until after all the lifting steps. After the
application of the matrices above, we have coordinates in the Cm-basis. Here only
the coordinates with indices (0,2,4, . . .) need to be further transformed, so the next
step in the algorithm should work directly on these. After the next step only the co-
ordinates with indices (0,4,8, . . .) need to be further transformed, and so on. From
this it is clear that

• the ψm−k coordinates are found at indices 2k−1 + r 2k , i.e. the last k bits are 1
followed by k −1 zeros.

• theφ0 coordinates are found at indices r 2m , i.e. the last m bits are 0.

If we place the last k bits of the ψm−k -coordinates in front in reverse order, and the
the last m bits of the φ0-coordinates in front, the coordinates have the same order
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as in the (φm−1,ψm−1)-basis. This is also called a partial bit-reverse, and is related
to the bit-reversal performed in the FFT algorithm.

Clearly, these lifting steps are also MRA-matrices with symmetric filters, so that
our procedure factorizes an MRA-matrix with symmetric filters into simpler MRA-
matrices which also have symmetric filters.

8.1.1 Reduction in the number of arithmetic operations with the
lifting factorization

The number of arithmetic operations needed to apply matrices on the form 8.13 is
easily computed. The number of multiplications is N /2 if symmetry is exploited as
in Observation 4.21 (N if symmetry is not exploited). Similarly, the number of addi-
tions is N . Let K be the total number of filter coefficients in H0, H1. In the following
we will see that each lifting step can be chosen to reduce the number of filter coeffi-
cients in the MRA matrix by 4, so that a total number of K /4 lifting steps are required.
Thus, a total number of K N /8 (K N /4) multiplications, and K N /4 additions are re-
quired when a lifting factorization is used. In comparison, a direct implementation
would require K N /4 (K N /2) multiplications, and K N /2 additions. For the examples
we will consider, we therefore have the following result.

Theorem 8.10. The lifting factorization approximately halves the number of ad-
ditions and multiplications needed, when compared with a direct implementa-
tion (regardless of whether symmetry is exploited or not).

Exercises for Section 8.1

1. Let H and G be MRA-matrices for a DWT/IDWT, with corresponding filters H0,
H1, G0, G1, and polyphase components H (i , j ), G (i , j ).

a. Show that

λH0 (ω) =λH (0,0) (2ω)+e iωλH (0,1) (2ω)

λH1 (ω) =λH (1,1) (2ω)+e−iωλH (1,0) (2ω)

λG0 (ω) =λG(0,0) (2ω)+e−iωλG(1,0) (2ω)

λG1 (ω) =λG(1,1) (2ω)+e iωλG(0,1) (2ω).

b. In the proof of the last part of Theorem 6.17, we defered the last part,
namely that equations (8.2)-(8.3) follow from(

G (0,0) G (0,1)

G (1,0) G (1,1)

)
=

(
αE−d H (1,1) −αE−d H (0,1)

−αE−d H (1,0) αE−d H (0,0)

)
.

Prove this based on the result from a.
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2. Let S be a filter. Show that

a. G

(
I 0
S I

)
is an MRA matrix with cfilters G̃0,G1, where

λG̃0
(ω) =λG0 (ω)+λS (2ω)e−iωλG1 (ω),

b. G

(
I S
0 I

)
is an MRA matrix with filters G0,G̃1, where

λG̃1
(ω) =λG1 (ω)+λS (2ω)e iωλG0 (ω),

c.
(

I 0
S I

)
H is an MRA-matrix with filters H0, H̃1, where

λH̃1
(ω) =λH1 (ω)+λS (2ω)e−iωλH0 (ω).

d.
(

I S
0 I

)
H is an MRA-matrix with filters H̃0, H1, where

λH̃0
(ω) =λH0 (ω)+λS (2ω)e iωλH1 (ω).

In summary, this exercise shows that one can think of the steps in the lifting factor-
ization as altering one of the filters of an MRA-matrix in alternating order.

3. Show that S is a filter of length kM if and only if the entries {Si , j }M−1
i , j=0 in the

polyphase representation of S satisfy S(i+r ) mod M ,( j+r ) mod M = Si , j . In other words,
S is a filter if and only if the polyphase representation of S is a “block-circulant
Toeplitz matrix”. This implies a fact that we will use: G H is a filter (and thus pro-
vides alias cancellation) if blocks in the polyphase representations repeat cyclically
as in a Toeplitz matrix (in particular when the matrix is block-diagonal with the same
block repeating on the diagonal).

4. Recall from Definition 6.20 that we defined a classical QMF filter bank as one
where M = 2, G0 = H0, G1 = H1, and λH1 (ω) =λH0 (ω+π). Show that the forward and
reverse filter bank transforms of a classical QMF filter bank take the form

H =G =
(

A −B
B A

)
5. Recall from Definition 6.21 that we defined an alternative QMF filter bank as
one where M = 2, G0 = (H0)T , G1 = (H1)T , and λH1 (ω) = λH0 (ω+π). Show that the
forward and reverse filter bank transforms of an alternative QMF filter bank take the
form.

H =
(

AT B T

−B A

)
G =

(
A −B T

B AT

)
=

(
AT B T

−B A

)T

.
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6. Consider alternative QMF filter banks where we take in an additional sign, so
that λH1 (ω) = −λH0 (ω+π) (the Haar wavelet was an example of such a filter bank).
Show that the forward and reverse filter bank transforms now take the form

H =
(

AT B T

B −A

)
G =

(
A B T

B −AT

)
=

(
AT B T

B −A

)T

.

It is straightforward to check that also these satisfy the alias cancellation condition,
and that the perfect reconstruction condition also here takes the form |λH0 (ω)|2 +
|λH0 (ω+π)|2 = 2.

8.2 Examples of lifting factorizations

We have seen that the polyphase representations of wavelet kernels can be factored
into a product of elementary lifting matrices. In this section we will compute the ex-
act factorizations for the wavelets we have considered. In the exercises we will then
complete the implementations, so that we can make actual experiments, such as
listening to the low-resolution approximations in sound, or using the cascade algo-
rithm to plot scaling functions and mother wavelets. We will omit the Haar wavelet.
One can easily write down a lifting factorization for this as well, but there is little to
save in this factorization when compared to the direct form of this we already have
considered.

First we will consider the two piecewise linear wavelets we have looked at. It
turns out that their lifting factorizations can be obtained in a direct way by consid-
ering the polyphase representations as a change of coordinates. To see how, we first
define

Dm = {φm,0,φm,2,φm,4 . . . ,φm,1,φm,3,φm,5, . . .}, (8.14)

PDm←φm
is clearly the permutation matrix P used in the similarity between a matrix

and its polyphase representation. Let now H and G be the kernel transformations of
a wavelet. The polyphase representation of H is

PHP T = PDm←φm
PCm←φm

Pφm←Dm = P(φ1,ψ1)←φm
Pφm←Dm = P(φ1,ψ1)←Dm .

Taking inverses here we obtain that PGP T = PDm←(φ1,ψ1). We therefore have the
following result:

Theorem 8.11. The polyphase representation of H equals the change of coor-
dinates matrix P(φ1,ψ1)←Dm , and the polyphase representation of G equals the
change of coordinates matrix PDm←(φ1,ψ1).

Example 8.12 (Lifting factorization of the piecewise linear wavelet). Let us consider
the piecewise linear wavelet from Section 5.4, for which we found that the change
of coordinate matrix G was given by Equation (6.1). In the four different polyphase
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components of G , let us underline the corresponding elements:

1p
2



1 0
1/2 1

0 0
...

...
0 0

1/2 0


,

1p
2



1 0
1/2 1

0 0
...

...
0 0

1/2 0


,

1p
2



1 0
1/2 1

0 0
...

...
0 0

1/2 0


,

1p
2



1 0
1/2 1

0 0
...

...
0 0

1/2 0


. (8.15)

we get the following:

• The upper left polyphase component G (0,0) is 1p
2

I .

• The upper right polyphase component G (0,1) is 0.

• The lower left polyphase component G (1,0) is 1p
2

S1, where S1 is the filter {1/2,1/2}.

• The lower right polyphase component G (1,1) is 1p
2

I .

In other words, the polyphase representation of G is 1p
2

(
I 0

1
2 {1,1} I

)
. Due to theo-

rem 8.7, the polyphase representation of H is
p

2

(
I 0

− 1
2 {1,1} I

)
We can thus summa-

rize as follows for the piecewise linear wavelet:

Theorem 8.13. Polyphase representations of the kernels H and G for the piece-
wise linear wavelet are

p
2

(
I 0

− 1
2 {1,1} I

)
and

1p
2

(
I 0

1
2 {1,1} I

)
, (8.16)

respectively.

♣
Example 8.14 (Lifting factorization of the alternative piecewise linear wavelet). Let
us now consider the alternative piecewise linear wavelet. In this case, Equation (6.3)

shows that PD1←(φ1,ψ̂1) (the polyphase representation of H) is not on the form

(
I 0

S1 I

)
for some filter S1, since there is more than one element in every column. Recall,
however, that the alternative piecewise linear wavelet was obtained by constructing
a new mother wavelet ψ̂ from the oldψ. ψ̂ is defined in Section 5.5 by Equation 5.39,
which said that

ψ̂(t ) =ψ(t )− 1

4

(
φ0,0(t )+φ0,1(t )

)
.

From this equation it is clear that

P(φ1,ψ1)←(φ1,ψ̂1) =
(

I S2

0 I

)
,
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where S2 =− 1
4 {1,1}. We can now write the polyphase representation of G as

PD1←(φ1,ψ̂1) = PD1←(φ1,ψ1)P(φ1,ψ1)←(φ1,ψ̂1). =
1p
2

(
I 0

1
2 {1,1} I

)(
I − 1

4 {1,1}
0 I

)
.

In other words, also here the same type of matrix could be used to express the change
of coordinates. This matrix is also easily invertible, so that the polyphase represen-
tation of H is p

2

(
I 1

4 {1,1}
0 I

)(
I 0

− 1
2 {1,1} I

)
.

We can thus conclude the following for the alternative piecewise linear wavelet:

Theorem 8.15. Polyphase representations of the kernels H and G for the alterna-
tive piecewise linear wavelet are

p
2

(
I 1

4 {1,1}
0 I

)(
I 0

− 1
2 {1,1} I

)
and

1p
2

(
I 0

1
2 {1,1} I

)(
I − 1

4 {1,1}
0 I

)
, (8.17)

respectively.

In this case we required one additional lifting step. ♣
Example 8.16 (Lifting factorization of the Spline 5/3 wavelet). Let us consider the
Spline 5/3 wavelet, which we defined in Example 7.20. Let us start by looking at ,
and we recall that

H0 =
{
−1

4
,

1

2
,

3

2
,

1

2
,−1

4

}
H1 =

{
−1

4
,

1

2
,−1

4

}
.

from which we see that the polyphase components of H are(
H (0,0) H (0,1)

H (1,0) H (1,1)

)
=

(
{− 1

4 , 3
2 ,− 1

4 } 1
2

{
1,1

}
− 1

4

{
1,1

} 1
2 I

)
We see here that the upper filter has most filter coefficients in the first column,
so that we must start with an elementary lifting of even type. We need to find a
filter S1 so that S1{−1/4,−1/4}+ {−1/4,3/2,−1/4} has fewer filter coefficients than
{−1/4,3/2,−1/4}. It is clear that we can choose S1 = {−1,−1}, and that

Λ1H =
(

I {−1,−1}
0 I

)(
{− 1

4 , 3
2 ,− 1

4 } 1
2 {1,1}

− 1
4 {1,1} 1

2 I

)
=

(
2I 0

− 1
4 {1,1} 1

2 I

)
Now we need to apply an elementary lifting of odd type, and we need to find a filter
S2 so that S2I − 1

4 {1,1} = 0. Clearly we can choose S2 = {1/8,1/8}, and we get

Λ2Λ1H =
(

I 0
1
8 {1,1} I

)(
2I 0

− 1
4 {1,1} 1

2 I

)
=

(
2I 0
0 1

2 I

)
.

Multiplying with inverses of elementary lifting steps, we now obtain the following
result.
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Theorem 8.17. Polyphase representations of the kernels H and G for the Spline
5/3 wavelet are(

I {1,1}
0 I

)(
I 0

− 1
8 {1,1} I

)(
2I 0
0 1

2 I

)
and

( 1
2 I 0
0 2I

)(
I 0

1
8 {1,1} I

)(
I {−1,−1}
0 I

)
,

respectively.

Two lifting steps are thus required. We also see that the lifting steps involve only
dyadic fractions, just as the filter coefficients did. This means that the lifting factor-
ization also can be used for lossless operations. ♣
Example 8.18 (Lifting factorization of the CDF 9/7 wavelet). For the wavelet we con-
sidered in Example 7.21, it is more cumbersome to compute the lifting factorization
by hand. It is however, straightforward to write an algorithm which computes the
lifting steps, as these are performed in the proof of Theorem 8.8. You will be spared
the details of this algorithm. Also, when we use these wavelets in implementations
later they will use precomputed values of these lifting steps, and you can take these
implementations for granted too. If we run the algorithm for computing the lifting
factorization we obtain the following result.

Theorem 8.19. Polyphase representations of the kernels H and G for the CDF 9/7
wavelet are (

I 0.5861{1,1}
0 I

)(
I 0

0.6681{1,1} I

)(
I −0.0700{1,1}
0 I

)
×

(
I 0

−1.2002{1,1} I

)(−1.1496 0
0 −0.8699

)
and(−0.8699 0

0 −1.1496

)(
I 0

1.2002{1,1} I

)(
I 0.0700{1,1}
0 I

)
×

(
I 0

−0.6681{1,1} I

)(
I −0.5861{1,1}
0 I

)
,

respectively.

In this case four lifting steps were required. ♣
Perhaps more important than the reduction in the number of arithmetic opera-

tions is the fact that the lifting factorization splits the DWT and IDWT into simpler
components, each very attractive for hardware implementations since a lifting step
only requires the additional value λi from Theorem 8.9. Lifting actually provides us
with a complete implementation strategy for the DWT and IDWT, in which the λi

are used as precomputed values.
Finally we will find a lifting factorization for orthonormal wavelets. Note that

here the filters H0 and H1 are not symmetric, and each of them has an even number
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of filter coefficients. There are thus a different number of filter coefficients with pos-
itive and negative indices, and in Section 7.6 we defined the filters so that the filter
coefficients were as symmetric as possible when it came to the number of nonzero
filter coefficients with positive and negative indices.
Example 8.20 (Lifting of orthonormal wavelets). We will attempt to construct a lift-
ing factorization where the following property is preserved after each lifting step:

P1: H (0,0), H (1,0) have a minimum possible overweight of filter coefficients with
negative indices.

This property stems from the assumption in Section 7.6 that H0 is assumed to
have a minimum possible overweight of filter coefficients with negative indices. To
see that this holds at the start, assume as before that all the filters have 2L nonzero
filter coefficients, so that H0 and H1 are on the form given by Equation (7.26). As-
sume first that L is even. It is clear that

H (0,0) = {t−L , . . . , t−2, t0, t2, . . . , tL−2} H (0,1) = {t−L+1, . . . , t−3, t−1, t1, . . . , tL−1}

H (1,0) = {s−L+1, . . . , s−1, s1, s3, . . . , sL−1} H (1,1) = {s−L+2, . . . , s−2, s0, s2, . . . , sL}.

Clearly P1 holds. Assume now that L is odd. It is now clear that

H (0,0) = {t−L+1, . . . , t−2, t0, t2, . . . , tL−1} H (0,1) = {t−L , . . . , t−3, t−1, t1, . . . , tL−2}

H (1,0) = {s−L+2, . . . , s−1, s1, s3, . . . , sL} H (1,1) = {s−L+1, . . . , s−2, s0, s2, . . . , sL−1}.

In this case it is seen that all filters have equally many filter coefficients with positive
and negative indices, so that P1 holds also here.

Now let us turn to the first lifting step. We will choose it so that the number
of filter coefficients in the first column is reduced with 1, and so that H (0,0) has an
odd number of coefficients. If L is even, we saw that H (0,0) and H (1,0) had an even
number of coefficients, so that the first lifting step must be even. To preserve P1, we
must cancel t−L , so that the first lifting step is

Λ1 =
(

I −t−L/s−L+1

0 I

)
.

If L is odd, we saw that H (0,0) and H (1,0) had an odd number of coefficients, so that
the first lifting step must be odd. To preserve P1, we must cancel sL , so that the first
lifting step is

Λ1 =
(

I 0
−sL/tL−1 I

)
.

Now that we have a difference of one filter coefficent in the first column, we will
reduce the entry with the most filter coefficients with two with a lifting step, until we
have H (0,0) = {K }, H (1,0) = 0 in the first column.

Assume first that H (0,0) has the most filter coefficients. We then need to apply an
even lifting step. Before an even step, the first column has the form(

{t−k , . . . , t−1, t0, t1, . . . , tk }
{s−k , . . . , s−1, s0, s1, . . . , sk−1}

)
.
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We can then chooseΛi =
(

I {−t−k /s−k ,−tk /sk−1}
0 I

)
as a lifting step.

Assume then that H (1,0) has the most filter coefficients. We then need to apply
an odd lifting step. Before an odd step, the first column has the form(

{t−k , . . . , t−1, t0, t1, . . . , tk }
{s−k−1, . . . , s−1, s0, s1, . . . , sk }

)
.

We can then chooseΛi =
(

I 0
{−s−k−1/t−k ,−sk /tk } I

)
as a lifting step.

If L is even we end up with a matrix on the form

(
α {0,K }
0 β

)
, and we can choose

the final lifting step asΛn =
(

I {0,−K /β}
0 I

)
.

If L is odd we end up with a matrix on the form

(
α K
0 β

)
, and we can choose the

final lifting step asΛn =
(

I −K /β
0 I

)
. Again using equations (8.9)-(8.10), this gives us

the lifting factorizations.

In summary we see that all even and odd lifting steps take the form

(
I {λ1,λ2}
0 I

)
and

(
I 0

λ1,λ2} I

)
. We see that symmetric lifting steps correspond to the special case

when λ1 =λ2. The even and odd lifting matrices now used are

1 λ1 0 0 · · · 0 0 λ2

0 1 0 0 · · · 0 0 0
0 λ2 1 λ1 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · λ2 1 λ1

0 0 0 0 · · · 0 0 1


and



1 0 0 0 · · · 0 0 0
λ2 1 λ1 0 · · · 0 0 0
0 0 1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 0 1 0
λ1 0 0 0 · · · 0 λ2 1


, (8.18)

respectively.
We note that when we reduce elements to the left and right in the upper and lower
part of the first column, the same type of reductions must occur in the second col-
umn, since the determinant H (0,0)H (1,1) −H(0,1)H (1,0) is a constant after any num-
ber of lifting steps.

This example explains the procedure for finding the lifting factorization into
steps of the form given in Equation (8.18). You will be spared the details of writ-
ing an implementation which applies this procedure. In order to use orthornormal
wavelets in implementations, we have implemented a functionliftingfactortho,
which takes N as input, and sets global variables lambdas, alpha, and beta, so that
the factorization (8.8) holds. lambdas is an n × 2-matrix so that the filter coeffi-
cients {λ1,λ2} or {λ1,λ2} in the i ’th lifting step is found in row i of lambdas. In the
exercises, you will be asked to implement both these nonsymmetric elementary lift-
ing steps, as well as kernel transformations for orthonormal wavelets, which assume
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that these global variables have been set, and describe the lifting steps of the wavelet
(Exercise 4). ♣

Exercises for Section 8.2

1. Assume that the filters H0, H1 of a wavelet are symmetric, and denote by S(i , j ) the
polyphase components of the corresponding MRA-matrix H . Show that S(0,0) and
S(1,1) are symmetric filters, that the filter coefficients of S(1,0) has symmetry about
−1/2, and that S(0,1) has symmetry about 1/2. Also show a similar statement for the
MRA-matrix G of the inverse DWT.

2. Write functions liftingstepevensymm and liftingstepoddsymm which take
λ, a vector x , and symm as input, and apply the elementary lifting matrices (8.13), re-
spectively, to x . The parameter symm should indicate whether symmetric extensions
shall be applied. Your code should handle both when N is odd, and when N is even
(as noted previously, when symmetric extensions are not applied, we assume that N
is even). The function should not perform matrix multiplication, and apply as few
multiplications as possible.

3. Up to now in this chapter we have obtained lifting factorizations for four dif-
ferent wavelets where the filters are symmetric. Let us now implement the kernel
transformations for these wavelets. Your functions should call the functions from
Exercise 2 in order to compute the individual lifting steps. Recall that the kernel
transformations should take the input vector x, symm (i.e. whether symmetric exten-
sion should be applied), and dual (i.e. whether the dual wavelet transform should
be applied) as input. You will need equations (8.9)-(8.12) here, in order to complete
the kernels for bot the transformations and the dual transformations.

a. Write the DWT and IDWT kernel transformations for the piecewise linear
wavelet. Your functions should use the lifting factorizations in (8.16). Call
your functions DWTKernelpwl0 and IDWTKernelpwl0.

b. Write the DWT and IDWT kernel transformations for the alternative piece-
wise linear wavelet. The lifting factorizations are now given by (8.17) instead.
Call your functions DWTKernelpwl2 and IDWTKernelpwl2.

c. Write the DWT and IDWT kernel transformations for the Spline 5/3 wavelet,
using the lifting factorization obtained in Example 8.16. Call your functions
DWTKernel53 and IDWTKernel53.

d. Write the DWT and IDWT kernel transformations for the CDF 9/7 wavelet,
using the lifting factorization obtained in Example 8.18. Call your functions
DWTKernel97 and IDWTKernel97.

e. In Chapter 5, we listened to the low-resolution approximations and detail
components in sound for three different wavelets, using the functionplayDWT.
Repeat these experiments with the Spline 5/3 and the CDF 9/7 wavelet, using
the new kernels we have implemented in this exercise.
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f. Use the function plotwaveletfunctions from Exercise 1 in Section 7.1
to plot all scaling functions and mother wavelets for the Spline 5/3 and the
CDF 9/7 wavelets, using the kernels you have implemented.

4. In this exercise we will implement the kernel transformations for orthonormal
wavelets.

a. Write functionsliftingstepeven andliftingstepoddwhich takeλ1,λ2

and a vector x as input, and apply the elementary lifting matrices (8.18), re-
spectively, to x . Assume that N is even.

b. Write functions DWTKernelOrtho and IDWTKernelOrtho which take a
vector x as input, and apply the DWT and IDWT kernel transformations for
orthonormal wavelets to x . You should call the functions liftingstepeven
and liftingstepodd. As mentioned, assume that global variables lambdas,
alpha, and beta have been set, so that the lifting factorization (8.8) holds,
wherelambdas is a n×2-matrix so that the filter coefficients {λ1,λ2} or {λ1,λ2}
in the i ’th lifting step is found in row i of lambdas. Recall that the last lifting
step was even.

c. Listen to the low-resolution approximations and detail components in
sound for orthonormal wavelets for N = 1,2,3,4, again using the function
playDWT. You need to call the function liftingfactortho in order to set
the kernel for the different values of N .

d. Use the function plotwaveletfunctions from Exercise 1 in Section 7.1
to plot all scaling functions and mother wavelets for orthonormal wavelets
for N = 1,2,3,4. Since the wavelets are orthonormal, we should have that
φ= φ̃, and ψ= ψ̃. In other words, you should see that the bottom plots equal
the upper plots.

5. Symmetric lifting steps in this chapter have all been on the form

(
I λ{1,1}
0 I

)
and(

I 0
λ{1,1} I

)
. In the next exercises, we will see that we also need to consider lifting

steps of the form (
I {λ2,λ1,λ1,λ2}
0 I

)
and

(
I 0

{λ2,λ1,λ1,λ2} I

)
. (8.19)

Write functions liftingstepeven2symm and liftingstepodd2symm which take
λ1,λ2, a vector x and symm as input, and apply the lifting matrices (8.19), respec-
tively, to x . The functions should perform as few multiplications as possible. Con-
centrate first on the case where symmetric extensions are made (symm=1), and then
on the case when they are not made (symm=0).

6. In Exercise 2 in Section 5.5 we found constants α,β,γ,δ which give the coordi-
nates of ψ̂ in (φ1,ψ̂1), where ψ̂ had four vanishing moments, and where we worked
with the multiresolution analysis of piecewise constant functions.
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a. Show that the polyphase representation of G when ψ̂ is used as mother
wavelet can be factored as

1p
2

(
I 0

{1/2,1/2} I

)(
I {−γ,−α,−β,−δ}
0 I

)
. (8.20)

You here need to reconstruct what you did in the lifting factorization for the
alternative piecewise linear wavelet, i.e. write

PD1←(φ1,ψ̂1) = PD1←(φ1,ψ1)P(φ1,ψ1)←(φ1,ψ̂1).

By inversion, find also a lifting factorization of H .

b. Implement kernels DWTKernelpwl4 and IDWTKernelpwl4 for the DWT
and IDWT of this wavelet.

c. Listen to the low-resolution approximations and detail components in
sound for this wavelet.

d. Use the function plotwaveletfunctions from Exercise 1 in Section 7.1
to plot all scaling functions and mother wavelets for this wavelet.

7. In Exercise 1 in Section 7.3 you should have found the filters

H0 = 1

128
{−5,20,−1,−96,70,280,70,−96,−1,20,−5} H1 = 1

16
{1,−4,6,−4,1}

G0 = 1

16
{1,4,6,4,1} G1 = 1

128
{5,20,1,−96,−70,280,−70,−96,1,20,5}.

a. Show that(
I − 1

128 {5,−29,−29,5}
0 I

)(
I 0

−{1,1} I

)(
I − 1

4 {1,1}
0 I

)
G =

( 1
4 0
0 4

)
.

From this we can easily derive the lifting factorization of G .

b. Implement kernels DWTKernelN14N24 and IDWTKernelN14N24 for this
wavelet.

c. Listen to the low-resolution approximations and detail components in
sound for this wavelet.

d. Use the function plotwaveletfunctions from Exercise 1 in Section 7.1
to plot all scaling functions and mother wavelets for this wavelet.

e. We can also implement the kernels of the wavelet of this exercise using
what you did in Exercise 12 in Section 6.1 (the filter coefficients are stated at
the beginning of this exercise). Use the code form Exercise 12 in Section 6.1 to
test that the implementation is correct (test on a randomly generated vector,
and use an assert statement to check whether the error is below a certain
tolerance). This test is useful, since it also can be used to test the functions
liftingstepeven2symm and liftingstepodd2symm, and that your lifting
factorization is correct.
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8.3 Cosine-modulated filter banks and the MP3 stan-
dard

Previously we saw that the MP3 standard used a certain filter bank, called a cosine-
modulated filter bank. We also illustrated that, surprisingly for a much used interna-
tional standard, the synthesis system did not exactly invert the analysis system, i.e.
we do not have perfect reconstruction, only “near-perfect reconstruction”. In this
section we will first explain how this filter bank can be constructed, and why it can
not give perfect reconstruction. In particular it will be clear how the prototype filter
can be constructed. We will then construct a very similar filter bank, which actually
can give perfect reconstruction. It may seem very surprising that the MP3 standard
does not use this filter bank instead due to this. The explanation may lie in that the
MP3 standard was established at about the same time as these filter banks were de-
veloped, so that the standard did not capture this very similar filter bank with perfect
reconstruction.

8.3.1 Polyphase representations of the filter bank transforms of the
MP3 standard

The main idea is to find the polyphase representations of the forward and reverse
filter bank transforms of the MP3 standard. We start with the expression

z32(s−1)+n =
511∑
k=0

cos((n +1/2)(k −16)π/32)hk x32s−k−1, (8.21)

which lead to the expression of the forward filter bank transform (Theorem 6.26).
Using that any k < 512 can be written uniquely on the form k = m + 64r , where
0 ≤ m < 64, and 0 ≤ r < 8, we can rewrite this as

=
63∑

m=0

7∑
r=0

(−1)r cos(2π(n +1/2)(m −16)/64)hm+64r x32s−(m+64r )−1

=
63∑

m=0
cos(2π(n +1/2)(m −16)/64)

7∑
r=0

(−1)r hm+32·2r x32(s−2r )−m−1.

Here we also used Property (6.34). If we write

V (m) = {(−1)0hm ,0, (−1)1hm+64,0, (−1)2hm+128, . . . , (−1)7hm+7·64,0}, (8.22)

for 0 ≤ m ≤ 63, and we can write the expression above as

63∑
m=0

cos(2π(n +1/2)(m −16)/64)
15∑

r=0
V (m)

r x32(s−r )−m−1

=
63∑

m=0
cos(2π(n +1/2)(m −16)/64)

15∑
r=0

V (m)
r x (32−m−1)

s−1−r

=
63∑

m=0
cos(2π(n +1/2)(m −16)/64)(V (m)x (32−m−1))s−1,
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where we recognized x32(s−r )−m−1 in terms of the polyphase components of x , and
the inner sum as a convolution. We remark that the inner terms {(V (m)x (32−m−1))s−1}63

m=0
here are what the standard calls partial calculations (windowing refers to multiplica-
tion with the combined set of filter coefficients of the V (m)), and that matrixing here
represents the multiplication with the cosine entries. Since z (n) = {z32(s−1)+n}∞s=0 is
the n’th polyphase component of z , this can be written as

z (n) =
63∑

m=0
cos(2π(n +1/2)(m −16)/64) IV (m)x (32−m−1).

In terms of matrices this can be written as

z =

 cos(2π(0+1/2) · (−16)/64) I · · · cos(2π(0+1/2) · (47)/64) I
...

. . .
...

cos(2π(31+1/2) · (−16)/64) I · · · cos(2π(31+1/2) · (47)/64) I



×


V (0) 0 · · · 0 0

0 V (1) · · · 0 0
...

...
...

...
...

0 0 · · · V (62) 0
0 0 · · · 0 V (63)




x (31)

x (30)

...
x (−32)

 .

If we place the 15 first columns in the cosine matrix last using Property (6.34) (we
must then also place the 15 first rows last in the second matrix), we obtain

z =

 cos(2π(0+1/2) · (0)/64) I · · · cos(2π(0+1/2) · (63)/64) I
...

. . .
...

cos(2π(31+1/2) · (0)/64) I · · · cos(2π(31+1/2) · (63)/64) I



×



0 · · · 0 V (16) · · · 0
...

...
...

...
. . .

...
0 · · · 0 0 · · · V (63)

−V (0) · · · · · · 0 · · · 0
...

. . .
...

...
... 0

0 · · · −V (15) 0 · · · 0




x (31)

x (30)

...
x (−32)

 .

Using Property (6.35) to combine column k and 64−k in the cosine matrix (as well
as row k and 64−k in the second matrix), we can write this as

 cos(2π(0+1/2) · (0)/64) I · · · cos(2π(0+1/2) · (31)/64) I
...

. . .
...

cos(2π(31+1/2) · (0)/64) I · · · cos(2π(31+1/2) · (31)/64) I

(
A′ B ′)


x (31)

x (30)

...
x (−32)

 .
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where

A′ =



0 0 · · · 0 V (16) 0 · · · 0
0 0 · · · V (15) 0 V (17) · · · 0
...

...
. . .

...
...

...
. . . 0

0 V (1) · · · 0 0 0 · · · V (31)

V (0) 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 · · · 0



B ′ =



0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
V(32) 0 · · · 0 0 0 · · · 0

0 V (33) · · · 0 0 0 · · · −V (63)

...
...

. . .
...

...
...

. . .
...

0 0 · · · V (47) 0 −V (49) · · · 0


.

Using Equation (4.3), the cosine matrix here can be written as

√
M

2
(DM )T


p

2 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 1

 .

The above can thus be written as

4(D32)T (
A B

)


x (31)

x (30)

...
x (−32)

 ,

where A and B are the matrices A′,B ′ with the first row multiplied by
p

2 (i.e. replace
V (16) with

p
2V (16) in the matrix A′). Using that x (−i ) = E1x i for 1 ≤ i ≤ 32, we can

write this as

4(D32)T (
A B

)


x (31)

...
x (0)

E1x (31)

...
E1x (0)


= 4(D32)T

A

x (31)

...
x (0)

+B

E1x (31)

...
E1x (0)


 ,
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which can be written as

4(D32)T



0 0 · · · 0
p

2V (16) 0 · · · 0
0 0 · · · V (15) 0 V (17) · · · 0
...

...
. . .

...
. . .

...
...

0 V (1) · · · 0 0 0 · · · V (31)

V (0) +E1V (32) 0 · · · 0 0 0 · · · 0
0 E1V (33) · · · 0 0 0 · · · −E1V (63)

...
...

. . .
...

...
...

. . .
...

0 0 · · · E1V (47) 0 −E1V (49) · · · 0



x (31)

...
x (0)

 ,

which also can be written as

4(D32)T



0 · · · 0
p

2V (16) 0 · · · 0 0
0 · · · V (17) 0 V (15) · · · 0 0
...

. . .
...

. . .
...

...
...

...
V (31) · · · 0 0 0 · · · V (1) 0

0 · · · 0 0 0 · · · 0 V (0) +E1V (32)

−E1V (63) · · · 0 0 0 · · · E1V (33) 0
...

. . .
...

...
...

. . .
...

...
0 · · · −E1V (49) 0 E1V (47) · · · 0 0



 x (0)

...
x (31)

 .

We have therefore proved the following result.

Theorem 8.21. (Polyphase factorization of a forward filter bank transform
based on a prototype filter). The polyphase form of a forward filter bank trans-
form based on a prototype filter can be factored as

4(D32)T



0 · · · 0
p

2V (16) 0 · · · 0 0
0 · · · V (17) 0 V (15) · · · 0 0
...

. . .
...

. . .
...

...
...

...
V (31) · · · 0 0 0 · · · V (1) 0

0 · · · 0 0 0 · · · 0 V (0) +E1V (32)

−E1V (63) · · · 0 0 0 · · · E1V (33) 0
...

. . .
...

...
...

. . .
...

...
0 · · · −E1V (49) 0 E1V (47) · · · 0 0


(8.23)

Due to theorem 6.28, it is also very simple to write down the polyphase factor-
ization of the reverse filter bank transform as well. Since E481GT is a forward filter
bank transform where the prototype filter has been reversed, E481GT can be factored
as above, with V (m) replaced by W (m), with W (m) being the filters derived from the
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synthesis prototype filter in reverse order. This means that the polyphase form of G
can be factored as

4



0 0 · · · (W (31))T 0 −E−1(W (63))T · · · 0
...

...
. . .

...
. . .

...
...

...
0 (W (17))T · · · 0 0 0 · · · −E−1(W (49))Tp

2(W (16))T 0 · · · 0 0 0 · · · 0
0 (W (15))T · · · 0 0 0 · · · E−1(W (47))T

...
...

. . .
...

...
...

. . .
...

0 0 · · · (W (1))T 0 E−1(W (33))T · · · 0
0 0 · · · 0 (W (0))T +E−1(W (32))T 0 · · · 0


×D32E481. (8.24)

Now, if we define U (m) as the filters derived from the synthesis prototype filter itself,
we have that

(W (k))T =−E−14V (64−k), 1 ≤ k ≤ 15 (W (0))T = E−16V (0).

Inserting this in Equation (8.24) we get the following result:

Theorem 8.22. (Polyphase factorization of a reverse filter bank transform
based on a prototype filter). Assume that G is a reverse filter filter bank trans-
form based on a prototype filter, and that U (m) are the filters derived from this
prototype filter. Then the polyphase form of G can be factored as

4



0 0 · · · −U (33) 0 E−1U (1) · · · 0
...

...
. . .

...
. . .

...
...

...
0 −U (47) · · · 0 0 0 · · · E−1U (15)

−p2U (48) 0 · · · 0 0 0 · · · 0
0 −U (49) · · · 0 0 0 · · · −E−1U (17)

...
...

. . .
...

...
...

. . .
...

0 0 · · · −U (63) 0 −E−1U (31) · · · 0
0 0 · · · 0 E−2U (0) −E−1U (32) 0 · · · 0


×D32E33. (8.25)

Now, consider the matrices(
V (32−i ) V (i )

−E1V (64−i ) E1V (32+i )

)
and

(−U (32+i ) E−1U (i )

−U (64−i ) −E−1U (32−i )

)
. (8.26)

for 1 ≤ i ≤ 15. These make out submatrices in the matrices in equations (8.23)
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and (8.25). Clearly, only the product of these matrices influence the result. Since(−U (32+i ) E−1U (i )

−U (64−i ) −E−1U (32−i )

)(
V (32−i ) V (i )

−E1V (64−i ) E1V (32+i )

)
=

(−U (32+i ) U (i )

−U (64−i ) −U (32−i )

)(
V (32−i ) V (i )

−V (64−i ) V (32+i )

)
(8.27)

we have the following result.

Theorem 8.23. Let H ,G be forward and reverse filter bank transforms defined
from analysis and synthesis prototype filters. Let also V (k) be the prototype filter
of H , and U (k) the reverse of the prototype filter of G . If(−U (32+i ) U (i )

−U (64−i ) −U (32−i )

)(
V (32−i ) V (i )

−V (64−i ) V (32+i )

)
= c

(
Ed 0
0 Ed

)
(
p

2V (16))(−p2U (48)) = cEd

(V (0) +E1V (32))(E−2U (0) −E−1U (32)) = cEd (8.28)

for 1 ≤ i ≤ 15, then G H = 16cE33+32d .

This result is the key ingredient we need in order to construct forward and re-
verse systems which together give perfect reconstuction. In Exercise 3 we go through
how we can use lifting in order to express a wide range of possible (U ,V ) matrix
pairs which satisfy Equation (8.28). This turns the problem of constructing cosine-
modulated filter banks which are useful for audio coding into an optimization prob-
lem: the optimization variables are values λi which characterize lifting steps, and
the objective function is the deviation of the corresponding prototype filter from
an ideal bandpass filter. This optimization problem has been subject to a lot of re-
search, and we will not go into details on this.

8.3.2 The prototype filters chosen in the MP3 standard

Now, let us return to the MP3 standard. We previously observed that in this standard
the coefficients in the synthesis prototype filter seemed to equal 32 times the analy-
sis prototype filter. This indicates that U (k) = 32V (k). A closer inspection also yields
that there is a symmetry in the values of the prototype filter: We see that Ci =−C512−i

(i.e. antisymmetry) for most values of i . The only exception is for i = 64,128, . . . ,448,
for which Ci = C512−i (i.e. symmetry). The antisymmetry can be translated to that
the filter coefficients of V (k) equal those of V (64−k) in reverse order, with a minus
sign. The symmetry can be translated to that V (0) is symmetric. These observations
can be rewritten as

V (64−k) =−E14(V (k))T ,1 ≤ k ≤ 15. (8.29)

V (0) = E16(V (0))T . (8.30)
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Inserting first that U (k) = 32V (k) in Equation (8.27) gives(−U (32+i ) U (i )

−U (64−i ) −U (32−i )

)(
V (32−i ) V (i )

−V (64−i ) V (32+i )

)
=32

(−V (32+i ) V (i )

−V (64−i ) −V (32−i )

)(
V (32−i ) V (i )

−V (64−i ) V (32+i )

)
.

Substituting for V (32+i ) and V (64−i ) after what we found by inspection now gives

32

(
E14(V (32−i ))T V (i )

E14(V (i ))T −V (32−i )

)(
V (32−i ) V (i )

E14(V (i ))T −E14(V (32−i ))T

)
=32

(
E14 0

0 E14

)(
(V (32−i ))T V (i )

(V (i ))T −V (32−i )

)(
V (32−i ) V (i )

(V (i ))T −(V (32−i ))T

)

=32

(
E14 0

0 E14

)(
V (32−i ) V (i )

(V (i ))T −(V (32−i ))T

)T (
V (32−i ) V (i )

(V (i ))T −(V (32−i ))T

)
=32

(
E14 0

0 E14

)(
V (i )(V (i ))T +V (32−i )(V (32−i ))T 0

0 V (i )(V (i ))T +V (32−i )(V (32−i ))T

)
.

(8.31)

Due to Exercise 6 in Section 8.1 (set A = (V (32−i ))T ,B = (V (i ))T ), with

H =
(
V (32−i ) V (i )

(V (i ))T −(V (32−i ))T

)
G =

(
(V (32−i ))T V (i )

(V (i ))T −V (32−i )

)
we recognize an alternative QMF filter bank. We thus have alias cancellation, with
perfect reconstruction only if |λH0 (ω)|2 +|λH0 (ω+π)|2. For the two remaining filters
we compute

(
p

2V (16))(−p2U (48))

=−64V (16)V (48) = 64E14V (16)(V (16))T = 32E14(V (16)(V (16))T +V (16)(V (16))T ) (8.32)

and

(V (0) +E1V (32))(E−2U (0) −E−1U (32))

= 32(V (0) +E1V (32))(E−2V (0) −E−1V (32)) = 32E−2(V (0) +E1V (32))(V (0) −E1V (32))

= 32E−2(V (0))2 − (V (32))2) = 32E14((V (0)(V (0))T +V (32)(V (32))T )). (8.33)

We see that the filters from equations (8.31)-(8.33) are similar, and that we thus can
combine them into

{V (i )(V (i ))T +V (32−i )(V (32−i ))T }16
i=0. (8.34)

All of these can be the identity, expect for 1024V (16)(V (16))T , since we know that the
product of two FIR filters is never the identity, except when both are delays (And all
V (m) are FIR, since the prototype filters defined by the MP3 standard are FIR). This
single filter is thus what spoils for perfect reconstruction, so that we can only hope
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for alias cancellation, and this happens when the filters from Equation (8.34) all are
equal. Ideally this is close to cI for some scalar c, and we then have that

G H = 16 ·32cE33+448 = 512cE481I .

This explains the observation from the MP3 standard that G H seems to be close to
E481. Since all the filters V (i )(V (i ))T +V (32−i )(V (32−i ))T are symmetric, G H is also a
symmetric filter due to Theorem 8.4, so that its frequency response is real, so that
we have no phase distortion. We can thus summarize our findings as follows.

Observation 8.24. The prototype filters from the MP3 standard do not give per-
fect reconstruction. They are found by choosing 17 filters {V (k)}16

k=0 so that the
filters from Equation 8.34 are equal, and so that their combination into a proto-
type filter using equations (8.22) and (8.29) is as close to an ideal bandpass filter
as possible. When we have equality the alias cancellation condition is satisfied,
and we also have no phase distortion. When the common value is close to 1

512 I ,
G H is close to E481, so that we have near-perfect reconstruction.

This states clearly the optimization problem which the values stated in the MP3
standard solves.

8.3.3 How can we obtain perfect reconstruction?

How can we overcome the problem that 1024V (16)(V (16))T 6= I , which spoiled for
perfect reconstruction in the MP3 standard? It turns out that we can address this a
simple change in our procedure. In Equation (8.21) we replace with

z32(s−1)+n =
511∑
k=0

cos((n +1/2)(k +1/2−16)π/32)hk x32s−k−1, (8.35)

i.e. 1/2 is added inside the cosine. We now have the properties

cos(2π(n +1/2)(k +64r +1/2)/(2N )) = (−1)r cos(2π(n +1/2)(k +1/2)/(2N ))
(8.36)

cos(2π(n +1/2)(2N −k −1+1/2)/(2N )) =−cos(2π(n +1/2)(k +1/2)/(2N )) . (8.37)

Due to the first property, we can deduce as before that

z (n) =
63∑

m=0
cos(2π(n +1/2)(m +1/2−16)/64) IV (m)x (32−m−1),

where the filters V (m) are defined as before. As before placing the 15 first columns of
the cosine-matrix last, but instead using Property (8.37) to combine columns k and
64−k −1 of the cosine-matrix, we can write this as cos(2π(0+1/2) · (0+1/2)/64) I · · · cos(2π(0+1/2) · (31+1/2)/64) I

...
. . .

...
cos(2π(31+1/2) · (0+1/2)/64) I · · · cos(2π(31+1/2) · (31+1/2)/64) I

(
A B

) x (31)

...
x (−32)
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where

A =



0 0 · · · V (15) V (16) · · · · · · 0
...

...
. . .

...
...

. . .
...

...
0 V (1) · · · 0 0 · · · V (30) 0

V (0) 0 · · · 0 0 · · · · · · V (31)

0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 · · · 0



B =



0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
V(32) 0 · · · 0 0 0 · · · −V (63)

0 V (33) · · · 0 0 · · · −V (62) 0
...

...
. . .

...
...

. . .
...

...
0 0 · · · V (47) −V (48) · · · · · · 0


.

Since the cosine matrix can be written as
√

M
2 D (i v)

M , the above can be written as

4D (i v)
M

(
A B

) x (31)

...
x (−32)

 .

As before we can rewrite this as

4D (i v)
M

(
A B

)


x (31)

...
x (0)

E1x (31)

...
E1x (0)


= 4D (i v)

M

A

x (31)

...
x (0)

+B

E1x (31)

...
E1x (0)


 ,

which can be written as

4D (i v)
M



0 0 · · · V (15) V (16) · · · · · · 0
...

...
. . .

...
...

. . .
...

...
0 V (1) · · · 0 0 · · · V (30) 0

V (0) 0 · · · 0 0 · · · · · · V (31)

E1V(32) 0 · · · 0 0 · · · · · · −E1V (63)

0 E1V (33) · · · 0 0 · · · −E1V (62) 0
...

...
. . .

...
...

. . .
...

...
0 0 · · · E1V (47) −E1V (48) · · · · · · 0



x (31)

...
x (0)

 ,
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which also can be written as

4D (i v)
M



0 0 · · · V (16) V (15) · · · · · · 0
...

...
. . .

...
...

. . .
...

...
0 V (30) · · · 0 0 · · · V (1) 0

V (31) 0 · · · 0 0 · · · · · · V (0)

−E1V(63) 0 · · · 0 0 · · · · · · E1V (32)

0 −E1V (62) · · · 0 0 · · · E1V (33) 0
...

...
. . .

...
...

. . .
...

...
0 0 · · · −E1V (48) E1V (47) · · · · · · 0



 x (0)

...
x (31)

 .

We therefore have the following result

Theorem 8.25. (Polyphase factorization of a forward filter bank transform
based on a prototype filter, modified version). The modified version of the
polyphase form of a forward filter bank transform based on a prototype filter can
be factored as

4D (i v)
M



0 0 · · · V (16) V (15) · · · · · · 0
...

...
. . .

...
...

. . .
...

...
0 V (30) · · · 0 0 · · · V (1) 0

V (31) 0 · · · 0 0 · · · · · · V (0)

−E1V(63) 0 · · · 0 0 · · · · · · E1V (32)

0 −E1V (62) · · · 0 0 · · · E1V (33) 0
...

...
. . .

...
...

. . .
...

...
0 0 · · · −E1V (48) E1V (47) · · · · · · 0


(8.38)

Clearly this factorization avoids having two blocks of filters: There are now 16
2×2-polyphase matrices, and as we know, each of them can be invertible, so that the
full matrix can be inverted in a similar fashion as before. It is therefore now possible
to obtain perfect reconstruction. Although we do not state recipes for implementing
this, one has just as efficient implementations as in the MP3 standard.

Since we ended up with the 2×2 polyphase matrices Mk , we can apply the lifting
factorization in order to halve the number of multiplications/additions. This is not
done in practice, since a lifting factorization requires that we compute all outputs at
once. In audio coding it is required that we compute the output progressively, due
to the large size of the input vector. The procedure above is therefore mostly useful
for providing the requirements for the filters, while the preceding comments can be
used for the implementation.

Exercises for Section 8.3

1. Run the forward and then the reverse transform from Exercise 2 in Section 6.3 on
the vector (1,2,3, . . . ,8192). Verify that there seems to be a delay on 481 elements, as
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promised by Therorem 8.24. Do you get the exact same result back?

2. Use your computer to verify the symmetries we have stated for the symmetries
in the prototype filters, i.e. that

Ci =
{
−C512−i i 6= 64,128, . . . ,448

C512−i i = 64,128, . . . ,448.

Explain also that this implies that hi = h512−i for i = 1, . . . ,511. In other words, the
prototype filter has symmetry around (511+1)/2 = 256, so that it has linear phase.

3. We mentioned that we could use the lifting factorization to construct filters on
the form stated in Equation (8.22), so that the matrices on the form given by Equa-
tion (8.26), i.e. (

V (32−i ) V (i )

−V (64−i ) V (32+i )

)
,

are invertible. Let us see what kind of lifting steps produce such matrices.

a. Show that the lifting steps

(
I λE2

0 I

)
and

(
I 0
λI I

)
applied in alternating

order to a matrix on the form given by Equation (8.26), where the filters are
on the from given by Equation (8.22), again produces matrices and filters on
these forms. This explains how we can parametrize a larger number of such
matrices with the help of lifting steps.It also explain why the inverse matrix is
on the form stated in Equation (8.26) with filters on the same form, since the
inverse lifting steps are of the same type.

b. Explain that 16 numbers {λi }16
i=1 are needed (together with what we start

with on the diagonal in the lifting construction), in order to construct filters
so that the prototype filter has 512 coefficients. Since there are 15 submatri-
ces, this gives 240 optimization variables.

Lifting gives the following strategy for finding a corresponding synthesis proto-
type filter which gives perfect reconstruction: First compute matrices V ,W which
are inverses of oneanother using lifting (using the lifting steps of this exercise en-
sures that all filters will be on the form stated in Equation (8.22)), and write

V W =
(

V (1) V (2)

−V (3) V (4)

)(
W (1) −W (3)

W (2) W (4)

)
=

(
V (1) V (2)

−V (3) V (4)

)(
(W (1))T (W (2))T

−(W (3))T (W (4))T

)T

=
(

V (1) V (2)

−V (3) V (4)

)(
E15(W (1))T E15(W (2))T

−E15(W (3))T E15(W (4))T

)T (
E15 0

0 E15

)
= I .

Now, the matrices U (i ) = E15(W (i ))T are on the form stated in Equation (8.22), and
we have that (

V (1) V (2)

−V (3) V (4)

)(
U (1) U (2)

−U (3) U (4)

)
=

(
E−15 0

0 E−15

)
We can now conclude from Theorem 8.23 that if we define the synthesis prototype
filter as therein, and set c = 1,d =−15, we have that G H = 16E481−32·15 = 16E1.
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Summary

We defined the polyphase representation of a matrix, and proved some useful prop-
erties. For filter bank transforms, the polyphase representation was a block matrix
where the blocks are filters, and these blocks/filters were called polyphase compo-
nents. In particular, the filter bank transforms of wavelets were 2×2-block matrices
of filters. We saw that, for wavelets, the polyphase representation could be realized
through a rearrangement of the wavelet bases, and thus paralleled the development
in Chapter 6 for expressing the DWT in terms of filters, where we instead rearranged
the target base of the DWT.

We showed with two examples that factoring the polyphase representation into
simpler matrices (also refered to as a polyphase factorization) could be a useful tech-
nique. First, for wavelets (M = 2), we established the lifting factorization. This is
useful not only since it factorizes the DWT and the IDWT into simpler operations,
but also since it reduces the number of arithmetic operations in these. The lifting
factorization is therefore also used in practical implementations, and we applied it
to some of the wavelets we constructed in Chapter 7. The JPEG2000 standard doc-
ument [1] explains a procedure for implementing some of these wavelet transforms
using lifting, and the values of the lifting steps used in the standard thus also appear
here.

The polyphase representation was also useful for proving the characterization of
wavelets we encountered in Chapter 7, which we used to find expressions for many
useful wavelets.

The polyphase representation was also useful to explain how the prototype fil-
ters of the MP3 standard should be chosen, in order for the reverse filter bank trans-
form to invert the forward filter bank transform. Again this was attacked by factoring
the polyphase representation of the forward and reverse filter bank transforms. The
parts of the factorization which represented the prototype filters were represented
by a sparse matrix, and it was clear from this matrix what properties we needed to
put on the prototype filter, in order to have alias cancellation, and no phase dis-
tortion. In fact, we proved that the MP3 standard could not possible give perfect
reconstruction, but it was very clear from our construction how the filter bank could
be modified in order for the overall system to provide perfect reconstruction.

The lifting scheme as introduced here was first proposed by Sweldens [35]. How
to use lifting for in-place calculation for the DWT was also suggested by Sweldens [34].

This development concludes the one-dimensional aspect of wavelets in this book.
In the following we will extend our theory to also apply for images. Images will be
presented in Chapter 9. After that we will define the tensor product concept, which
will be the key ingredient to apply wavelets to two-dimensional objects such as im-
ages.
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Chapter 9
Digital images

Upto now we have presented wavelets in a one-dimensional setting. Images, how-
ever, are two-dimensional by nature. This poses another challenge, which we did
not encounter in the case of sound signals. In this chapter we will establish the
mathematics to handle this, but first we will present some basics on images, as well
as how they can be represented and manipulated with simple mathematics. Images
are a very important type of digital media, and this material is thus useful, general
knowledge for anyone with a digital camera and a computer. For many scientists
this material is also an essential tool. As an example, in astrophysics data from both
satellites and distant stars and galaxies is collected in the form of images, and infor-
mation is extracted from the images with advanced image processing techniques.
As another example, medical imaging makes it possible to gather different kinds of
information in the form of images, even from the inside of the body. By analysing
these images it is possible to discover tumours and other disorders.

We will see how filter-based operations extend naturally to the two-dimensional
setting of images. Smoothing and edge detections are the two main examples of
filter-based operations we will concider for images. The key mathematical concept
in this extension is the tensor product, which can be thought of as a general tool for
constructing two-dimensional objects from one-dimensional counterparts. We will
also see that the tensor product allows us to establish an efficient implementation
of filtering for images, efficient meaning a complexity substantially less than what is
required by general linear transformations.

We will finally consider useful coordinate changes for images. Recall that the
DFT, the DCT, and the wavelet transform were all defined as changes of coordinates
for vectors or functions of one variable, and therefore cannot be directly applied to
two-dimensional data like images. It turns out that the tensor product can also be
used to extend changes of coordinates to a two-dimensional setting.

The examples in this chapter and the next chapter can be run from the notebook
notebook_images.m.
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9.1 What is an image?

Before we do computations with images, it is helpful to be clear about what an image
really is. Images cannot be perceived unless there is some light present, so we first
review superficially what light is.

9.1.1 Light

Fact 9.1 (Light). Light is electromagnetic radiation with wavelengths in the range
400–700 nm (1 nm is 10−9 m): Violet has wavelength 400 nm and red has wave-
length 700 nm. White light contains roughly equal amounts of all wave lengths.

Other examples of electromagnetic radiation are gamma radiation, ultraviolet and
infrared radiation and radio waves, and all electromagnetic radiation travel at the
speed of light (≈ 3×108 m/s). Electromagnetic radiation consists of waves and may
be reflected and refracted, just like sound waves (but sound waves are not electro-
magnetic waves).

We can only see objects that emit light, and there are two ways that this can
happen. The object can emit light itself, like a lamp or a computer monitor, or it
reflects light that falls on it. An object that reflects light usually absorbs light as well.
If we perceive the object as red it means that the object absorbs all light except red,
which is reflected. An object that emits light is different; if it is to be perceived as
being red it must emit only red light.

9.1.2 Digital output media

Our focus will be on objects that emit light, for example a computer display. A com-
puter monitor consists of a matrix of small dots which emit light. In most tech-
nologies, each dot is really three smaller dots, and each of these smaller dots emit
red, green and blue light. If the amounts of red, green and blue is varied, our brain
merges the light from the three small light sources and perceives light of different
colours. In this way the colour at each set of three dots can be controlled, and a
colour image can be built from the total number of dots.

It is important to realise that it is possible to generate most, but not all, colours
by mixing red, green and blue. In addition, different computer monitors use slightly
different red, green and blue colours, and unless this is taken into consideration,
colours will look different on the two monitors. This also means that some colours
that can be displayed on one monitor may not be displayable on a different monitor.

Printers use the same principle of building an image from small dots. On most
printers however, the small dots do not consist of smaller dots of different colours.
Instead as many as 7–8 different inks (or similar substances) are mixed to the right
colour. This makes it possible to produce a wide range of colours, but not all, and
the problem of matching a colour from another device like a monitor is at least as
difficult as matching different colours across different monitors.
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Video projectors builds an image that is projected onto a wall. The final image
is therefore a reflected image and it is important that the surface is white so that it
reflects all colours equally.

The quality of a device is closely linked to the density of the dots.

Fact 9.2 (Resolution). The resolution of a medium is the number of dots per inch
(dpi). The number of dots per inch for monitors is usually in the range 70–120,
while for printers it is in the range 150–4800 dpi. The horizontal and vertical den-
sities may be different. On a monitor the dots are usually referred to as pixels
(picture elements).

9.1.3 Digital input media

The two most common ways to acquire digital images is with a digital camera or a
scanner. A scanner essentially takes a photo of a document in the form of a matrix
of (possibly coloured) dots. As for printers, an important measure of quality is the
number of dots per inch.

Fact 9.3. The resolution of a scanner usually varies in the range 75 dpi to 9600
dpi, and the colour is represented with up to 48 bits per dot.

For digital cameras it does not make sense to measure the resolution in dots per
inch, as this depends on how the image is printed (its size). Instead the resolution is
measured in the number of dots recorded.

Fact 9.4. The number of pixels recorded by a digital camera usually varies in the
range 320×240 to 6000×4000 with 24 bits of colour information per pixel. The
total number of pixels varies in the range 76 800 to 24 000 000 (0.077 megapixels
to 24 megapixels).

For scanners and cameras it is easy to think that the more dots (pixels), the bet-
ter the quality. Although there is some truth to this, there are many other factors
that influence the quality. The main problem is that the measured colour informa-
tion is very easily polluted by noise. And of course high resolution also means that
the resulting files become very big; an uncompressed 6000×4000 image produces
a 72 MB file. The advantage of high resolution is that you can magnify the image
considerably and still maintain reasonable quality.

9.1.4 Definition of digital image

We have already talked about digital images, but we have not yet been precise about
what they are. From a mathematical point of view, an image is quite simple.
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(a) (b) (c)

Figure 9.1: Different version of the same image; black and white (a), grey-level (b),
and colour (c).

Fact 9.5 (Digital image). A digital image P is a matrix of intensity values
{pi , j }M ,N

i , j=1. For grey-level images, the value pi , j is a single number, while for colour

images each pi , j is a vector of three or more values. If the image is recorded in the
rgb-model, each pi , j is a vector of three values,

pi , j = (ri , j , gi , j ,bi , j ),

that denote the amount of red, green and blue at the point (i , j ).

Note that, when refering to the coordinates (i , j ) in an image, i will refer to row
index, j to column index, in the same was as for matrices. In particular, the top row
in the image have coordinates {(0, j )}N−1

j=0 , while the left column in the image has co-

ordinates {(i ,0)}M−1
i=0 . With this notation, the dimension of the image is M ×N . The

value pi , j gives the colour information at the point (i , j ). It is important to remem-
ber that there are many formats for this. The simplest case is plain black and white
images in which case pi , j is either 0 or 1. For grey-level images the intensities are
usually integers in the range 0–255. However, we will assume that the intensities
vary in the interval [0,1], as this sometimes simplifies the form of some mathemat-
ical functions. For colour images there are many different formats, but we will just
consider the rgb-format mentioned in the fact box. Usually the three components
are given as integers in the range 0–255, but as for grey-level images, we will as-
sume that they are real numbers in the interval [0,1] (the conversion between the
two ranges is straightforward, see Example 9.10 below). In Figure 9.1(c) we have
shown a test image which we will use a lot, called the Lena image, named after the
girl in the image. This image is also used as a test image in many image processing
textbooks. In (a) and (b) the corresponding black and white, and grey-level versions
of this image are shown.
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(a) 18×18 pixels (b) 50×50 pixels

Figure 9.2: Two excerpts of the colour image in figure 9.1. The grid indicates the
borders between the pixels.

Fact 9.6. In these notes the intensity values pi , j are assumed to be real numbers
in the interval [0,1]. For colour images, each of the red, green, and blue intensity
values are assumed to be real numbers in [0,1].

If we magnify the part of the colour image in figure 9.1 around one of the eyes,
we obtain the images in figure 9.2. As we can see, the pixels have been magnified to
big squares. This is a standard representation used by many programs — the actual
shape of the pixels will depend on the output medium. Nevertheless, we will con-
sider the pixels to be square, with integer coordinates at their centres, as indicated
by the grids in figure 9.2.

Fact 9.7 (Shape of pixel). The pixels of an image are assumed to be square with
sides of length one, with the pixel with value pi , j centred at the point (i , j ).

9.2 Some simple operations on images

Images are two-dimensional matrices of numbers, contrary to the sound signals we
considered in the previous section. In this respect it is quite obvious that we can
manipulate an image by performing mathematical operations on the numbers. In
this section we will consider some of the simpler operations. In later sections we
will go through more advanced operations, and explain how the theory for these can
be generalized from the corresponding theory for one-dimensional (sound) signals
(which we wil go through first).

In order to perform these operations, we need to be able to use images with a
programming environment.
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9.2.1 Images and Matlab

An image can also be thought of as a matrix, by associating each pixel with an el-
ement in a matrix. The matrix indices thus correspond to positions in the pixel
grid. Black and white images correspond to matrices where the elements are nat-
ural numbers between 0 and 255. To store a colour image, we need 3 matrices, one
for each colour component. We will also view this as a 3-dimensional matrix. In the
following, operations on images will be implemented in such a way that they are ap-
plied to each colour component simultaneously. This is similar to the FFT and the
DWT, where the operations were applied to each sound channel simultaneously.

Since images are viewed as 2-dimensional or 3-dimensional matrices, we can
use any linear algebra software in order to work with images. After we now have
made the connection with matrices, we can create images from mathematical for-
mulas, just as we could with sound in the previuos sections. But what we also need
before we go through operations on images, is, as in the sections on sound, means of
reading an image from a file so that its contents are accessible as a matrix, and write
images represented by a matrix which we have constructed ourself to file. Reading a
function from file can be done with help of the function imread. If we write

X = double(imread(’filename.fmt’, ’fmt’));

the image with the given path and format is read, and stored in the matrix which we
call X. ’fmt’ can be ’jpg’,’tif’, ’gif’, ’png’,... After the call to imread, we have a matrix
where the entries represent the pixel values, and of integer data type (more precisely,
the data type uint8). To perform operations on the image, we must first convert the
entries to the data type double, as shown above. Similarly, the function imwrite
can be used to write the image represented by a matrix to file. If we write

imwrite(uint8(X), ’filename.fmt’, ’fmt’)

the image represented by the matrix is written to the given path, in the given format.
Before the image is written to file, you see that we have converted the matrix values
back to the integer data type. In other words: imread and imwrite both assume in-
teger matrix entries, while operations on matrices assume double matrix entries. If
you want to print images you have created yourself, you can use this function first to
write the image to a file, and then send that file to the printer using another program.
Finally, we need an alternative to playing a sound, namely displaying an image. The
function imshow(uint8(X)) displays the matrix X as an image in a separate win-
dow. Also here we needed to convert the samples using the function uint8.

The following examples go through some much used operations on images.
Example 9.8 (Normalising the intensities). We have assumed that the intensities
all lie in the interval [0,1], but as we noted, many formats in fact use integer values in
the range [0,255]. And as we perform computations with the intensities, we quickly
end up with intensities outside [0,1] even if we start out with intensities within this
interval. We therefore need to be able to normalise the intensities. This we can do
with the simple linear function

g (x) = x −a

b −a
, a < b,
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which maps the interval [a,b] to [0,1]. A simple case is mapping [0,255] to [0,1]
which we accomplish with the scaling g (x) = x/255. More generally, we typically
perform computations that result in intensities outside the interval [0,1]. We can
then compute the minimum and maximum intensities pmin and pmax and map the
interval [pmin, pmax] back to [0,1]. Below we have shown a function mapto01 which
achieves this task.

function Z=mapto01(X)
minval = min(min(min(X)));
maxval = max(max(max(X)));
Z = (X - minval)/(maxval-minval);

Several examples of using this function will be shown below. A good question here
is why the functions min and max are called three times in succession. The reason
is that there is a third “dimension” in play, besides the spatial x- and y-directions.
This dimension describes the coulor components in each pixel, which are usually
the red-, green-, and blue colour components. ♣
Example 9.9 (Extracting the different colours). If we have a colour image

P = (ri , j , gi , j ,bi , j )m,n
i , j=1,

it is often useful to manipulate the three colour components separately as the three
images

Pr = (ri , j )m,n
i , j=1, Pr = (gi , j )m,n

i , j=1, Pr = (bi , j )m,n
i , j=1.

As an example, let us first see how we can produce three separate images, showing
the R,G, and B colour components, respectively. Let us take the image lena.png
used in Figure 9.1. When the image is read (first line below), the returned object
has three dimensions. The first two dimensions represent the spatial directions (the
row-index and column-index). The third dimension represents the colour compo-
nent. One can therefore view images representing the different colour components
with the help of the following code:

% Extract the different colours in an image
Z1=zeros(size(X));
Z1(:,:,1) = X(:,:,1);

Z2=zeros(size(X));
Z2(:,:,2) = X(:,:,2);

Z3=zeros(size(X));
Z3(:,:,3) = X(:,:,3);

The resulting images are shown in Figure 9.3. ♣
Example 9.10 (Converting from colour to grey-level). If we have a colour image we
can convert it to a grey-level image. This means that at each point in the image we
have to replace the three colour values (r, g ,b) by a single value p that will represent
the grey level. If we want the grey-level image to be a reasonable representation of
the colour image, the value p should somehow reflect the intensity of the image at
the point. There are several ways to do this.
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(a) (b) (c)

Figure 9.3: The red (a), green (b), and blue (c) components of the colour image in
Figure 9.1.

It is not unreasonable to use the largest of the three colour components as a
measure of the intensity, i.e, to set p = max(r, g ,b). The result of this can be seen in
Figure 9.4(a).

An alternative is to use the sum of the three values as a measure of the total in-
tensity at the point. This corresponds to setting p = r + g +b. Here we have to be a
bit careful with a subtle point. We have required each of the r , g and b values to lie
in the range [0,1], but their sum may of course become as large as 3. We also require
our grey-level values to lie in the range [0,1] so after having computed all the sums
we must normalise as explained above. The result can be seen in Figure 9.4(b).

A third possibility is to think of the intensity of (r, g ,b) as the length of the colour
vector, in analogy with points in space, and set p =

√
r 2 + g 2 +b2. Again, we may

end up with values in the range [0,
p

3] so we have to normalise like we did in the
second case. The result is shown in Figure 9.4(c).

Let us sum this up as follows.

Observation 9.11 (Conversion from colour to grey level). A colour image P =
(ri , j , gi , j ,bi , j )m,n

i , j=1 can be converted to a grey level image Q = (qi , j )m,n
i , j=1 by one

of the following three operations:

1. Set qi , j = max(ri , j , gi , j ,bi , j ) for all i and j .

2. (a) Compute q̂i , j = ri , j + gi , j +bi , j for all i and j .

(b) Transform all the values to the interval [0,1] by setting

qi , j =
q̂i , j

maxk,l q̂k,l
.

3. (a) Compute q̂i , j =
√

r 2
i , j + g 2

i , j +b2
i , j for all i and j .

(b) Transform all the values to the interval [0,1] by setting

qi , j =
q̂i , j

maxk,l q̂k,l
.
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(a) Each colour triple has been
replaced by its maximum

(b) Each colour triple has been
replaced by its sum and the re-
sult mapped to (0,1)

(c) Each triple has been re-
placed by its length and the re-
sult mapped to (0,1)

Figure 9.4: Alternative ways to convert the colour image in Figure 9.1 to a grey level
image.

This can be implemented by using most of the code from the previous example,
and replacing with the lines

% Convert from colour to grey level
Z1 = max(X, [], 3);

newvals = X(:, :, 1) + X(:, :, 2) + X(:, :, 3);
Z2 = 255*mapto01(newvals);

newvals = sqrt(X(:,:,1).^2 + X(:,:,2).^2 + X(:,:,3).^2);
Z3 = 255*mapto01(newvals);

respectively. In practice one of the last two methods are usually preferred, perhaps
with a preference for the last method, but the actual choice depends on the applica-
tion.

♣
Example 9.12 (Computing the negative image). In film-based photography a neg-
ative image was obtained when the film was developed, and then a positive image
was created from the negative. We can easily simulate this and compute a negative
digital image.

Suppose we have a grey-level image P = (pi , j )m,n
i , j=1 with intensity values in the in-

terval [0,1]. Here intensity value 0 corresponds to black and 1 corresponds to white.
To obtain the negative image we just have to replace an intensity p by its ’mirror
value’ 1−p.

Fact 9.13 (Negative image). Suppose the grey-level image P = (pi , j )m,n
i , j=1 is given,

with intensity values in the interval [0,1]. The negative image Q = (qi , j )m,n
i , j=1 has

intensity values given by qi , j = 1−pi , j for all i and j .
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(a) (b) (c)

Figure 9.5: The negative versions of the corresponding images in figure 9.4.

This is also easily translated to code as above. The resulting image is shown in
Figure 9.5. ♣
Example 9.14 (Increasing the contrast). A common problem with images is that
the contrast often is not good enough. This typically means that a large proportion
of the grey values are concentrated in a rather small subinterval of [0,1]. The obvious
solution to this problem is to somehow spread out the values. This can be accom-
plished by applying a function f to the intensity values, i.e., new intensity values are
computed by the formula

p̂i , j = f (pi , j )

for all i and j . If we choose f so that its derivative is large in the area where many
intensity values are concentrated, we obtain the desired effect.

Figure 9.6 shows some examples. The functions in the left plot have quite large
derivatives near x = 0.5 and will therefore increase the contrast in images with a
concentration of intensities with value around 0.5. The functions are all on the form

fn(x) = arctan
(
n(x −1/2)

)
2arctan(n/2)

+ 1

2
. (9.1)

For any n 6= 0 these functions satisfy the conditions fn(0) = 0 and fn(1) = 1. The three
functions in figure 9.6(a) correspond to n = 4, 10, and 100.

Functions of the kind shown in figure 9.6(b) have a large derivative near x = 0
and will therefore increase the contrast in an image with a large proportion of small
intensity values, i.e., very dark images. The functions are given by

gε(x) = ln(x +ε)− lnε

ln(1+ε)− lnε
, (9.2)

and the ones shown in the plot correspond to ε= 0.1, 0.01, and 0.001.
In figure 9.6(c) the middle function in (a) has been applied to the image in fig-

ure 9.4(c). Since the image was quite well balanced, this has made the dark areas
too dark and the bright areas too bright. In figure 9.6(d) the function in (b) has been
applied to the same image. This has made the image as a whole too bright, but has
brought out the details of the road which was very dark in the original.
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(c) The middle function in (a) has been
applied to a grey-level version of the test
image

(d) The middle function in (b) has been
applied to the same image

Figure 9.6: The plots in (a) and (b) show some functions that can be used to improve
the contrast of an image.

Observation 9.15. Suppose a large proportion of the intensity values pi , j of a
grey-level image P lie in a subinterval I of [0,1]. Then the contrast of the image
can be improved by computing new intensities p̂i , j = f (p, j ) where f is a function
with a large derivative in the interval I .

Increasing the contrast is easy to implement. The following function uses the
contrast adjusting function from Equation (9.2), with ε as in that equation as pa-
rameter

function Z=contrastadjust(X,epsilon)
Z = X/255; % Maps the pixel values to [0,1]
Z = (log(Z+epsilon) - log(epsilon))/...

(log(1+epsilon)-log(epsilon));
Z = Z*255; % Maps the values back to [0,255]

This has been used to generate the image in Figure 9.6(d). ♣
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What you should have learnt in this section

How to read, write, and show images on your computer. How to extract different
colour components, convert from colour to grey-level images, and use functions for
adjusting the contrast.

Exercises for Section 9.2

1. Black and white images can be generated from greyscale images (with values
between 0 and 255) by replacing each pixel value with the one of 0 and 255 which
is closest. Use this strategy to generate the black and white image shown in Fig-
ure 9.1(a).

2. Generate the image in Figure 9.6(d) on your own by writing code which uses the
function contrastadjust.

3. Let us also consider the second way we mentioned for increasing the contrast.

a. Write a function contrastadjust0 which instead uses the function from
Equation (9.1) to increase the contrast. n should be a parameter to the func-
tion.

b. Generate the image in Figure 9.6(c) on your own by using your code from
Exercise 2, and instead calling the function contrastadjust0.

4. In this exercise we will look at another function for increasing the contrast of a
picture.

a. Show that the function f :R→R given by

fn(x) = xn ,

for all n maps the interval [0,1] → [0,1], and that f ′(1) →∞ as n →∞.

b. The color image secret.jpg,shown in Figure 9.7, contains some infor-
mation that is nearly invisible to the naked eye on most computer monitors.
Use the function f (x), to reveal the secret message.
Hint: You will first need to convert the image to a greyscale image. You can
then use the function contrastadjust as a starting point for your own pro-
gram.

9.3 Filter-based operations on images

The next examples of operations on images we consider will use filters. These ex-
amples define what it means to apply a filter to two-dimensional data. We start with
the following definition of a computational molecule. This term stems from image
processing, and seems at the outset to be unrelated to filters.
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Figure 9.7: Secret message

Definition 9.16 (Computational molecules). We say that an operation S on an
image X is given by the computational molecule

A =



...
...

...
...

...
· · · a−1,−1 a−1,0 a−1,1 · · ·
· · · a0,−1 a0,0 a0,1 · · ·
· · · a1,−1 a1,0 a1,1 · · ·
...

...
...

...
...


if we have that

(SX )i , j =
∑

k1,k2

ak1,k2 Xi+k1, j+k2 . (9.3)

In the molecule, indices are allowed to be both positive and negative, we under-
line the element with index (0,0) (the centre of the molecule), and assume that
ai , j with indices falling outside those listed in the molecule are zero (as for com-
pact filter notation).

The interpretation of a computational molecule is that we place the centre of
the molecule on a pixel, multiply the pixel and its neighbours by the corresponding
weights ai , j , and finally sum up in order to produce the resulting value. This type
of operation will turn out to be particularly useful for images. The following result
expresses how computational molecules and filters are related. It states that, if we
apply one filter to all the columns, and then another filter to all the rows, the end
result can be expressed with the help of a computational molecule.

Theorem 9.17 (Filtering and computational molecules). Let S1 and S2 be filters
with compact filter notation t 1 and t 2, respectively, and consider the operation S
where S1 is first applied to the columns in the images, and then S2 is applied to
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the rows in the image. Then S is an operation which can be expressed in terms
of the computational molecule ai j = (rev(t 1))i (rev(t 2)) j , where rev(t ) denotes the
vector with the elements of t reversed.

Proof: Let Xi , j be the pixels in the image. When we apply S1 to the columns of X
we get the image Y defined by

Yi , j =
∑
k1

∑
(t1)k1 Xi−k1, j .

When we apply S2 to the rows of Y we get the image Z defined by

Zi , j =
∑
k2

(t2)k2 Yi , j−k2 =
∑
k2

(t2)k2

∑
k1

(t1)k1 Xi−k1, j−k2

=∑
k1

∑
k2

(t1)k1 (t2)k2 Xi−k1, j−k2 =
∑
k1

∑
k2

(rev(t1))−k1 (rev(t2))−k2 Xi−k1, j−k2

=∑
k1

∑
k2

(rev(t1))k1 (rev(t2))k2 Xi+k1, j+k2 ,

where we finally substituted −k1,−k2 with k1,k2. Comparing with Equation (9.3) we
see that S is given by the computational molecule with entries ai j = (rev(t 1))i (rev(t 2)) j .

Note that, when we filter an image with S1 and S2 in this way, the order does not
matter: since computing S1X is the same as applying S1 to all columns of X , and
computing Y (S2)T is the same as applying S2 to all rows of Y , the combined filtering
operation takes the form

SX = S1X (S2)T , (9.4)

and the fact that the order does not matter simply boils down to the fact that it does
not matter which of the left or right multiplications we perform first. Applying S1 to
the columns of X is what we call a vertical filtering operation, while applying S2 to
the rows of X is what we call a horizontal filtering operation. We can thus state the
following.

Observation 9.18. The order of vertical and horizontal filtering of an image does
not matter.

Most computational molecules we will consider in the following can be expressed
in terms of filters as in this theorem, but clearly there exist also computational molecules
which are not on this form, since the matrix A with entries ai j = (rev(t 1))i (rev(t 2)) j

has rank one, and a general computational molecule can have any rank.
In the previous theorem, note that the filter coefficients need to be reversed

when we apply the computational molecule. This may seem strange. The differ-
ence lies in that we define the application of a computational molecule in a different
way than application of a filter: a filter is “placed” over the samples in reverse order,
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contrary to a computational molecule. To be more precise, this has to do with the
difference in the sign in front of k and k1, k2, respectively, in the equations

(Sx)n =∑
k

sk xn−k (SX )i , j =
∑

k1,k2

ak1,k2 Xi+k1, j+k2 .

In most of the examples the filters are symmetric. In this case the reversal of the filter
coefficients causes no confusion.

We can use the funtion tensor_impl to define functions which filters rows and
the columns. Assume that the image is stored as the matrix X, and that the compu-
tational molecule is obtained by applying the filter S1 to the columns, and the filter
S2 to the rows. Then the following function will apply the computational molecule
to the image (we have assumed that the filter lengths are odd, and that the middle
filter coefficient has index 0):

function y = S1func(x):
y = convkernel(x, S1)

function y = S2func(x):
y = convkernel(x, S2)

Y = tensor_impl(X, S1func, S2func)

We have here adapted the simple convention that all pixels outside the image have
intensity 0, i.e. we do not make a periodic extension of the image. Instead of using
the conv-function, we could here also have used any efficient filter implementation.

9.3.1 Tensor product notation for operations on images

Filter-based operations on images can be written compactly using what we will call
tensor product notation. This is part of a very general tensor product framework,
and we will review parts of this framework for the sake of completeness. Let us first
define the tensor product of vectors.

Definition 9.19 (Tensor product of vectors). If x , y are vectors of length M and
N , respectively, their tensor product x ⊗ y is defined as the M ×N -matrix defined
by (x ⊗ y)i j = xi y j . In other words, x ⊗ y = x y T .

The tensor product x y T is also called the outer product of x and y (contrary to
the inner product 〈x , y〉 = xT y). In particular x⊗y is a matrix of rank 1, which means
that most matrices cannot be written as a tensor product of two vectors. The special
case e i ⊗ e j is the matrix which is 1 at (i , j ) and 0 elsewhere, and the set of all such
matrices forms a basis for the set of M ×N -matrices.

Observation 9.20. Let EM = {e i }M−1
i=0 EN = {e i }N−1

i=0 be the standard bases for RM

and RN . Then
EM ,N = {e i ⊗e j }(M−1,N−1)

(i , j )=(0,0)
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is a basis for LM ,N (R), the set of M ×N -matrices. This basis is often referred to as
the standard basis for LM ,N (R).

The standard basis thus consists of rank 1-matrices. An image can simply be
thought of as a matrix in LM ,N (R), and a computational molecule is simply a special
type of linear transformation from LM ,N (R) to itself. Let us also define the tensor
product of matrices.

Definition 9.21 (Tensor product of matrices). If S1 :RM →RM and S2 :RN →RN

are matrices, we define the linear mapping S1 ⊗S2 : LM ,N (R) → LM ,N (R) by linear
extension of (S1⊗S2)(e i ⊗e j ) = (S1e i )⊗(S2e j ). The linear mapping S1⊗S2 is called
the tensor product of the matrices S1 and S2.

A couple of remarks are in order. First, from linear algebra we know that, when S
is linear mapping from V and S(v i ) is known for a basis {v i }i of V , S is uniquely de-
termined. In particular, since the {e i ⊗e j }i , j form a basis, there exists a unique linear
transformation S1 ⊗S2 so that (S1 ⊗S2)(e i ⊗e j ) = (S1e i )⊗ (S2e j ). This unique linear
transformation is what we call the linear extension from the values in the given basis.
Clearly, by linearity, also (S1 ⊗S2)(x ⊗ y) = (S1x)⊗ (S2 y), since

(S1 ⊗S2)(x ⊗ y) = (S1 ⊗S2)((
∑

i
xi e i )⊗ (

∑
j

y j e j )) = (S1 ⊗S2)(
∑
i , j

xi y j (e i ⊗e j ))

=∑
i , j

xi y j (S1 ⊗S2)(e i ⊗e j ) =∑
i , j

xi y j (S1e i )⊗ (S2e j )

=∑
i , j

xi y j S1e i ((S2e j ))T = S1(
∑

i
xi e i )(S2(

∑
j

y j e j ))T

= S1x(S2 y)T = (S1x)⊗ (S2 y).

Here we used the result from Exercise 5. We can now prove the following.

Theorem 9.22. If S1 :RM →RM and S2 :RN →RN are matrices of linear transfor-
mations, then (S1 ⊗S2)X = S1X (S2)T for any X ∈ LM ,N (R). In particular S1 ⊗S2 is
the operation which applies S1 to the columns of X , and S2 to the resulting rows.
In other words, if S1, S2 have compact filter notations t 1 and t 2, respectively, then
S1 ⊗S2 has computational molecule rev(t 1)⊗ rev(t 2).

We have not formally defined the tensor product of compact filter notations.
This is a straightforward extension of the usual tensor product of vectors, where we
additionally mark the element at index (0,0).

Proof: We have that

(S1 ⊗S2)(e i ⊗e j ) = (S1e i )⊗ (S2e j )

= (coli (S1))⊗ (col j (S2)) = coli (S1)(col j (S2))T

= coli (S1)row j ((S2)T ) = S1(e i ⊗e j )(S2)T .
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This means that (S1⊗S2)X = S1X (S2)T for any X ∈ LM ,N (R) also, since equality holds
on the basis vectors e i⊗e j . and since the matrix A with entries ai j = (rev(t 1))i (rev(t 2)) j

can also be written as rev(t 1)⊗ rev(t 2), the result follows.
We have thus shown that we alternatively can write S1⊗S2 for the operations we

have considered. This notation also makes it easy to combine several two-dimensional
filtering operations:

Corollary 9.23. We have that (S1 ⊗T1)(S2 ⊗T2) = (S1S2)⊗ (T1T2).

Proof: By Theorem 9.22 we have that

(S1 ⊗T1)(S2 ⊗T2)X = S1(S2X T T
2 )T T

1 = (S1S2)X (T1T2)T = ((S1S2)⊗ (T1T2))X .

for any X ∈ LM ,N (R). This proves the result.
Suppose that we want to apply the operation S1 ⊗S2 to an image. We can factor-

ize S1 ⊗S2 as
S1 ⊗S2 = (S1 ⊗ I )(I ⊗S2) = (I ⊗S2)(S1 ⊗ I ). (9.5)

Moreover, since

(S1 ⊗ I )X = S1X (I ⊗S2)X = X (S2)T = (S2X T )T ,

S1 ⊗ I is a vertical filtering operation, and I ⊗ S2 is a horizontal filtering operation
in this factorization. For filters we have an even stronger result: If S1,S2,S3,S4 all
are filters, we have from Corollary 9.23 that (S1 ⊗ S2)(S3 ⊗ S4) = (S3 ⊗ S4)(S1 ⊗ S2),
since all filters commute. This does not hold in general since general matrices do
not commute.

We will now consider two important examples of filtering operations on images:
smoothing and edge detection/computing partical derivatives. For all examples we
will use the tensor product notation for these operations.
Example 9.24 (Smoothing an image). When we considered filtering of digital sound,
we observed that replacing each sample of a sound by an average of the sample and
its neighbours dampened the high frequencies of the sound. Let us consider the
computational molecules where such a filter is applied to both the rows and the
columns. For the one-dimensional case on sound, we argued that filter coefficients
taken from Pascal’s triangle give good smoothing effects. The same can be argued for
images. If we use the filter S = 1

4 {1,2,1} (row 2 from Pascal’s triangle), Theorem 9.17
says that we obtain the computational molecule

A = 1

16

1 2 1
2 4 2
1 2 1

 . (9.6)

This means that we compute the new pixels by

p̂i , j = 1

16

(
4pi , j +2(pi , j−1 +pi−1, j +pi+1, j +pi , j+1)

+pi−1, j−1 +pi+1, j−1 +pi−1, j+1 +pi+1, j+1
)
.
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(a) (b) (c)

Figure 9.8: The images in (b) and (c) show the effect of smoothing the image in (a).

If we instead use the filter S = 1
64 {1,6,15,20,15,6,1} (row 6 from Pascal’s triangle), we

get the computational molecule

1

4096



1 6 15 20 15 6 1
6 36 90 120 90 36 6

15 90 225 300 225 90 15
20 120 300 400 300 120 20
15 90 225 300 225 90 15
6 36 90 120 90 36 6
1 6 15 20 15 6 1


. (9.7)

For both molecules the weights sum to one, so that the new intensity values p̂i , j

are weighted averages of the intensity values on the right. We anticipate that both
molecules give a smoothing effect, but that the second molecules provides more
smoothing. The result of applying the two molecules in (9.6) and (9.7) to our greyscale-
image is shown in Figure 9.8(b) and -(c) respectively. With the help of the function
tensor_impl, smoothing with the first molecule (9.6) above can be obtained by
writing

function y = S(x)
y = convkernel(x, [1 2 1]/4);

Y = tensor_impl(X, @S, @S);

To make the smoothing effect visible, we have zoomed in on the face in the image.
The smoothing effect is clarly best visible in the second image. Smoothing effects are
perhaps more visible if we use a simple image, as the one in Figure 9.24(a). Again
we have used the filter S = 1

4 {1,2,1}. Here we also have shown in (b) and (c) what
happens if we only smooth the image in one of the directions. The smoothing effects
are then only seen in one of the vertical or horizontal directions. In (d) we have
smoothed in both directions. We clearly see the union of the two one-dimensional
smoothing operations then. Let us summarize as follows.
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(a) Original. (b) Horizontal smooth-
ing.

(c) Vertical smoothing. (d) Horizontal and verti-
cal smoothing.

Figure 9.9: The results of smoothing a simple image with the filter 1
4 {1,2,1} horizon-

tally, vertically, and both.

Observation 9.25. An image P can be smoothed by applying a smoothing filter
to the rows, and then to the columns.

♣
Example 9.26 (Computing partial derivatives and detecting edges). Another oper-
ation on images which can be expressed in terms of computational molecules is
edge detection. An edge in an image is characterised by a large change in inten-
sity values over a small distance in the image. For a continuous function this cor-
responds to a large derivative. An image is only defined at isolated points, so we
cannot compute derivatives, but we have a perfect situation for applying numerical
differentiation. Since a grey-level image is a scalar function of two variables, numer-
ical differentiation techniquesï¿½can be applied.

Partial derivative in x-direction. Let us first consider computation of the partial
derivative ∂P/∂x at all points in the image. Note first that it is the second coordi-
nate in an image which refers to the x-direction used when plotting functions. This
means that the familiar symmetric Newton quotient approximation for the partial
derivative [23] takes the form

∂P

∂x
(i , j ) ≈ pi , j+1 −pi , j−1

2
, (9.8)

where we have used the convention h = 1 which means that the derivative is mea-
sured in terms of ’intensity per pixel’. This corresponds to applying the bass-reducing
filter S = 1

2 {1,0,−1} to all the rows (alternatively, applying the tensor product I ⊗S to
the image). We can thus express this in terms of computational molecules as follows.

Observation 9.27. Let P = (pi , j )m,n
i , j=1 be a given image. The partial derivative

∂P/∂x of the image can be computed with the computational molecule

1

2

 0 0 0
−1 0 1
0 0 0

 . (9.9)
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(a) The partial derivative in the
x-direction

(b) The intensities in (a) have
been normalised to (0,1)

(c) The contrast has been en-
hanced with the function f50,
equation 9.1

Figure 9.10: Experimenting with the partial derivative for the image in 9.4.

We have included the two rows of 0s just to make it clear how the computa-
tional molecule is to be interpreted when we place it over the pixels. If we apply
the smooth-function to the same excerpt of the Lena image with this molecule, we
obtain figure 9.10(a). This image is not very helpful since it is almost completely
black. The reason is that many of the intensities are in fact negative, and these are
just displayed as black. More specifically, the intensities turn out to vary in the in-
terval [−0.424,0.418]. We therefore normalise and map all intensities to [0,1]. The
result of this is shown in (b). The predominant colour of this image is an average
grey, i.e, an intensity of about 0.5. To get more detail in the image we therefore try to
increase the contrast by applying the function f50 in equation 9.1 to each intensity
value. The result is shown in figure 9.10(c) which does indeed show more detail.

It is important to understand the colours in these images. We have computed
the derivative in the x-direction, and we recall that the computed values varied in
the interval [−0.424,0.418]. The negative value corresponds to the largest average
decrease in intensity from a pixel pi−1, j to a pixel pi+1, j . The positive value on the
other hand corresponds to the largest average increase in intensity. A value of 0 in
figure 9.10(a) corresponds to no change in intensity between the two pixels.

When the values are mapped to the interval [0,1] in figure 9.10(b), the small
values are mapped to something close to 0 (almost black), the maximal values are
mapped to something close to 1 (almost white), and the values near 0 are mapped
to something close to 0.5 (grey). In figure 9.10(c) these values have just been empha-
sised even more.

Figure 9.10(c) tells us that in large parts of the image there is very little variation
in the intensity. However, there are some small areas where the intensity changes
quite abruptly, and if you look carefully you will notice that in these areas there is
typically both black and white pixels close together, like down the vertical front cor-
ner of the bus. This will happen when there is a stripe of bright or dark pixels that
cut through an area of otherwise quite uniform intensity.
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(a) The computed gradient (b) The intensities in (a) have
been normalised to (0,1)

(c) The contrast has been en-
hanced with the function f50

Figure 9.11: Computing the gradient.

Partial derivative in y-direction. The partial derivative ∂P/∂y can be computed
analogously to ∂P/∂x, i.e. we apply the filter −S = 1

2 {−1,0,1} to all columns of the
image (alternatively, apply the tensor product −S ⊗ I to the image), where S is the
filter which we used for edge detection in the x-direction. Note that the positive
direction of this axis in an image is opposite to the direction of the y-axis we use
when plotting functions.

Observation 9.28. Let P = (pi , j )m,n
i , j=1 be a given image. The partial derivative

∂P/∂y of the image can be computed with the computational molecule

1

2

0 −1 0
0 0 0
0 1 0

 . (9.10)

The result is shown in figure 9.12(b). The intensities have been normalised and
the contrast enhanced by the function f50 from Equation (9.1).

The gradient. The gradient of a scalar function is often used as a measure of the
size of the first derivative. The gradient is defined by the vector

∇P =
(
∂P

∂x
,
∂P

∂y

)
,

so its length is given by

|∇P | =
√(

∂P

∂x

)2

+
(
∂P

∂y

)2

.

When the two first derivatives have been computed it is a simple matter to compute
the gradient vector and its length; the resulting is shown as an image in figure 9.11c.
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(a) The first-order partial
derivatives in the x-direction

(b) The first-order partial
derivatives in the y-direction

Figure 9.12: In both images, the computed numbers have been normalised and the
contrast enhanced.

The image of the gradient looks quite different from the images of the two partial
derivatives. The reason is that the numbers that represent the length of the gradi-
ent are (square roots of) sums of squares of numbers. This means that the parts of
the image that have virtually constant intensity (partial derivatives close to 0) are
coloured black. In the images of the partial derivatives these values ended up in the
middle of the range of intensity values, with a final colour of grey, since there were
both positive and negative values.

Figure 9.11(a) shows the computed values of the gradient. Although it is possible
that the length of the gradient could become larger than 1, the maximum value in
this case is about 0.876. By normalising the intensities we therefore increase the
contrast slightly and obtain the image in figure 9.11(b).

To enhance the contrast further we have to do something different from what
was done in the other images since we now have a large number of intensities near
0. The solution is to apply a function like the ones shown in figure 9.6(b) to the
intensities. If we use the function g0.01 defined in equation(9.2) we obtain the image
in figure 9.11(c).

♣

9.3.2 Comparing the first derivatives

Figure 9.12 shows the two first-order partial derivatives and the gradient. If we com-
pare the two partial derivatives we see that the x-derivative seems to emphasise ver-
tical edges while the y-derivative seems to emphasise horizontal edges. This is pre-
cisely what we must expect. The x-derivative is large when the difference between
neighbouring pixels in the x-direction is large, which is the case across a vertical
edge. The y-derivative enhances horizontal edges for a similar reason.

The gradient contains information about both derivatives and therefore empha-
sises edges in all directions. It also gives a simpler image since the sign of the deriva-
tives has been removed.
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(a) The second-order partial
derivatives in the x-direction

(b) The second-order partial
derivatives in the x y-direction

(c) The second-order partial
derivatives in the y-direction

Figure 9.13: In all images, the computed numbers have been normalised and the
contrast enhanced.

9.3.3 Second-order derivatives

To compute the three second order derivatives we can combine the two compu-
tational molecules which we already have described. For the mixed second order
derivative we get (I ⊗S)((−S)⊗ I ) =−S ⊗S. For the last two second order derivative
∂2P
∂x2 , ∂

2P
∂y2 , we can also use the three point approximation to the second derivative [23]

∂P

∂x2 (i , j ) ≈ pi , j+1 −2pi , j +pi , j−1 (9.11)

to the second derivative (again we have set h = 1). This gives a smaller molecule than
if we combine the two molecules for order one differentiation (i.e. (I⊗S)(I⊗S) = (I⊗
S2) and ((−S)⊗I )((−S)⊗I ) = (S2⊗I )), since S2 = 1

2 {1,0,−1} 1
2 {1,0,−1} = 1

4 {1,0,−2,0,1}.

Observation 9.29 (Second order derivatives of an image). The second order
derivatives of an image P can be computed by applying the computational
molecules

∂2P

∂x2 :

0 0 0
1 −2 1
0 0 0

 , (9.12)

∂2P

∂y∂x
:

1

4

−1 0 1
0 0 0
1 0 −1

 , (9.13)

∂2P

∂y2 :

0 1 0
0 −2 0
0 1 0

 . (9.14)

With the information in observation 9.29 it is quite easy to compute the second-
order derivatives, and the results are shown in figure 9.13. The computed derivatives
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(a) A simple chess pat-
tern example image

(b) S⊗I applied to image (c) I ⊗S applied to image (d) S⊗S applied to image

(e) I ⊗ S2 applied to im-
age

(f) S2 ⊗ I applied to im-
age

Figure 9.14: Different combinations of tensor products applied to a simple image

were first normalised and then the contrast enhanced with the function f100 in each
image, see equation 9.1.

As for the first derivatives, the xx-derivative seems to emphasise vertical edges
and the y y-derivative horizontal edges. However, we also see that the second deriva-
tives are more sensitive to noise in the image (the areas of grey are less uniform). The
mixed derivative behaves a bit differently from the other two, and not surprisingly it
seems to pick up both horizontal and vertical edges.

This procedure can be generalized to higher order derivatives also. To apply
∂k+l P
∂xk∂y l to an image we can compute Sl⊗Sk where Sr corresponds to any point method

for computing the r ’th order derivative. We can also compute (Sl )⊗ (Sk ), where we
iterate the filter S = 1

2 {1,0,−1} for the first derivative, but this gives longer filters.

Let us also apply the molecules for differentiation to a chess pattern test image.
In Figure 9.14 we have applied S⊗ I , I ⊗S, and S⊗S to the image shown in (a). These
images make it is clear that S ⊗ I detects all horizontal edges, that I ⊗ S detects all
vertical edges, and that S⊗S detects all points where abrupt changes appear in both
directions. We also see that the second order partial derivative detects exactly the
same edges which the first order partial derivative found. Note that the edges de-
tected with I ⊗ S2 are wider than the ones detected with I ⊗ S. The reason is that
the filter S2 has more filter coefficients than S. Also, edges are detected with differ-
ent colours. This reflects whether the difference between the neighbouring pixels is
positive or negative. The values after we have applied the tensor product may thus
not lie in the legal range of pixel values (since they may be negative). The figures
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have taken this into account by mapping the values back to a legal range of values,
as we did in Chapter 9. Finally, we also see additional edges at the first and last
rows/edges in the images. The reason is that the filter S is defined by assuming that
the pixels repeat periodically (i.e. it is a circulant Toeplitz matrix). Due to this, we
have additional edges at the first/last rows/edges. This effect can also be seen in
Chapter 9, although there we did not assume that the pixels repeat periodically.

Defining a two-dimensional filter by filtering columns and then rows is not the
only way we can define a two-dimensional filter. Another possible way is to let the
M N ×M N -matrix itself be a filter. Unfortunately, this is a bad way to define filter-
ing of an image, since there are some undesirable effects near the boundaries be-
tween rows: in the vector we form, the last element of one row is followed by the
first element of the next row. These boundary effects are unfortunate when a filter is
applied.

What you should have learnt in this section

The operation X → S1X (S2)T can be used to define operations on images, based on
one-dimensional operations S1 and S2. This amounts to applying S1 to all columns
in the image, and then S2 to all rows in the result. You should know how this oper-
ation can be conveniently expressed with tensor product notation, and that in the
typical case when S1 and S2 are filters, this can equivalently be expressed in terms of
computational molecules. The case when the Si are smoothing filters gives rise to
smoothing operations on images. A simple highpass filter, corresponding to taking
the derivative, gives rise to edge-detection operations on images.

Exercises for Section 9.3

1. Generate the image in Figure 9.8(b) and -(c) by writing code which calls the func-
tion tensor_impl with appropriate filters.

2. Generate the image in Figure 9.10(c) by writing code in the same way. Also gen-
erate the images in figures 9.11, 9.12, and 9.13.

3. Let the filter S be defined by S = {−1,1}.

a. Let X be a matrix which represents the pixel values in an image. What can
you say about how the new images (S ⊗ I )X og (I ⊗ S)X look? What are the
interpretations of these operations?

b. Write down the 4⊗4-matrix X = (1,1,1,1)⊗ (0,0,1,1). Compute (S ⊗ I )X
by applying the filters to the corresponding rows/columns of X as we have
learnt, and interpret the result. Do the same for (I ⊗S)X .

4. Let S be the moving average filter of length 2L +1, i.e. T = 1
L {1, · · · ,1,1,1, · · · ,1︸ ︷︷ ︸

2L+1 times

}.

What is the computational molecule of S ⊗S?

5. Show that the mapping F (x , y) = x ⊗ y is bi-linear, i.e. that F (αx1 +βx2, y) =
αF (x1, y)+βF (x2, y), and F (x ,αy 1 +βy 2) =αF (x , y 1)+βF (x , y 2).
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6. Attempt to find matrices S1 : RM → RM and S2 : RN → RN so that the following
mappings from LM ,N (R) to LM ,N (R) can be written on the form X → S1X (S2)T =
(S1 ⊗S2)X . In all the cases, it may be that no such S1, S2 can be found. If this is the
case, prove it.

a. The mapping which reverses the order of the rows in a matrix.

b. The mapping which reverses the order of the columns in a matrix.

c. The mapping which transposes a matrix.

7. Let the filter S be defined by S = {1,2,1}.

a. Write down the computational molecule of S ⊗S.

b. Let us define x = (1,2,3), y = (3,2,1), z = (2,2,2), and w = (1,4,2). Com-
pute the matrix A = x ⊗ y + z ⊗w .

c. Compute (S ⊗S)A by applying the filter S to every row and column in the
matrix the way we have learnt. If the matrix A was more generally an image,
what can you say about how the new image will look?

8. Let S = 1
4 {1,2,1} be a filter.

a. What is the effect of applying the tensor products S⊗ I , I ⊗S, and S⊗S on
an image represented by the matrix X ?

b. Compute (S ⊗S)(x ⊗ y), where x = (4,8,8,4), y = (8,4,8,4) (i.e. both x and
y are column vectors).

9. Suppose that we have an image given by the M ×N -matrix X, and consider the
following code:

for n=1:N
X(1, n) = 0.25*X(N, n) + 0.5*X(1, n) + 0.25*X(2, n);
X(2:(N-1), n) = 0.25*X(1:(N-2), n) + 0.5*X(2:(N-1), n) ...

+ 0.25*X(3:N, n);
X(N, n) = 0.25*X(N-1, n) + 0.5*X(N, n) + 0.25*X(1, n);

end
for m=1:M

X(m, 1) = 0.25*X(m, M) + 0.5*X(m, 1) + 0.25*X(m, 2);
X(m, 2:(M-1)) = 0.25*X(m, 1:(M-2)) + 0.5*X(m, 2:(M-1),) ...

+ 0.25*X(m, 3:M);
X(m, M) = 0.25*X(m, M-1) + 0.5*X(m, M) + 0.25*X(m, 1);

end

Which tensor product is applied to the image? Comment what the code does, in
particular the first and third line in the inner for-loop. What effect does the code
have on the image?

10. Let v A be an eigenvector of A with eigenvalue λA , and v B an eigenvector of B
with eigenvalue λB . Show that v A ⊗ v B is an eigenvector of A ⊗B with eigenvalue
λAλB . Explain from this why ‖A ⊗B‖ = ‖A‖‖B‖, where ‖ · ‖ denotes the operator
norm of a matrix.
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11. The Kronecker tensor product of two matrices A and B , written A⊗k B , is defined
as

A⊗k B =


a11B a12B · · · a1M B
a21B a22B · · · a2M B

...
...

. . .
...

ap1B ap2B · · · apM B

 ,

where the entries of A are ai j . The tensor product of a p ×M-matrix, and a q ×N -
matrix is thus a (pq)×(M N )-matrix. Note that this tensor product in particular gives
meaning for vectors: if x ∈RM , y ∈RN are column vectors, then x⊗k y ∈RM N is also a
column vector. In this exercise we will investigate how the Kronecker tensor product
is related to tensor products as we have defined them in this section.

a. Explain that, if x ∈ RM , y ∈ RN are column vectors, then x ⊗k y is the col-
umn vector where the rows of x ⊗ y have first been stacked into one large
row vector, and this vector transposed. The linear extension of the operation
defined by

x ⊗ y ∈RM ,N → x ⊗k y ∈RM N

thus stacks the rows of the input matrix into one large row vector, and trans-
poses the result.

b. Show that (A ⊗k B)(x ⊗k y) = (Ax)⊗k (B y). We can thus use any of the
defined tensor products ⊗, ⊗k to produce the same result, i.e. we have the
following commutative diagram,

x ⊗ y
A⊗B //

��

(Ax)⊗ (B y)

��
x ⊗k y

A⊗k B// (Ax)⊗k (B y),

where the vertical arrows represent stacking the rows in the matrix, and trans-
posing, and the horizontal arrows represent the two tensor product linear
transformations we have defined. In particular, we can compute the tensor
product in terms of vectors, or in terms of matrices, and it is clear that the
Kronecker tensor product gives the matrix of tensor product operations.

c. Using the Euclidean inner product on L(M , N ) =RM N , i.e.

〈X ,Y 〉 =
M−1∑
i=0

N−1∑
j=0

Xi , j Yi , j .

and the correspondence in a. we can define the inner product of x1 ⊗ y 1 and
x2 ⊗ y 2 by

〈x1 ⊗ y 1, x2 ⊗ y 2〉 = 〈x1 ⊗k y 1, x2 ⊗k y 2〉.
Show that

〈x1 ⊗ y 1, x2 ⊗ y 2〉 = 〈x1, x2〉〈y 1, y 2〉.
Clearly this extends linearly to an inner product on LM ,N .
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d. Show that the FFT factorization can be written as(
FN /2 DN /2FN /2

FN /2 −DN /2FN /2

)
=

(
IN /2 DN /2

IN /2 −DN /2

)
(I2 ⊗k FN /2).

Also rewrite the sparse matrix factorization for the FFT from Equation (2.19)
in terms of tensor products.

9.4 Change of coordinates for images

Filter-based operations were not the only operations we considered for sound. We
also considered the DFT, the DCT, and the wavelet transform, which were changes
of coordinates which gave us useful frequency- or time-frequency information. We
would like to define similar changes of coordinates for images, which also give useful
such information. Tensor product notation will also be useful in this respect, and we
start with the following result.

Theorem 9.30. If B1 = {v i }M−1
i=0 is a basis for RM , and B2 = {w j }N−1

j=0 is a basis for

RN , then {v i⊗w j }(M−1,N−1)
(i , j )=(0,0) is a basis for LM ,N (R). We denote this basis by B1⊗B2.

Proof: Suppose that
∑(M−1,N−1)

(i , j )=(0,0) αi , j (v i ⊗ w j ) = 0. Setting hi = ∑N−1
j=0 αi , j w j we

get
N−1∑
j=0

αi , j (v i ⊗w j ) = v i ⊗ (
N−1∑
j=0

αi , j w j ) = v i ⊗hi .

where we have used the bi-linearity of the tensor product mapping (x , y) → x ⊗ y
(Exercise 5 in Section 9.3). This means that

0 =
(M−1,N−1)∑
(i , j )=(0,0)

αi , j (v i ⊗w j ) =
M−1∑
i=0

v i ⊗hi =
M−1∑
i=0

v i hT
i .

Column k in this matrix equation says 0 = ∑M−1
i=0 hi ,k v i , where hi ,k are the compo-

nents in hi . By linear independence of the v i we must have that h0,k = h1,k = ·· · =
hM−1,k = 0. Since this applies for all k, we must have that all hi = 0. This means that∑N−1

j=0 αi , j w j = 0 for all i , from which it follows by linear independence of the w j

that αi , j = 0 for all j , and for all i . This means that B1 ⊗B2 is a basis.
In particular, as we have already seen, the standard basis for LM ,N (R) can be

written EM ,N = EM ⊗EN . This is the basis for a useful convention: For a tensor prod-
uct the bases are most naturally indexed in two dimensions, rather than the usual
sequential indexing. This difference translates also to the meaning of coordinate
vectors, which now are more naturally thought of as coordinate matrices:
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Definition 9.31 (Coordinate matrix). Let {v i }M−1
i=0 , {w j }N−1

j=0 be bases for RM and

RN . By the coordinate matrix of
∑

k,l αk,l (v k ⊗w l ) we will mean the M ×N -matrix
X with entries Xkl =αk,l .

We will have use for the following theorem, which shows how change of coordi-
nates in RM and RN translate to a change of coordinates in the tensor product:

Theorem 9.32 (Change of coordinates in tensor products). Assume that

1. B1,C1 are bases for RM , and that S1 is the change of coordinates matrix
from B1 to C1,

2. B2,C2 are bases for RN , and that S2 is the change of coordinates matrix
from B2 to C2.

Both B1⊗B2 and C1⊗C2 are bases for LM ,N (R), and if X is the coordinate matrix
in B1⊗B2, and Y the coordinate matrix in C1⊗C2, then the change of coordinates
from B1 ⊗B2 to C1 ⊗C2 can be computed as

Y = S1X (S2)T . (9.15)

Proof: Let c ki be the i ’th basis vector in Ck , bki the i ’th basis vector in Bk , k =
1,2. Since any change of coordinates is linear, it is enough to show that it coincides
with X → S1X (S2)T on the basis C1 ⊗C2. The basis vector c 1i ⊗ c 2 j has coordinate
vector X = e i ⊗e j in C1 ⊗C2. With the mapping X → S1X (S2)T this is sent to

S1X (S2)T = S1(e i ⊗e j )(S2)T = coli (S1)row j ((S2)T ).

On the other hand, since column i in S1 is the coordinates of c 1i in the basis B1, and
column j in S2 is the coordinates of c 2 j in the basis B2, we can write

c 1i ⊗c 2 j =
(∑

k
(S1)k,i b1k

)
⊗

(∑
l

(S2)l , j b2l

)
=∑

k,l
(S1)k,i (S2)l , j (b1k ⊗b2l )

=∑
k,l

(S1)k,i ((S2)T ) j ,l (b1k ⊗b2l ) =∑
k,l

(coli (S1)row j ((S2)T )k,l (b1k ⊗b2l )

we see that the coordinate vector of c 1i⊗c 2 j in the basis B1⊗B2 is coli (S1)row j ((S2)T ).
In other words, change of coordinates coincides with X → S1X (S2)T , and the proof
is done.

In both cases of filtering and change of coordinates in tensor products, we see
that we need to compute the mapping X → S1X (S2)T . As we have seen, this amounts
to a row/column-wise operation, which we restate as follows:
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Observation 9.33. The change of coordinates from B1 ⊗B2 to C1 ⊗C2 can be
implemented as follows:

1. For every column in the coordinate matrix in B1⊗B2, perform a change of
coordinates from B1 to C1.

2. For every row in the resulting matrix, perform a change of coordinates from
B2 to C2.

We can again use the funtion tensor_impl in order to implement change of co-
ordinates for a tensor product. We just need to replace the filters with the functions
S1 and S2 for computing the corresponding changes of coordinates:

Y = tensor_impl(X, S1, S2)

The operation X → (S1)X (S2)T , which we now have encountered in two different

ways, is one particular type of linear transformation from RN 2
to itself (see Exer-

cise 11 in Section 9.3 for how the matrix of this linear transformation can be con-
structed). While a general such linear transformation requires N 4 multiplications
(i.e. when we perform a full matrix multiplication), X → (S1)X (S2)T can be imple-
mented generally with only 2N 3 multiplications (since multiplication of two N ×N -
matrices require N 3 multiplications in general). The operation X → (S1)X (S2)T is
thus computationally simpler than linear transformations in general. In practice
the operations S1 and S2 are also computationally simpler, since they can be filters,
FFT’s, or wavelet transformations, so that the complexity in X → (S1)X (S2)T can be
even lower.

In the following examples, we will interpret the pixel values in an image as coor-
dinates in the standard basis, and perform a change of coordinates.
Example 9.34. (Change of coordinates with the DFT). The DFT is one particular
change of coordinates which we have considered. It was the change of coordinates
from the standard basis to the Fourier basis. A corresponding change of coordinates
in a tensor product is obtained by substituting the DFT as the functions S1, S2 for
implementing the changes of coordinates above. The change of coordinates in the
opposite direction is obtained by using the IDFT instead of the DFT.

Modern image standards do typically not apply a change of coordinates to the
entire image. Rather the image is split into smaller squares of appropriate size, called
blocks, and a change of coordinates is performed independently for each block. In
this example we have split the image into blocks of size 8×8.

Recall that the DFT values express frequency components. The same applies for
the two-dimensional DFT and thus for images, but frequencies are now represented
in two different directions. Let us introduce a neglection threshold in the same way
as in Example 2.31, to view the image after we set certain frequencies to zero. As
for sound, this has little effect on the human perception of the image, if we use a
suitable neglection threshold. After we have performed the two-dimensional DFT
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(a) Threshold 30. 91.4% of the
DFT-values were neglected

(b) Threshold 50. 95.3% of the
DFT-values were neglected

(c) Threshold 100. 97.7% of the
DFT-values were neglected

Figure 9.15: The effect on an image when it is transformed with the DFT, and the
DFT-coefficients below a certain threshold were neglected.

on an image, we can neglect DFT-coefficients below a threshold on the resulting
matrix X with the following code:

X = X.*(abs(X) >= threshold);

abs(X)>=threshold now instead returns a threshold matrix with 1 and 0 of the
same size as X.

In Figure 9.15 we have applied the two-dimensional DFT to our test image. We
have then neglected DFT coefficients which are below certain thresholds, and trans-
formed the samples back to reconstruct the image. When increasing the threshold,
the image becomes more and more unclear, but the image is quite clear in the first
case, where as much as more than 90% of the samples have been neglected. A block-
ing effect at the block boundaries is clearly visible. ♣
Example 9.35. (Change of coordinates with the DCT). Similarly to the DFT, the
DCT was the change of coordinates from the standard basis to what we called the
DCT basis. Change of coordinates in tensor products between the standard basis
and the DCT basis is obtained by substituting with the DCT and the IDCT for the
changes of coordinates S1,S2 above.

The DCT is used more than the DFT in image processing. In particular, the JPEG
standard applies a two-dimensional DCT, rather than a two-dimensional DFT. With
the JPEG standard, the blocks are always 8× 8, as in the previous example. It is of
course not a coincidence that a power of 2 is chosen here, since the DCT, as the DFT,
has an efficient implementation for powers of 2.

If we follow the same strategy for the DCT as for the DFT example, so that we ne-
glect DCT-coefficients which are below a given threshold, 1 and use the same block
sizes, we get the images shown in Figure 9.16. We see similar effects as with the DFT,
but it seems that the latter images are a bit clearer, verifying that the DCT is a better

1The JPEG standard does not do exactly the kind of thresholding described here. Rather it performs
what is called a quantization.
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(a) Threshold 30. 93.1% of the
DCT-values were neglected

(b) Threshold 50. 96.6% of the
DCT-values were neglected

(c) Threshold 100. 98.8% of the
DCT-values were neglected

Figure 9.16: The effect on an image when it is transformed with the DCT, and the
DCT-coefficients below a certain threshold were neglected.

(a) Threshold 30. 93.2% of the
DCT-values were neglected

(b) Threshold 50. 95.8% of the
DCT-values were neglected

(c) Threshold 100. 97.7% of the
DCT-values were neglected

Figure 9.17: The effect on an image when it is transformed with the DCT, and the
DCT-coefficients below a certain threshold were neglected. The image has not been
split into blocks here.

choice than the DFT. It is also interesting to compare with what happens when we
drop splitting the image into blocks. Of course, when we neglect many of the DCT-
coefficients, we should see some artifacts, but there is no reason to believe that these
should be at the old block boundaries. The new artifacts can be seen in Figure 9.17,
where the same thresholds as before have been used. Clearly, the new artifacts take
a completely different shape. ♣

In the exercises you will be asked to implement functions which generate the
images shown in these examples.

332



What you should have learnt in this section

The operation X → S1X (S2)T can also be used to facilitate change of coordinates
in images, in addition to filtering images. In other words, change of coordinates is
done first column by column, then row by row. The DCT and the DFT are particular
changes of coordinates used for images.

Exercises for Section 9.4

1. Implement a function tensor_impl which takes a matrix X, and functions S1
and S2 as parameters, and applies S1 to the columns of X, and S2 to the rows of X.
Explain how you can use this function to implement FFT2, IFFT2, DCT2, and IDCT2.

2. The following function showDCThigher applies the DCT to an image in the same
way as the JPEG standard does. The function takes a threshold parameter, and sets
DCT coefficients below this value to zero:

function showDCThigher(threshold)
img = double(imread(’lena.png’, ’png’));
zeroedout = 0;
img = tensor_impl(img, @DCTImpl8, @DCTImpl8);
thresholdmatr = (abs(img) >= threshold);
zeroedout = zeroedout + prod(size(img)) ...

- sum(sum(sum(thresholdmatr)));
img = tensor_impl(img.*thresholdmatr, @IDCTImpl8, @IDCTImpl8);
imshow(uint8(255*mapto01(img)));
fprintf(’%i percent of samples zeroed out\n’, ...

100*zeroedout/prod(size(img)));

function x = DCTImpl8(x)
N = size(x, 1);
for n = 1:8:N

x(n:(n+7), :) = DCTImpl(x(n:(n+7), :));
end

function x = IDCTImpl8(x)
N = size(x, 1);
for n = 1:8:N

x(n:(n+7), :) = IDCTImpl(x(n:(n+7), :));
end

a. Explain this code line by line.

b. Run showDCThigher for different threshold parameters, and check that
this reproduces the test images of this section, and prints the correct num-
bers of values which have been neglected (i.e. which are below the threshold)
on screen.

3. Suppose that we have given an image by the matrix X. Consider the following
code:
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threshold = 30;
[M, N] = size(X);
for n = 1:N

X(:, n) = FFTImpl(X(:, n), @FFTKernelStandard);
end
for m = 1:M

X(m, :) = FFTImpl((X(m, :))’, @FFTKernelStandard);
end

X = X.*(abs(X) >= threshold);

for n = 1:N
X(:, n) = FFTImpl(X(:, n), @FFTKernelStandard, 0);

end
for m = 1:M

X(m, :) = FFTImpl((X(m, :))’, @FFTKernelStandard, 0);
end

Comment what the code does. Comment in particular on the meaning of the pa-
rameter threshold, and what effect this has on the image.

Summary

We started by discussing the basic question what an image is, and took a closer
look at digital images. We then went through several operations which give mean-
ing for digital images. Many of these operations could be described in terms of
a row/column-wise application of filters, and more generally in term of what we
called computational molecules. We defined the tensor product, and saw how our
operations could be expressed within this framework. The tensor product frame-
work could also be used to state change of coordinates for images, so that we could
consider changes of coordinates such as the DFT and the DCT also for images. The
algorithm for computing filtering operations or changes of coordinates for images
turned out to be similar, in the sense that the one-dimensional counterparts were
simply assplied to the rows and the columns in the image.

In introductory image processing textbooks, many other image processing meth-
ods are presented. We have limited to the techniques presented here, since our in-
terest in images is mainly for transformation operations which are useful for com-
pression. An excellent textbook on image processing which uses Matlab is [16]. This
contains important topics such as image restoration and reconstruction, geometric
transformations, morphology, and object recognition. None of these are considered
in this book.

In much literature, one only mentions that filtering can be extended to images
by performing one-dimensional filtering for the rows, followed by one-dimensional
filtering for the columns, without properly explaining why this is the natural thing
to do. The tensor product may be the most natural concept to explain this, and a
concept which is firmly established in mathematical literature. Tensor products are
usually not part of beginning courses in linear algebra. We have limited the focus
here to an introduction to tensor products, and the theory needed to explain filter-
ing an image, and computing the two-dimensional wavelet transform. Some linear
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algebra books (such as [22]) present tensor products in exercise form only, and often
only mentions the Kronecker tensor product, as we defined it.

Many international standards exist for compression of images, and we will take
a closer look at two of them in this book. The JPEG standard, perhaps the most
popular format for images on the Internet, applies a change of coordinates with a
two-dimensional DCT, as described in this chapter. The compression level in JPEG
images is selected by the user and may result in conspicuous artefacts if set too high.
JPEG is especially prone to artefacts in areas where the intensity changes quickly
from pixel to pixel. JPEG is usually lossy, but may also be lossless and has become .
The standard defines both the algorithms for encoding and decoding and the stor-
age format. The extension of a JPEG-file is .jpg or .jpeg. JPEG is short for Joint
Photographic Experts Group, and was approved as an international standard in 1994.
A more detailed description of the standard can be found in [27].

The second standard we will consider is JPEG2000. It was developed to address
some of the shortcomings of JPEG, and is based on wavelets. The standard docu-
ment for this [1] does not focus on explaining the theory behind the standard. As the
MP3 standard document, it rather states step-by-step procedures for implementing
the standard.

The theory we present related to these image standards concentrate on trans-
forming the image (either with a DWT or a DCT) to obtain something which is more
suitable for (lossless or lossy) compression. However, many other steps are also
needed in order to obtain a full image compression system. One of these is quanti-
zation. In the simplest form of quantization, every resulting sample from the trans-
formation is rounded to a fixed number of bits. Quantization can also be done in
more advanced ways than this: We have already mentioned that the MP3 standard
may use different number of bits for values in the different subbands, depending on
the importance of the samples for the human perception. The JPEG2000 standard
quantizes in such a way that there is bigger interval around 0 which is quantized to
0, i.e. the rounding error is allowed to be bigger in an interval around 0. Standards
which are lossless do not apply quantization, since this always leads to loss.

Somewhere in the image processing or sound processing pipeline, we also need
a step which actually achieves compression of the data. Different standards use dif-
ferent lossless coding techniques for this. JPEG2000 uses an advances type of arith-
metic coding for this. JPEG can also use arithmetic coding, but also Huffman coding.

Besides transformation, quantization, and coding, many other steps are used,
which have different tasks. Many standards preprocess the pixel values before a
transform is applied. Preprocessing may mean to center the pixel values around
a certain value (JPEG2000 does this), or extracting the different image components
before they are processed separately. Also, the image is often split into smaller parts
(often called tiles), which are processed separately. For big images this is very impor-
tant, since it allows users to zoom in on a small part of the image, without processing
larger uninteresting parts of the image. Independent processing of the separate tiles
makes the image compression what we call error-resilient, to errors such as trans-
mission errors, since errors in one tile does not propagate to errors in the other tiles.
It is also much more memory-friendly to process the image in several smaller parts,
since it is not required to have the entire image in memory at any time. It also gives
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possibilities for parallel computing. For standards such as JPEG and JPEG2000, tiles
are split into even smaller parts, called blocks, where parts of the processing within
each block also is performed independently. This makes the possibilities for parallel
computing even bigger.

An image standard also defines how to store metadata about an image, and what
metadata is accepted, like resolution, time when the image was taken, where the
image was taken (such as GPS coordinates), and similar information. Metadata can
also tell us how the colour in the image are represented. As we have already seen, in
most colour images the colour of a pixel is represented in terms of the amount of red,
green and blue or (r, g ,b). But there are other possibilities as well: Instead of storing
all 24 bits of colour information in cases where each of the three colour components
needs 8 bits, it is common to create a table of up to 256 colours with which a given
image could be represented quite well. Instead of storing the 24 bits, one then just
stores a colour table in the metadata, and at each pixel, the eight bits corresponding
to the correct entry in the table. This is usually referred to as eight-bit colour, and
the table is called a look-up table or palette. For large photographs, however, 256
colours is far from sufficient to obtain reasonable colour reproduction. Metadata is
usually stored in the beginning of the file, formatted in a very specific way.
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Chapter 10
Using tensor products to apply
wavelets to images

Previously we have used the theory of wavelets to analyze sound. We would also like
to use wavelets in a similar way to analyze images. Since the tensor product concept
constructs two dimensional objects (matrices) from one-dimensional objects (vec-
tors), we are lead to believe that tensor products can also be used to apply wavelets
to images. In this chapter we will see that this can indeed be done. The vector spaces
we Vm encountered for wavelets were function spaces, however. What we therefore
need first is to establish a general definition of tensor products of function spaces.
This will be done in the first section of this chapter. In the second section we will
then specialize the function spaces to the spaces Vm we use for wavelets, and inter-
pret the tensor product of these and the wavelet transform applied to images more
carefully. Finally we will look at some examples on this theory applied to some ex-
ample images.

The examples in this chapter and the next chapter can be run from the notebook
notebook_tensorwavelet.m.

10.1 Tensor product of function spaces

In the setting of functions, it will turn out that the tensor product of two univariate
functions can be most intiutively defined as a function in two variables. This seems
somewhat different from the strategy of Chapter 9, but we will see that the results
we obtain will be very similar.

Definition 10.1 (Tensor product of function spaces). Let U1 and U2 be vector
spaces of functions, defined on the intervals [0, M) and [0, N ), respectively, and
suppose that f1 ∈U1 and f2 ∈U2. The tensor product of f1 and f2, denoted f1⊗ f2,
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is the function in two variables defined on [0, M)× [0, N ) by

( f1 ⊗ f2)(t1, t2) = f1(t1) f2(t2).

f1⊗ f2 is also called the separable extension of f1 and f2 to two variables. The ten-
sor product of the spaces U1⊗U2 is the vector space spanned by the two-variable
functions { f1 ⊗ f2} f1∈U1, f2∈U2 .

We will always assume that the spaces U1 and U2 consist of functions which are
at least integrable. In this case U1⊗U2 is also an inner product space, with the inner
product given by a double integral,

〈 f , g 〉 =
∫ N

0

∫ M

0
f (t1, t2)g (t1, t2)d t1d t2. (10.1)

In particular, this says that

〈 f1 ⊗ f2, g1 ⊗ g2〉 =
∫ N

0

∫ M

0
f1(t1) f2(t2)g1(t1)g2(t2)d t1d t2

=
∫ M

0
f1(t1)g1(t1)d t1

∫ N

0
f2(t2)g2(t2)d t2 = 〈 f1, g1〉〈 f2, g2〉. (10.2)

This means that for tensor products, a double integral can be computed as the prod-
uct of two one-dimensional integrals. This formula also ensures that inner products
of tensor products of functions obey the same rule as we found for tensor products
of vectors in Exercise 11 in Section 9.3.

The tensor product space defined in Definition 10.1 is useful for approximation
of functions of two variables if each of the two spaces of univariate functions have
good approximation properties.

Idea 10.2. If the spaces U1 and U2 can be used to approximate functions in one
variable, then U1 ⊗U2 can be used to approximate functions in two variables.

We will not state this precisely, but just consider some important examples.
Example 10.3. Let U1 =U2 be the space of all polynomials of finite degree. We know
that U1 can be used for approximating many kinds of functions, such as continuous
functions, for example by Taylor series. The tensor product U1 ⊗U1 consists of all

functions on the form
∑

i , j αi , j t i
1t j

2 . It turns out that polynomials in several variables
have approximation properties analogous to univariate polynomials. ♣
Example 10.4. Let U1 =U2 =VN ,T be the N th order Fourier space which is spanned
by the functions

e−2πi N t/T , . . . ,e−2πi t/T ,1,e2πi t/T , . . . ,e2πi N t/T
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The tensor product space U1 ⊗U1 now consists of all functions on the form

N∑
k,l=−N

αk,l e2πi kt1/T e2πi l t2/T .

One can show that this space has approximation properties similar to VN ,T for func-
tions in two variables. This is the basis for the theory of Fourier series in two vari-
ables. ♣

In the following we think of U1 ⊗U2 as a space which can be used for approx-
imating a general class of functions. By associating a function with the vector of
coordinates relative to some basis, and a matrix with a function in two variables, we
have the following parallel to Theorem 9.30:

Theorem 10.5. If { fi }M−1
i=0 is a basis for U1 and {g j }N−1

j=0 is a basis for U2, then

{ fi ⊗ g j }(M−1,N−1)
(i , j )=(0,0) is a basis for U1 ⊗U2. Moreover, if the bases for U1 and U2 are

orthogonal/orthonormal, then the basis for U1 ⊗U2 is orthogonal/orthonormal.

Proof: The proof is similar to that of Theorem 9.30: if

(M−1,N−1)∑
(i , j )=(0,0)

αi , j ( fi ⊗ g j ) = 0,

we define hi (t2) =∑N−1
j=0 αi , j g j (t2). It follows as before that

∑M−1
i=0 hi (t2) fi = 0 for any

t2, so that hi (t2) = 0 for any t2 due to linear independence of the fi . But thenαi , j = 0
also, due to linear independene of the g j . The statement about orthogonality follows
from Equation 10.2.

We can now define the tensor product of two bases of functions as before, and
coordinate matrices as before:

Definition 10.6. if B = { fi }M−1
i=0 and C = {g j }N−1

j=0 , we define B ⊗C as the ba-

sis { fi ⊗ g j }(M−1,N−1)
(i , j )=(0,0) for U1 ⊗U2. We say that X is the coordinate matrox of f if

f (t1, t2) =∑
Xi , j ( fi ⊗ g j )(t1, t2), where Xi , j are the elements of X .

Theorem 9.32 can also be proved in the same way in the context of function
spaces. We state this as follows:

Theorem 10.7 (Change of coordinates in tensor products of function spaces).
Assume that U1 and U2 are function spaces, and that

1. B1,C1 are bases for U1, and that S1 is the change of coordinates matrix from
B1 to C1,
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2. B2,C2 are bases for U2, and that S2 is the change of coordinates matrix from
B2 to C2.

Both B1 ⊗B2 and C1 ⊗C2 are bases for U1 ⊗U2, and if X is the coordinate matrix
in B1 ⊗B2, Y the coordinate matrix in C1 ⊗C2, then the change of coordinates
from B1 ⊗B2 to C1 ⊗C2 can be computed as

Y = S1X (S2)T . (10.3)

10.2 Tensor product of function spaces in a wavelet set-
ting

We will now specialize the spaces U1, U2 from Definition 10.1 to the resolution spaces
Vm and the detail spaces Wm , arising from a given wavelet. We can in particular form
the tensor products φ0,n1 ⊗φ0,n2 . We will assume that

1. the first component φ0,n1 has period M (so that {φ0,n1 }M−1
n1=0 is a basis for the

first component space),

2. the second componentφ0,n2 has period N (so that {φ0,n2 }N−1
n2=0 is a basis for the

second component space).

When we speak of V0⊗V0 we thus mean an M N -dimensional space with basis {φ0,n1⊗
φ0,n2 }(M−1,N−1)

(n1,n2)=(0,0), where the coordinate matrices are M ×N . This difference in the di-
mension of the two components is done to allow for images where the number of
rows and columns may be different. In the following we will implicitly assume that
the component spaces have dimension M and N , to ease notation. If we use that
(φm−1,ψm−1) also is a basis for Vm , we get the following corollary to Theorem 10.5:

Corollary 10.8. Let φ,ψ be a scaling function and a mother wavelet. Then the
two sets of tensor products given by

φm ⊗φm = {φm,n1 ⊗φm,n2 }n1,n2

and

(φm−1,ψm−1)⊗ (φm−1,ψm−1)

= {φm−1,n1 ⊗φm−1,n2 ,

φm−1,n1 ⊗ψm−1,n2 ,

ψm−1,n1 ⊗φm−1,n2 ,

ψm−1,n1 ⊗ψm−1,n2 }n1,n2

are both bases for Vm ⊗Vm . This second basis is orthogonal/orthonormal when-
ever the first basis is.
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From this we observe that, while the one-dimensional wavelet decomposition
splits Vm into a direct sum of the two vector spaces Vm−1 and Wm−1, the correspond-
ing two-dimensional decomposition splits Vm ⊗Vm into a direct sum of four tensor
product vector spaces. These vector spaces deserve individual names:

Definition 10.9. We define the following tensor product spaces:

1. The space W (0,1)
m spanned by {φm,n1 ⊗ψm,n2 }n1,n2 ,

2. The space W (1,0)
m spanned by {ψm,n1 ⊗φm,n2 }n1,n2 ,

3. The space W (1,1)
m spanned by {ψm,n1 ⊗ψm,n2 }n1,n2 .

Since these spaces are linearly independent, we can write

Vm ⊗Vm = (Vm−1 ⊗Vm−1)⊕W (0,1)
m−1 ⊕W (1,0)

m−1 ⊕W (1,1)
m−1 . (10.4)

Also in the setting of tensor products we refer to Vm−1 ⊗Vm−1 as the space of low-
resolution approximations. The remaining parts, W (0,1)

m−1 , W (1,0)
m−1 , and W (1,1)

m−1 , are ref-
ered to as detail spaces. The coordinate matrix of

2m−1N∑
n1,n2=0

(cm−1,n1,n2 (φm−1,n1 ⊗φm−1,n2 )+w (0,1)
m−1,n1,n2

(φm−1,n1 ⊗ψm−1,n2 )+

w (1,0)
m−1,n1,n2

(ψm−1,n1 ⊗φm−1,n2 )+w (1,1)
m−1,n1,n2

(ψm−1,n1 ⊗ψm−1,n2 )) (10.5)

in the basis (φm−1,ψm−1)⊗ (φm−1,ψm−1) is
cm−1,0,0 · · · w (0,1)

m−1,0,0 · · ·
...

...
...

...

w (1,0)
m−1,0,0 · · · w (1,1)

m−1,0,0 · · ·
...

...
...

...

 . (10.6)

The coordinate matrix is thus split into four submatrices:

• The cm−1-values, i.e. the coordinates for Vm−1 ⊕Vm−1. This is the upper left
corner in Equation (10.6).

• The w (0,1)
m−1-values, i.e. the coordinates for W (0,1)

m−1 . This is the upper right corner
in Equation (10.6).

• The w (1,0)
m−1-values, i.e. the coordinates for W (1,0)

m−1 . This is the lower left corner
in Equation (10.6).

• The w (1,1)
m−1-values, i.e. the coordinates for W (1,1)

m−1 . This is the lower right corner
in Equation (10.6).
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The w (i , j )
m−1-values are as in the one-dimensional situation often refered to as wavelet

coefficients. Let us consider the Haar wavelet as an example.
Example 10.10. If Vm is the vector space of piecewise constant functions on any in-
terval of the form [k2−m , (k+1)2−m) (as in the piecewise constant wavelet), Vm ⊗Vm

is the vector space of functions in two variables which are constant on any square of
the form [k12−m , (k1+1)2−m)×[k22−m , (k2+1)2−m). Clearlyφm,k1 ⊗φm,k2 is constant
on such a square and 0 elsewhere, and these functions are a basis for Vm ⊗Vm .

Let us compute the orthogonal projection of φ1,k1 ⊗φ1,k2 onto V0 ⊗V0. Since the
Haar wavelet is orthonormal, the basis functions in (10.4) are orthonormal, and we
can thus use the orthogonal decomposition formula to find this projection. Clearly
φ1,k1 ⊗φ1,k2 has different support from all except one of φ0,n1 ⊗φ0,n2 . Since

〈φ1,k1 ⊗φ1,k2 ,φ0,n1 ⊗φ0,n2〉 = 〈φ1,k1 ,φ0,n1〉〈φ1,k2 ,φ0,n2〉 =
p

2

2

p
2

2
= 1

2

when the supports intersect, we obtain

projV0⊗V0
(φ1,k1 ⊗φ1,k2 ) =


1
2 (φ0,k1/2 ⊗φ0,k2/2) when k1,k2 are even
1
2 (φ0,k1/2 ⊗φ0,(k2−1)/2) when k1 is even, k2 is odd
1
2 (φ0,(k1−1)/2 ⊗φ0,k2/2) when k1 is odd, k2 is even
1
2 (φ0,(k1−1)/2 ⊗φ0,(k2−1)/2) when k1,k2 are odd

So, in this case there were 4 different formulas, since there were 4 different combi-
nations of even/odd. Let us also compute the projection onto the orthogonal com-
plement of V0⊗V0 in V1⊗V1, and let us express this in terms of theφ0,n ,ψ0,n , like we
did in the one-variable case. Also here there are 4 different formulas. When k1,k2

are both even we obtain

φ1,k1 ⊗φ1,k2 −projV0⊗V0
(φ1,k1 ⊗φ1,k2 )

=φ1,k1 ⊗φ1,k2 −
1

2
(φ0,k1/2 ⊗φ0,k2/2)

=
(

1p
2

(φ0,k1/2 +ψ0,k1/2)

)
⊗

(
1p
2

(φ0,k2/2 +ψ0,k2/2)

)
− 1

2
(φ0,k1/2 ⊗φ0,k2/2)

= 1

2
(φ0,k1/2 ⊗φ0,k2/2)+ 1

2
(φ0,k1/2 ⊗ψ0,k2/2)

+ 1

2
(ψ0,k1/2 ⊗φ0,k2/2)+ 1

2
(ψ0,k1/2 ⊗ψ0,k2/2)− 1

2
(φ0,k1/2 ⊗φ0,k2/2)

= 1

2
(φ0,k1/2 ⊗ψ0,k2/2)+ 1

2
(ψ0,k1/2 ⊗φ0,k2/2)+ 1

2
(ψ0,k1/2 ⊗ψ0,k2/2).

Here we have used the relation φ1,ki = 1p
2

(φ0,ki /2 +ψ0,ki /2), which we have from our

first analysis of the Haar wavelet. Checking the other possibilities we find similar
formulas for the projection onto the orthogonal complement of V0 ⊗V0 in V1 ⊗V1

when either k1 or k2 is odd. In all cases, the formulas use the basis functions for
W (0,1)

0 , W (1,0)
0 , W (1,1)

0 . These functions are shown in Figure 10.1, together with the
function φ⊗φ ∈V0 ⊗V0. ♣
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(d) The function ψ⊗ψ

Figure 10.1: The basis functions for (V0 ⊗V0)⊕W (0,1)
0 ⊕W (1,0)

0 ⊕W (1,1)
0 for the Haar

wavelet.

Example 10.11. If we instead use any of the wavelets for piecewise linear functions,
the wavelet basis functions are not orthogonal anymore, just as in the one-dimensional
case. The new basis functions are shown in Figure 10.2 for the alternative piecewise
linear wavelet. ♣

An immediate corollary of Theorem 10.7 is the following:

Corollary 10.12. Let

Am = P(φm−1,ψm−1)←φm

Bm = Pφm←(φm−1,ψm−1)

be the stages in the DWT and the IDWT, and let

X = (cm,i , j )i , j Y =
(

(cm−1,i , j )i , j (w (0,1)
m−1,i , j )i , j

(w (1,0)
m−1,i , j )i , j (w (1,1)

m−1,i , j )i , j

)
(10.7)
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(d) The function ψ⊗ψ

Figure 10.2: The basis functions for (V0⊗V0)⊕W (0,1)
0 ⊕W (1,0)

0 ⊕W (1,1)
0 for the alterna-

tive piecewise linear wavelet.

be the coordinate matrices in φm ⊗φm , and (φm−1,ψm−1)⊗ (φm−1,ψm−1), re-
spectively. Then

Y = Am X AT
m (10.8)

X = BmY B T
m (10.9)

By the m-level two-dimensional DWT/IDWT (or DWT2/IDWT2) we mean the
change of coordinates where this is repeated m times as in a DWT/IDWT.

It is straightforward to make implementations of DWT2 and IDWT2, in the same
way we implemented DWTImpl and IDWTImpl. In Exercise 1 you will be asked to pro-
gram functions DWT2Impl and IDWT2Impl for this. Each stage in DWT2 and IDWT2
can now be implemented by substituting the matrices Am ,Bm above into the code
following Theorem 9.32. When using many levels of the DWT2, the next stage is ap-
plied only to the upper left corner of the matrix, just as the DWT at the next stage
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(a) Before the first stage
is performed

(b) The four types of co-
ordinates after the first
stage

(c) The seven types of co-
ordinates after the sec-
ond stage

Figure 10.3: Illustration of the different coordinates in a two level DWT2.

only is applied to the first part of the coordinates. At each stage, the upper left cor-
ner of the coordinate matrix (which gets smaller at each iteration), is split into four
equally big parts. This is illustrated in Figure 10.3, where the different types of coor-
dinates which appear in the first two stages in a DWT2 are indicated.

It is instructive to see what information the different types of coordinates in an
image represent. In the following examples we will discard some types of coordi-
nates, and view the resulting image. Discarding a type of coordinates will be illus-
trated by coloring the corresponding regions from Figure 10.3 black. As an example,
if we perform a two-level DWT2 (i.e. we start with a coordinate matrix in the basis
φ2 ⊗φ2), Figure 10.4 illustrates first the collection of all coordinates, and then the
resulting collection of coordinates after removing subbands at the first level succes-
sively. Figure 10.5 illustrates in the same way incremental removal of the subbands
at the second level.

Before we turn to experiments on images using wavelets, we would like to make
another interpretation on the corners in the matrices after the DWT2, which cor-
respond to the different coordinates (cm−1,i , j )i , j , (w (0,1))m−1,i , j , (w (1,0))m−1,i , j , and
(w (1,1))m−1,i , j . It turns out that these corners have natural interpretations in terms
of the filter characterization of wavelets, as given in Chapter 6. Recall again that in a
DWT2, the DWT is first applied to the columns in the image, then to the rows in the
image. Recall first that the DWT2 applies first the DWT to all columns, and then to
all rows in the resulting matrix.

First the DWT is applied to all columns in the image. Since the first half of the
coordinates in a DWT are outputs from a lowpass filter H0 (Theorem 6.3), the upper
half after the DWT has now been subject to a lowpass filter to the columns. Similarly,
the second half of the coordinates in a DWT are outputs from a highpass filter H1

(Theorem 6.3 again), so that the bottom half after the DWT has been subject to a
highpass filter to the columns.

Then the DWT is applied to all rows in the image. Similarly as when we applied
the DWT to the columns, the left half after the DWT has been subject to the same
lowpass filter to the rows, and the right half after the DWT has been subject to the
same highpass filter to the rows.
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Figure 10.4: Graphical representation of neglecting the wavelet coefficients at the
first level. After applying DWT2, the wavelet coefficients are split into four parts, as
shown in the first figure. In the following figures we have removed coefficients from
W (1,1)

1 , W (1,0)
1 , and W (0,1)

1 , in that order.

Figure 10.5: Graphical representation of neglecting the wavelet coefficients at the
second level. After applying the second stage in DWT2, the wavelet coefficients from
the upper left corner are also split into four parts, as shown in the first figure. In the
following figures we have removed coefficients from W (1,1)

2 , W (1,0)
2 , and W (0,1)

2 , in
that order.
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These observations split the resulting matrix after DWT2 into four blocks, with
each block corresponding to a combination of lowpass and highpass filters. The
following names are thus given to these blocks:

• The upper left corner is called the LL-subband,

• The upper right corner is called the LH-subband,

• The lower left corner is called the HL-subband,

• The lower right corner is called the HH-subband.

The two letters indicate the type of filters which have been applied (L=lowpass, H=highpass).
The first letter indicates the type of filter which is applied to the columns, the second
indicates which is applied to the rows. The order is therefore important. The name
subband comes from the interpretation of these filters as being selective on a certain
frequency band. In conclusion, a block in the matrix after the DWT2 corresponds to
applying a combination of lowpass/higpass filters to the rows of the columns of the
image. Due to this, and since lowpass filters extract slow variations, highpass filters
abrupt changes, the following holds:

Observation 10.13. After the DWT2 has been applied to an image, we expect to
see the following:

• In the upper left corner, slow variations in both the vertical and horizontal
directions are captured, i.e. this is a low-resolution version of the image.

• In the upper right corner, slow variations in the vertical direction are cap-
tured, together with abrupt changes in the horizontal direction.

• In the lower left corner, slow variations in the horizontal direction are cap-
tured, together with abrupt changes in the vertical direction.

• In the lower right corner, abrupt changes in both directions appear are cap-
tured.

These effects will be studied through examples in the next section.

What you should have learnt in this section

The special interpretation of DWT2 applied to an image as splitting into four types
of coordinates (each being one corner of the image), which represent lowpass/high-
pass combinations in the horizontal/vertical directions.
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10.3 Experiments with images using wavelets

In this section we will make some experiments with images using the wavelets we
have considered 1. The wavelet theory is applied to images in the following way: We
first visualize the pixels in the image as coordinates in the basisφm⊗φm (so that the
image has size (2m M)× (2m N )). As in the case for sound, this will represent a good
approximation wehn m is large. We then perform a change of coordinates with the
DWT2. As we did for sound, we can then either set the detail components from the

W (i , j )
k -spaces to zero, or the low-resolution approximation from V0 ⊗V0 to zero, de-

pending on whether we want to inspect the detail components or the low-resolution
approximation. Finally we apply the IDWT2 to end up with coordinates inφm ⊗φm
again, and display the new image with pixel values equal to these coordinates.
Example 10.14 (Applying the Haar wavelet to a very simple example image). Let us
apply the Haar wavelet to the sample chess pattern example image from Figure 9.14.
The lowpass filter of the Haar wavelet was essentially a smoothing filter with two ele-
ments. Also, as we have seen, the highpass filter essentially computes an approxima-
tion to the partial derivative. Clearly, abrupt changes in the vertical and horizontal
directions appear here only at the edges in the chess pattern, and abrupt changes in
both directions appear only at the grid points in the chess pattern. Due to Observa-
tion 10.13, after a DWT2 we expect to see the following:

• In the upper left corner, we should see a low-resolution version of the image.

• In the upper right corner, only the vertical edges in the chess pattern should
be visible.

• In the lower left corner, only the horizontal edges in the chess pattern should
be visible.

• In the lower right corner, only the grid points in the chess pattern should be
visible.

In Figure 10.6 we have applied one level of the DWT2 to the chess pattern example
image, and all these effects are seen clearly here. ♣
Example 10.15 (Creating thumbnail images). Let us apply the Haar wavelet to our
sample image. After the DWT2, the upper left submatrices represent the low-resolution
approximations from Vm−1⊗Vm−1, Vm−2⊗Vm−2, and so on. We can now use the fol-
lowing code to store the low-resolution approximation for m = 1:

% Create thumbnail image
X = double(imread(’lena.png’, ’png’));
Y = DWT2Impl(X, 1, @DWTKernelHaar);
Y = Y(1:(size(X,1)/2), 1:(size(X,2)/2),:);
imshow(uint8(Y));

In Figure 10.7 the results are shown up to 4 resolutions. In Figure 10.8 we have

1Note also that Matlab has a wavelet toolbox which could be used for these purposes. We will however
not go into the usage of this, since we implement the DWT from scratch.
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Figure 10.6: The chess pattern example image after application of the DWT2. The
Haar wavelet was used.

(a) (b) (c) (d)

Figure 10.7: The corresponding thumbnail images for the Image of Lena, obtained
with a DWT of 1, 2, 3, and 4 levels.

(a) m = 1 (b) m = 2

Figure 10.8: The corresponding image resulting from a wavelet transform with the
Haar-wavelet.

also shown the entire result after a 1- and 2-stage DWT2 on the image. The first two
thumbnail images can be seen as the the upper left corners of the first two images.
The other corners represent detail. ♣
Example 10.16 (Detail and low-resolution approximations with the Haar wavelet).
In Exercise 4 you will be asked to implement a function showDWT which displays
the low-resolution approximations or the detail components for our test image for
any wavelet, using functions we have previously implemented. Let us take a closer
look at the images generated when the Haar wavelet is used. Above we viewed the
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(a) 1 level neglected (b) 2 levels neglected

(c) 3 levels neglected (d) 4 levels neglected

Figure 10.9: Image of Lena, with higher levels of detail neglected for the Haar
wavelet.

low-resolution approximation as a smaller image. Let us compare with the image
resulting from setting the wavelet detail coefficients to zero, and viewing the result
as an image of the same size. In particular, let us neglect the wavelet coefficients as
pictured in Figure 10.4 and Figure 10.5. Since the Haar wavelet has few vanishing
moments, we should expect that the lower order resolution approximations from V0

are worse when m increase. Figure 10.9 confirms this for the lower order resolu-
tion approximations. Alternatively, we should see that the higher order detail spaces
contain more information. The new images when showDWTlowerÂ is used for dis-
playing the detail components for the Haar wavelet are shown in Figure 10.10. The
black colour indicates values which are close to 0. In other words, most of the coef-
ficients are close to 0, which reflects one of the properties of the wavelet. ♣
Example 10.17 (Experimenting with different wavelets). Using the functionshowDWT,
we can display the low-resolution approximations at a given resolution of our image
test file lena.png, for the Spline 5/3 and CDF 9/7 wavelets in addition to the Haar
wavelet, with the following code:

% Show lowres approx for the Haar wavelet
showDWT(m, @DWTKernelHaar, @IDWTKernelHaar, 1);
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(a) Detail from 1 level (b) Detail from 2 levels

(c) Detail from 3 levels (d) Detail from 4 levels

Figure 10.10: The corresponding detail for the images in Figure 10.9, with the Haar
wavelet.

% Show lowres approx for the Spline 5/3 wavelet
showDWT(m, @DWTKernel53, @IDWTKernel53, 1);

% Show lowres approx for the CDF 9/7 wavelet
showDWT(m, @DWTKernel97, @IDWTKernel97, 1);

The first call to showDWT displays the result using the Haar wavelet. The second
call to showDWT moves to the Spline 5/3 wavelet, and the third call uses the CDF
9/7 wavelet. We can repeat this for various number of levels m, and compare the
different images. ♣
Example 10.18 (The Spline 5/3 wavelet and removing bands in the detail spaces).
Since the detail components now are split into three bands, another thing we can
try is to neglect only parts of the detail components (i.e.e some of W (1,1)

m , W (1,0)
m ,

W (0,1)
m ), contrary to the one-dimensional case. Let us use the Spline 5/3 wavelet.

The resulting images when the bands on the first level indicated in Figure 10.4 are
removed are shown in Figure 10.11. The resulting images when the bands on the
second level indicated in Figure 10.5 are removed are shown in Figure 10.12. The
image is seen still to resemble the original one, even after two levels of wavelets co-
efficients have been neglected. This in itself is good for compression purposes, since
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(a) The image unaltered

(b) Resulting image after ne-

glecting detail in W (1,1)
1 , as il-

lustrated in Figure 10.4(b)

(c) Resulting image after ne-

glecting also detail in W (1,0)
1 , as

illustrated in Figure 10.4(c).

(d) Resulting image after ne-

glecting also detail in W (0,1)
1 , as

illustrated in Figure 10.4(d).

Figure 10.11: Image of Lena, with various bands of detail at the first level neglected.
The Spline 5/3 wavelet was used.

(a) Resulting image after also

neglecting detail in W (1,1)
2 , as

illustrated in Figure 10.12(a).

(b) Resulting image after also

neglecting detail in W (1,0)
2 , as

illustrated in Figure 10.12(b).

(c) Resulting image after also

neglecting detail in W (0,1)
2 , as

illustrated in Figure 10.12(c).

Figure 10.12: Image of Lena, with various bands of detail at the second level ne-
glected. The Spline 5/3 wavelet was used.
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(a) 3 levels neglected (b) 4 levels neglected

Figure 10.13: Image of Lena, with higher levels of detail neglected. The Spline 5/3
wavelet was used.

we may achieve compression simply by dropping the given coefficients. However,
if we continue to neglect more levels of coefficients, the result will look poorer. In
Figure 10.13 we have also shown the resulting image after the third and fourth level
of detail have been neglected. Although we still can see details in the image, the
quality in the image is definitely poorer. Although the quality is poorer when we ne-
glect levels of wavelet coefficients, all information is kept if we additionally include
the detail/bands. In Figure 10.14, we have shown the corresponding detail for Fig-
ure 10.11(d), Figure 10.12(c), and Figure 10.13. Clearly, more detail can be seen in
the image when more of the detail is included. ♣

Example 10.19. Let us repeat the previous example for the CDF 9/7 wavelet, using
the function showDWT you implemented in Exercise 7. We should now see improved
images when we discard the detail in the images. Figure 10.15 confirms this for the
lower resolution spaces, while Figure 10.16 confirms this for the higher order detail
spaces. ♣

As mentioned, the procedure developed in this section for applying a wavelet
transform to an image with the help of the tensor product construction, is adopted
in the JPEG2000 standard. This lossy (can also be used as lossless) image format
was developed by the Joint Photographic Experts Group and published in 2000. Af-
ter significant processing of the wavelet coefficients, the final coding with JPEG2000
uses an advanced version of arithmetic coding. At the cost of increased encoding
and decoding times, JPEG2000 leads to as much as 20 % improvement in compres-
sion ratios for medium compression rates, possibly more for high or low compres-
sion rates. The artefacts are less visible than in JPEG and appear at higher compres-
sion rates. Although a number of components in JPEG2000 are patented, the patent
holders have agreed that the core software should be available free of charge, and
JPEG2000 is part of most Linux distributions. However, there appear to be some fur-
ther, rather obscure, patents that have not been licensed, and this may be the reason
why JPEG2000 is not used more. The extension of JPEG2000 files is .jp2.
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(a) Detail from 1 level (b) Detail from 2 levels

(c) Detail from 3 levels (d) Detail from 4 levels

Figure 10.14: The corresponding detail for the image of Lena. The Spline 5/3 wavelet
was used.

What you should have learnt in this section

You should be able to call functions which performs different wavelet transforma-
tions on an image, and be able to interpret the detail components and low-resolution
approximations in what you see.

Exercises for Section 10.3

1. Implement functionsDWT2Impl andIDWT2Implwhich perform the m-level DWT2
and the IDWT2, respectively, on an image. The functions should take the same input
as DWTImpl and IDWTImpl, with the input vector replaced with a two-dimensional
object. The functions should at each stage call DWTImpl and IDWTImpl with m = 1,
and each call to these functions should alter the appropriate upper left submatrix
in the coordinate matrix. If the image has several colour components, the functions
should be applied to each colour component. There are three colour components
in the test image ’lena.png’.

2. Assume that we have an image represented by the M ×N -matrix X, and consider
the following code:
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(a) 1 level neglected (b) 2 levels neglected

(c) 3 levels neglected (d) 4 levels neglected

Figure 10.15: Image of Lena, with higher levels of detail neglected. The CDF 9/7
wavelet was used.

for n = 1:N
c = (X(1:2:M, n) + X(2:2:M, n))/sqrt(2);
w = (X(1:2:M, n) - X(2:2:M, n))/sqrt(2);
X(:, n) = [c; w];

for m = 1:M
c = (X(m, 1:2:N) + X(m, 2:2:N))/sqrt(2);
w = (X(m, 1:2:N) - X(m, 2:2:N))/sqrt(2);
X(m, :) = [c w];

a. Comment what the code does, and explain what you will see if you display
X as an image after the code has run.

b. The code above has an inverse transformation, which reproduce the orig-
inal image from the transformed values which we obtained. Assume that you
zero out the values in the lower left and the upper right corner of the matrix
X after the code above has run, and that you then reproduce the image by ap-
plying this inverse transformation. What changes can you then expect in the
image?

3. In this exercise we will use the filters G0 = {1,1}, G1 = {1,−1}.
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(a) Detail from 1 level (b) Detail from 2 levels

(c) Detail from 3 levels (d) Detail from 4 levels

Figure 10.16: The corresponding detail for the image of Lena. The CDF 9/7 wavelet
was used.

a. Let X be a matrix which represents the pixel values in an image. Define
x = (1,0,1,0) and y = (0,1,0,1). Compute (G0 ⊗G0)(x ⊗ y).

b. For a general image X , describe how the images (G0 ⊗G0)X , (G0 ⊗G1)X ,
(G1 ⊗G0)X , and (G1 ⊗G1)X may look.

c. Assume that we run the following code on an image represented by the
matrix X:

[M, N]=size(X);
for n=1:N

c = X(1:2:M, n) + X(2:2:M, n);
w = X(1:2:M, n) - X(2:2:M, n);
X(:, n) = [c; w];

end

for m=1:M
c = X(m, 1:2:N) + X(m, 2:2:N);
w = X(m, 1:2:N) - X(m, 2:2:N);
X(m, :) = [c w];

end

Comment the code. Describe what will be shown in the upper left corner of
X after the code has run. Do the same for the lower left corner of the matrix.
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What is the connection with the images (G0 ⊗G0)X , (G0 ⊗G1)X , (G1 ⊗G0)X ,
and (G1 ⊗G1)X ?

4. In this exercise we will experiment with applying the m-level DWT2 to an image.

a. Write a function showDWT, which takes m, DWT kernel, and IDWT kernel
as input, and

1. reads the image file lena.png,

2. performs an m-level DWT2 to the image samples using the function
DWT2Impl, with DWT kernel f

3. sets all wavelet coefficients representing detail to zero (i.e. keep only
wavelet coefficients from V0 ⊗V0),

4. performs an IDWT2 on the resulting coefficients using the functionIDWT2Impl,
with IDWT kernel invf,

5. displays the resuting image.

b. Run the function showDWT for different values of m for the Haar wavelet.
Describe what you see for different m. degraded? Compare with what you
saw with the function showDCThigher in Exercise 2, where you performed a
DCT on the image samples instead, and set DCT coefficients below a given
threshold to zero.

c. Do the image samples returned by showDWT lie in [0,255]?

5. This exercise parallels the previous exercise, but we instead keep the detail com-
ponents in the image, and throw away the low-resolution approximation.

a. When you perform the same experiment as in the previous image for the
detail components, what kind of image do you see? Can you recognize the
original image in what you see?

b. In the code in Example 10.17, set lowres to false in the call to showDWT.
Describe the images you see for different m for the different wavelets. Try to
explain why the images seem to get clearer when you increase m.

6. In Figure 10.17 we have applied the DWT2 with the Haar wavelet to an image very
similar to the one you see in Figure 10.6. You see here, however, that there seems to
be no detail components, which is very different from Figure 10.6, even though the
images are very similar. Attempt to explain what causes this to happen.
Hint: Compare with Exercise 8 in Section 5.3.

7. Run the function from Exercise 4 with the Spline 5/3 wavelet and the CDF 9/7
wavelets instead. Look at the result using for different m, using the code from Ex-
ample 10.16. Can you see any difference from the Haar wavelet? If so, which wavelet
gives the best image quality?
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(a) Original image (b) Resulting image after
the DWT2

Figure 10.17: A simple image before and after one level of the DWT2. The Haar
wavelet was used.

Figure 10.18: A typical fingerprint image.

10.4 An application to the FBI standard for compres-
sion of fingerprint images

In the beginning of the 1990s, the FBI realized that it had a major problem when
it came to their archive of fingerprint images. With more than 200 million finger-
print records, their digital storage exploded in size, so that some compression strat-
egy needed to be employed. Several strategies were tried, for instance the widely
adopted JPEG standard. The problem with JPEG had to do with the blocking arte-
facts, which we saw in Section 9.4. Among other strategies, FBI chose a wavelet-
based strategy due to its nice properties. The particular way wavelets are applied in
this strategy is called Wavelet transform/scalar quantization (WSQ).

Fingerprint images are a very specific type of images, as seen in Figure 10.18.
They differ from natural images by having a large number of abrupt changes. One
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may ask whether other wavelets than the ones we have used up to now are more suit-
able for compressing such images. After all, the technique of vanishing moments
we have used for constructing wavelets are most suitable when the images display
some degree of regularity (such as most natural images do). Extensive tests were un-
dertaken to compare different wavelets, and the CDF 9/7 wavelet used by JPEG2000
turned out to perform very well, also for fingerprint images. One advantage with
the choice of this wavelet for the FBI standard is that one then can exploit existing
wavelet transformations from the JPEG2000 standard.

Besides the choice of wavelet, one can also ask other questions in the quest to
compress fingerprint images: What number of levels is optimal in the application of
the DWT2? And, while the levels in a DWT2 (see Figure 10.3) have an interpretation
as change of coordinates, one can apply a DWT2 to the other subbands as well. This
can not be interpreted as a change of coordinates, but if we assume that these sub-
bands have the same characteristics as the original image, the DWT2 will also help
us with compression when applied to them. Let us illustrate how the FBI standard
applies the DWT2 to the different subbands. After one stage of the DWT2, we get
the image shown in Figure 10.19(a). If we after this also apply a DWT2 to the bands
where highpass filters have been applied, we get the following illustrations of the
new subbands:

If we apply all these, we get the following subband structure:

If we also apply the second stage in a DWT2 we arrive at
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(a) After one stage of the DWT2 (b) After applying another stage of DWT2 to all
bands

(c) After one stage of the DWT (d) After one stage of the DWT

Figure 10.19: The fingerprint image after several DWT’s

The resulting image is shown in Figure 10.19(b). Now the FBI standard applies a
DWT2 in three of the four resulting subbands, to arrive at the subband structure
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(a) Subband decomposition (b) Resulting image

Figure 10.20: The wavelet subband decomposition with the resulting image, as em-
ployed by the FBI

The resulting image is shown in Figure 10.19(c). In all the remaining subbands, the
DWT2 is now again applied:

The resulting image is shown in Figure 10.19(d). Finally, a DWT2 is again applied,
but this time only to the upper left corner. In Figure 10.20 the resulting subband
decomposition is shown, together with the resulting image. When establishing the
standard for compression of fingerprint images, the FBI chose this subband decom-
position. In Figure 10.21 we also show the corresponding low resolution approxima-
tion and detail. As can be seen from the subband decomposition, the low-resolution
approximation is simply the approximation after a five stage DWT2.

The original JPEG2000 standard did not give the possibility for this type of sub-
band decomposition. This has been added to a later extension of the standard,
which makes the two standards more compatible. IN FBI’s system, there are also
other important parts besides the actual compression strategy, such as fingerprint
pattern matching: In order to match a fingerprint quickly with the records in the
database, several characteristics of the fingerprints are stored, such as the number
of lines in the fingerprint, and points where the lines split or join. When the database
is indexed with this information, one may not need to decompress all images in the

361



(a) Low resolution approximation (b) Detail

Figure 10.21: The low-resolution approximation and the detail obtained by the FBI
standard for compression of fingerprint images, when applied to our sample finger-
print image.

database to perform matching. We will not go into details on this here.

Exercises for Section 10.4

1. Write code which generates the images shown in figures 10.19, 10.20, and 10.21.
Use the functions DWT2Impl and IDWT2Impl with the CDF 9/7 wavelet kernel func-
tions as input.

Summary

We extended the tensor product construction to functions by defining the tensor
product of functions as a function in two variables. We explained with some exam-
ples that this made the tensor product formalism useful for approximation of func-
tions in several variables. We extended the wavelet transform to the tensor prod-
uct setting, so that it too could be applied to images. We also performed several
experiments on our test image, such as creating low-resolution images and neglect-
ing wavelet coefficients. We also used different wavelets, such as the Haar wavelet,
the Spline 5/3 wavelet, and the CDF 9/7 wavelet. The experiments confirmed what
we previously have proved, that wavelets with many vanishing moments are better
suited for compression purposes.

The specification of the JPGE2000 standard can be found in [1]. In [36], most
details of this theory is covered, in particular details on how the wavelet coefficients
are coded (which is not covered here).
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One particular application of wavelets in image processing is the compression
of fingerprint images. The standard which describes how this should be performed
can be found in [11]. In [3], the theory is described. The book [14] uses the applica-
tion to compression of fingerprint images as an example of the usefulness of recent
developments in wavelet theory.
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Appendix A
Basic Linear Algebra

This book assumes that the student has taken a beginning course in linear algebra
at university level. In this appendix we summarize the most important concepts
one needs to know from linear algebra. Note that what is listed here should not
be considered as a substitute for such a course: It is important for the student to
go through a full course in linear algebra, in order to get good intuition for these
concepts through extensive exercises. Such exercises are omitted here.

A.1 Matrices

An m ×n-matrix is simply a set of mn numbers, stored in m rows and n columns.
We write akn for the entry in row k and column n of the matrix A. The zero matrix,
denoted 0 is the matrix with all zeroes. A square matrix (i.e. where m = n) is said
to be diagonal if akn = 0 whenever k 6= n. The identity matrix, denoted I , or In to
make the dimension of the matrix clear, is the diagonal matrix where the entries on
the diagonal are 1, the rest zeroes. If A is a matrix we will denote the transpose of
A by AT . If A is invertible we denote its inverse by A−1. We say that a matrix A
is orthogonalOrthogonal!matrix if AT A = A AT = I . A matrix is called sparseSparse
matrix if most of the entries in the matrix are zero.

A.2 Vector spaces

A set of vectors V is called a vector space if . . . We say that the vectors {v 0, v 1, . . . , v n−1}
are linearly independentlinearly independent if, whenever

∑n−1
i=0 ci v i = 0, we must

have that all ci = 0. We will say that a set of vectors B = {v 0, v 1, . . . , v n−1} from V is a
basisbasis for V if the vectors are linearly independent, and span V .

Subspaces of RN , and function spaces.
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A.3 Inner products and orthogonality

Most vector spaces in this book are inner product spaces. A (real) inner product
on a vector space is a binary operation, written as (u, v ) → 〈u, v〉, which fulfills the
following properties for any vectors u, v , and w :

1. 〈u, v〉 = 〈v ,u〉
2. 〈u +v , w〉 = 〈u, w〉+〈v , w〉
3. 〈cu, v〉 = c〈u, v〉 for any scalar c

4. 〈u,u〉 ≥ 0, and 〈u,u〉 = 0 if and only if u = 0.

u and v are said to be orthogonalOrthogonal!vectors if 〈u, v〉 = 0. In this book we
have seen two important examples of inner product spaces. First of all the Euclidean
inner product, which is defined by

〈u, v〉 =
n−1∑
i=0

ui vi (A.1)

for any u, v in Rn . For functions we have seen examples which are variants of the
following form:

〈 f , g 〉 =
∫

f (t )g (t )d t . (A.2)

Any set of mutually orthogonal elements are also linearly independent. A basis
where all basis vectors are mutually orthogonal is called an orthogonal basis. Or-
thogonal!basis If additionally the vectors all have length 1, we say that the basis is
orthonormalOrthonormal!basis. If x is in a vector space with an orthogonal basis
B = {v k }n−1

k=0 , we can express x as

〈x , v 0〉
〈v 0, v 0〉

v 0 + 〈x , v 1〉
〈v 1, v 1〉

v 1 +·· ·+ 〈x , v n−1〉
〈v n−1, v n−1〉

v n−1. (A.3)

In other words, the weights in linear combinations are easily found when the basis
is orthogonal. This is also called the orthogonal decomposition theoremOrthogonal
decomposition theorem.

By the projectionprojection of a vector x onto a subspace U we mean the vector
y = projU x which minimizes the distance ‖y −x‖. If v i is an orthogonal basis for U ,
we have that projU x can be written by Equation (A.3).

A.4 Coordinates and change of coordinates

If B = {v 0, v 1, . . . , v n−1} is a basis for a vector space, and x = ∑n−1
i=0 xi v i , we say that

(x0, x1, . . . , xn−1) is the coordinate vectorCoordinate vector of x w.r.t. the basis B. We
also write [x]B for this coordinate vector.

If B and C are two different bases for the same vector space, we can write down
the two coordinate vectors [x]B and [x]C . A useful operation is to transform the
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coordinates in B to those in C , i.e. apply the transformation which sends [x]B to
[x]C . This is a linear transformation, and we will denote the n ×n-matrix of this
linear transformation by PC←B , and call this the change of coordinate matrixChange
of coordinate matrixChange of coordinates from B to C In other words, the change
of coordinate matrix is defined by requiring that

PC←B[x]B = [x]C . (A.4)

It is straightforward to show that PC←B = (PB←C )−1, so that matrix inversion can
be used to compute the change of coordinate matrix the opposite way. It is also
straightforward to show that the columns in the change of coordinate matrix can
be obtained by expressing the old basis in terms of the new basis, i.e. finding the
vectors [PB←C (v i )]C .

If L is a linear transformation between the spaces V and W , and B is a basis for
V , C a basis for W , we can consider the operation which sends the coordinates of
v ∈V in the basis B to the coordinates of Lv ∈W in the basis C . This is represented
by a matrix, called the matrix of L relative to the bases B and C matrix of a linear
transformation relative to bases. Similarly to change of coordinate matrices, the
columns of the matrix of L relative to the bases B and C are given by [L(v i )]C .

A.5 Eigenvectors and eigenvalues

If A is a linear transformation from a vector space to itself, a vector v is called an
eigenvectoreigenvector if there exists a scalar λ so that Av = λv . λ is called the cor-
responding eigenvalueeigenvalue.

If the matrix A is symmetric, the following hold:

1. The eigenvalues of A are real,

2. the eigenspaces of A are orthonormal,

3. any vector can be decomposed as a sum of eigenvectors from A.

Fo non-symmetric matrices, these results do not hold in general. But for filters,
clearly the second and third property always hold, regardless of whether the filter
is symmetric or not.

A.6 Diagonalization

One can show that, for a symmetric matrix, A = PDP T where D is a digonal matrix
and the eigenvalues of A are the values on the diagonal of D , and P is a matrix where
the columns are the eigenvectors of A, with corresponding eigenvalue appearing in
the same column in D .
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Appendix B
Signal processing and linear
algebra: a translation guide

This book should not be considered as a standard signal processing textbook. There
are several reasons for this. First of all, much signal processing literature is written
for people with an engineering background. This book is written for people with a
basic linear algebra background. Secondly, the book does not give a comprehensive
treatment of all basic signal processing concepts. Signal processing concepts are in-
troduced whenever they are needed to encompass the mathematical exposition. In
order to learn more about the different signal processing concepts, the reader can
consult many excellent textbooks, such as [28, 2, 25, 32]. The translation guide of this
chapter may be of some help in this respect, when one tries to unify material pre-
sented here with material from these signal processing textbooks. The translation
guide handles both differences in notation between this book and signal processing
literature, and topical differences. Most topical differences are also elaborated fur-
ther in the summaries of the different chapters. The book has adopted most of its
notation and concepts from mathematical literature.

B.1 Complex numbers

There are several differences between engineering literature and mathematics. In
mathematics literature, i is used for the imaginary complex number which satisfies
i 2 =−1. In engineering literature, the name j is used instead.

B.2 Functions

What in signal processing are refered to as continuous-time signals, are here refered
to as functions. Usually we refer to a function by the letter f , according to the math-
ematical tradition. The variable is mostly time, represented by the symbol t .
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In signal processing, one often uses capital letters to denote a function which is
the Fourier transform of another function, so that the Fourier ransform of x would
be denoted by X . Here we simply denote a periodic function by its Fourier coeffi-
cients yn , and we avoid the CTFT. We use analog filters, however, which also work
in continuous time. Analog filters preserve frequencies, and we have used ν to de-
note frequency (variations per second), and not used angular frequency ω. In signal
processing literature it is common to junp between the two.

B.3 Vectors

Discrete-time signals, as they are used in signal processing, are here mostly refered
to as vectors. To as big extent as possible, we have attempted to keep vectors finite-
dimensional. Vectors are in boldface (i.e. x), but its elements are not in boldface,
and with subscripts (i.e. xn). Superscripts are also used to differ between vectors
with the same base name (i.e. x (1), x (2) etc.), so that this does not interfer with the
vector indices. In signal processing literature the corresponding notation would be
x for the signal, and x[n] for its elements, and signals with equal base names could
be named like x1[n], x2[n].

We have sometimes denoted the Fourier transform of x by x̂ , according to the
mathematical tradition. More often we have distuinguished between a vector and
its Discrete Fourier transform by using x for the first, and y for the latter. This also
makes us distuinguish between the input and output to a filter, where we instead
use z for the latter. Much signal processing literature write (capital) X for the DFT of
the vector x.

B.4 Inner products and orthogonality

Throughout the book we have defined inner products for functions (for Fourier anal-
ysis and wavelets), and we have also used the standard inner product of RN . from
this we have deduced the orthogonality of several basis functions used in signal pro-
cessing theory. That the functions are orthogonal, as well as the inner product itself
are, however, often not commented on in signal processing literature. As an un-
fortunate consequence, one has to explain the expression for the Fourier series us-
ing other means than the orthogonal decomposition formula and the least squares
method. Also, one does not mention that the DFT is a unitary transformation.

B.5 Matrices and filters

Boldface notation is not used for matrices, according to the mathematical tradition.
In signal processing, it is not common to formulate matrix equations, such as for
the DFT and DCT, or matrix factorizations. Instead one typically writes down each
equation, one equation for each row in y = Ax , i.e. not recognizing matrix/vector
multiplication. We have sticked to the name filtering operations, but made it clear
that this is nothing but a linear transformation with a Toeplitz matrix as its matrix. In
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particular, we alternately use the terms filtering and multiplication with a Toeplitz
matrix. The characterization of filters as circulant Toeplitz matrices is usually not
done in signal processing literature (but see [14]). In this text we allow for matrices
also to be of infinite dimensions, expanding on the common use in linear algebra.
When infinite dimensions are assumed, infinite in both directions is assumed. Ma-
trices are scaled if necessary to make them unitary, in particular the DCT and the
DFT. This scaling is usually not done in signal processing literature.

Representing a filter in terms of a finite matrix and restriction of a filter to a finite
signal. This is usually omitted in signal processing literature.

One of the most important statements in signal processing is that convolution in
time is equivalent to multiplication in frequency. We have presented a compelling
interpretation of this in linear algebra terms. Since the frequency response simply
are eigenvalues of the filter, and convolution simply is matrix factorization, multi-
plication in frequency simply means to multiply two diagonal matrices to obtain
the frequency response of the product. Moreover, the Fourier basis vectors can be
interpreted as eigenvectors.

B.6 Convolution

While we have defined the concept of convolution, readers familiar with signal pro-
cessing may have noticed that this concept has not been used much. The reason
is that we have wanted to present convolution as a matrix multiplication (to adapt
to mathematical tradition), and that we have used the concept of filtering often in-
stead. In signal processing literature one defines convolution in terms of vectors of
infinite length. We have avoided this, since in practice vectors always need to be
truncated to finite lengths. Due to this, we also have analyzed how a finite vector
may be turned into a periodic vector (periodic or symmetric extension), and how
this affects our analysis. Also we have concentrated on FIR-filters, and this makes
us avoid convergence issues. Note that we do not present matrix multiplication as a
method of implementing filtering, due to the special structure of this operation. We
do not suggest other methods for implementation than applying the convolution
formula in a brute-force way, or factoring the filter in simpler components.

B.7 Polyphase factorizations and lifting

In signal processing literature, it is not common to associate polyphase components
with matrices, but rather with Laurent polynomials generated from the correspond-
ing filter. The Laurent polynomial is nothing else than the Z -transform of the asso-
ciated filter. Associating polyphase components with blocks in a block matrix makes
this book fit with block matrix methods in linear algebra textbooks.

The polyphase factorization serves two purposes in this book. Firstly, the lift-
ing factorization (as used for wavelets) is derived from it, and put in a linear algebra
framework as a factorization into sparse matrices, similarly to the FFT factorization.
Thereby it fits together with many of the matrix factorization results from classical

371



linear algebra, where also sparsity is what makes the factorization good for compu-
tation.

Secondly, the polyphase factorization of the filter bank transforms in the MP3
standard are derived (also as a sparse matrix factorization), and from this it is ap-
parent what properties to put on the prototype filters in order to obtain useful trans-
forms. In fact, from this factorization it became apparent that the MP3 filter bank
transforms could be expressed in terms of alternative QMF filter banks (i.e. M = 2).

These two topics (lifting and the MP3 filter bank transform polyphase factoriza-
tion) are usually not presented in a unified way in textbooks. we see here that there
is a big advantage of doing this, since the second can build on theory from the first.

B.8 Transforms in general

In signal processing, one often refers to the forward and reverse filter bank trans-
forms as analysis and synthesis, respectively, and for obvious reasons. In mathe-
matical literature, one instead often use the term change of coordinates in a wavelet
setting. These terms are not normally used in mathematical literature, where the
term basis vectors/change of coordinate matrices would be used instead. Also, the
output from a forward filter bank transform is often refered to as the transformed
vector, and the result we get when we apply the reverse filter bank transform to this
is called the reconstructed vector.

This exposition takes extra care in presenting how the DCT is derived naturally
from the DFT. In particular both the DFT and the DCT are derived as matrices of
eigenvectors for finite-dimensional filters. The DCT is derived from the DFT in that
one restricts to a certain subset of vectors. The orthogonality of these matrices fol-
lows from the orthogonality of distinct eigenspaces.

B.9 Perfect reconstruction systems

The term biorthogonality is not used to describe a mutual property of the filters
of wavelets. Borthogonality corresponds simply to two matrices being inverses of
oneanother. For the same reason, the term perfect reconstruction is not used much.
Much wavelet theory refer to a property called delay normalization. This terms
has been avoided by mostly considering wavelets with symmetric filters, for which
delay-normalization is automatic. There are, however, many examples of wavelets
where this term is important.

B.10 Z -transform and frequency response

The Z -transform and the frequency response are much used in signal processing lit-
eraure, and are important concepts for filter design. We have deliberately dropped
the Z -transform. Due to this, much signal processing has of course been left out,
since placements of poles and zeroes are not performed outside or inside the unit
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circle, since the frequency response only captures the values on the unit circle. Place-
ment of poles and circles is perhaps the most-used design feature in filter design.
The focus here is on implementing filters, not designing them, however.

In signal processing literature, the DTFT and the Z -transform is used, assuming
that the inputs and outputs are vectors of infinite length. In practice of course, some
truncation is needed, since only finite-dimensional arithmetic is performed by the
computer. How this truncation is to be done without affecting the computations is
thus never mentioned in signal processing, although it is always performed some-
how. This exposition shows that this truncation can be taken as part of the theory,
without seriously affecting the results.
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Nomenclature

[x]B Coordinate vector of x relative to the basis B.

x̆ Symmetric extension of a vector

f̆ Symmetric extension of the function f

x̂ DFT of the vector x

λs (ν) Frequency response of an analog filter

λS (ω) Continuous frequency response of a digital filter

λS,n Vector frequency response of a digital filter

〈u, v〉 Inner product

ν Frequency

ω Angular frequency

⊗ Tensor product

φ Scaling function

φ̃ Dual scaling function

ψ̃ Dual mother wavelet

Ṽm Dual resolution space

W̃m Dual detail space

x ∗ y Convolution of vectors

x (e) Vector of even samples

x (o) Vector of odd samples
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φm Basis for Vm

ψm Basis for Wm

AH Conjugate transpose of a matrix

AT Transpose of a matrix

A−1 Inverse of a matrix

cm,n Coordinates inφm

DN N ×N -DCT matrix

Ed Filter which delays with d samples

FN N ×N -Fourier matrix

fN N ’th order Fourier series of f

fs Sampling frequency

l (S) Length of a filter

N Number of points in a DFT/DCT

O(N ) Order of an algorithm

PC←B Change of coordinate matrix from B to C .

S f Matrix with the columns reversed

Sr Symmetric restriction of S

T Period of a function

Ts Sampling period

U ⊕V Direct sum of vector spaces

Vm Resolution space

VN ,T N ’th order Fourier space

Wm Detail space

W (0,1)
m Resolution m Complementary wavelet space, LH

W (1,0)
m Resolution m Complementary wavelet space, HL

W (1,1)
m Resolution m Complementary wavelet space, HH

wm,n Coordinates inψm

Cm Reordering of (φm−1,ψm−1)
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Dm Reordering ofφm

DN = {d 0,d 1, · · · ,d N−1} N -point DCT basis for RN

DN ,T Order N real Fourier basis for VN ,T

EN = {e0,e1, · · · ,eN−1} Standard basis for RN

FN = {φ0,φ1, · · · ,φN−1} Fourier basis for RN

FN ,T Order N complex Fourier basis for VN ,T
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Index

AD conversion, 40
algebra, 79
Alias cancellation, 187
Alias cancellation condition, 189
Aliasing, 187
analysis, 15

equations, 15
Analysis filter components of a forward

filter bank transform, 195
Angular frequency, 85
Arithmetic operation count

DCT, 130
DFT direct implementation, 51
FFT, 71
symmetric filters, 126
with tensor products, 285

audiowrite, 42

Bandpass filter, 97
Basis

φm , 140
ψm , 144
Cm , 149
Dm , 241
DCT, 119
for VN ,T , complex, 21
for VN ,T , real, 15
Fourier, 46

Biorthogonal
bases, 210

Biorthogonality, 210
bit rate, 40
Bit-reversal

DWT, 241

FFT, 67
block diagonal matrices, 149
block matrix, 66
Blocks, 289

Cascade algorithm, 208
Causal filter, 220
Change of coordinates

in tensor product, 284
Channel, 195
Compact support, 34
Complex Fourier coefficients, 23
Computational molecule, 270

Partial derivative in x-direction, 276
Partial derivative in y-direction, 278
Second order derivatives, 281
smoothing, 275

Conjugate transpose, 48
continuous sound, 3
Continuous-time Fourier transform, 38
conv, 92
Convolution

analog, 34
kernel, 34
vectors, 92

coordinate matrix, 284
Coordinates inφm , 141
Coordinates inψm , 144
Cosine matrices, 120
Cosine matrix inverse

type II, 120
type III, 120

critical sampling, 178
CTFT, 38
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dct, 121
DCT basis, 119
DCT coefficients, 119
DCT matrix, 119
DCT-II factorization, 119
DCT-III factorization, 119
Detail space, 143
DFT coefficients, 47
DFT matrix factorization, 66
Diagonalization

with FN , 78
digital

sound, 3, 40
digital filter, 78
Direct sum

vector spaces, 144
Dirichlet conditions, 15
Discrete Cosine transform, 119
Discrete Fourier transform, 47
Discrete Wavelet Transform, 148
downsampling, 177
Dual

detail space, 206
mother wavelet, 206
multiresolution analysis, 210
resolution space, 206
scaling function, 206
wavelet transforms, 180

DWT kernel parameter dual, 180
DWT kernel parameter symm, 186

elementary lifting matrix
even type, 236
odd type, 236
used for non-symmetric filters, 247
used for symmetric filters, 240

error-resilient, 289

FFT, 64
twiddle factors, 72

fft, 68
Filter

bandpass, 97
echo, 93
highpass, 97
ideal highpass, 97

ideal lowpass, 97
length, 91
linear phase, 117
lowpass, 96
moving average, 95
MP3 standard, 98
time delay, 93

Filter bank, 195
Cosine-modulated, 199

Filter bank transform, 195
Filter coefficients, 77
FIR filters, 105
flop count, 73
Forward filter bank transform, 195

in a wavelet setting, 179
Fourier analysis, 11
Fourier coefficients, 13
Fourier domain, 15
Fourier matrix, 47
Fourier series, 13

square wave, 15
triangle wave, 18

Fourier space, 13
Frequency domain, 15
Frequency response

analog filter, 34
continuous, 85
vector, 78

Haar wavelet, 151
Highpass filter, 97

idct, 121
Ideal highpass filter, 97
Ideal lowpass filter, 97
IDFT, 49
IDFT matrix factorization, 66
ifft, 68
Implementation

DCT, 128
DFT, 50
Filtering an image, 272
Generic DWT, 151
Generic IDWT, 151
IDCT, 129
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listening to high-frequency part in
sound, 60

listening to low-frequency part in sound,
60

Wavelet kernel
Haar wavelet, 150

impulse response, 80
imread, 264
imshow, 264
imwrite, 264
In-place

bit-reversal implementation, 67
DWT implementation, 150
FFT implementation, 67
lifting implementation, 240

In-place implementation
DWT, 241

Inner product
of functions in a Fourier setting, 12
of functions in a tensor product set-

ting, 292
of functions in a wavelet setting, 138
of vectors, 46

interpolating polynomial, 56
interpolation formula, 58

ideal
periodic functions, 58

Inverse Discrete Wavelet Transform, 148

JPEG
standard, 288

JPEG2000
lossless compression, 225
lossy compression, 226
standard, 225

Kernel transformations, 149

least square error, 12
length of a filter, 91
Lifting factorization, 239

alternative piecewise linear wavelet,
243

CDF 9/7 wavelet, 244
orthonormal wavelets, 247
piecewise linear wavelet, 242

Spline 5/3 wavelet, 244
Linear phase filter, 117
Lowpass filter, 96
LTI filters, 80

mother wavelets, 147
MP3

and the DCT, 131
FFT, 61
filters, 98
standard, 36
window, 89

MP3 standard
partial calculation, 197

MP3 standard
matrixing, 197
windowing, 197

MRA-matrix, 177
multiresolution analysis, 168
multiresolution model, 137

Near-perfect reconstruction, 187

Order N complex Fourier basis for VN ,T ,
21

Order of an algorithm, 69
Orthonormal

MRA, 168
Orthonormal wavelets, 194
Outer product, 273

Parallel computing
with the DCT, 130
with the DWT, 289
with the FFT, 71

Perfect reconstruction, 187
perfect reconstruction condition, 189
Perfect reconstruction filter bank, 197
Phase distortion, 187
Polyphase

component of a vector, 71
Polyphase components, 234
Polyphase representation, 234
psycho-acoustic model, 36
pure digital tone, 46
pure tone, 7
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QMF filter banks, 193
Alternative definition, 194
Classical definition, 193

rand, 44
Resolution space, 139
Reverse filter bank transform

in a wavelet setting, 179
Reverse filter bank transforms, 196
roots, 220

samples, 40
sampling, 40

frequency, 40
period, 40
rate, 40

scaling function, 141, 168
separable extension, 292
sound channel, 42
square wave, 9
Standard

JPEG, 288
JPEG2000, 225
MP3, 36

subband
HH, 301
HL, 301
LH, 301
LL, 301

Subband coding, 195
Subband samples of a filter bank trans-

form, 195
Support, 34
Symmetric

vector, 113
Symmetric extension

of function, 31
used by the DCT, 112
used by wavelets, 171

Symmetric restriction of a symmetric fil-
ter, 117

synthesis, 15
equation, 15
vectors, 48

Synthesis filter components of a reverse
filter bank transform, 196

tensor product, 259
of function spaces, 292
of functions, 291
of matrices, 273
of vectors, 273

theory, 315–317
Tiles, 289
time domain, 15
time-invariant, 79
Toeplitz matrix, 76

circulant, 76
triangle wave, 10

Unitary matrix, 48
upsampling, 179

Vector space
of symmetric vectors, 112

Wavelets
Alternative piecewise linear, 165
CDF 9/7, 225
Orthonormal, 227
Piecewise linear, 160
Spline, 224
Spline 5/3, 225

wavread, 42
window, 89

Hamming, 89
in the MP3 standard, 89
rectangular, 89
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