Compulsory project 1 in MAT-INF3100 Linear optimization:

- NOTE: general information: You should give/send your project by February 13 to

Torkel Haufmann [torkelah@math.uio.no]

either (i) by email in a single pdf-file denoted "username.pdf" (your username!) or (ii) give a paper print to Torkel. You should also read the general information about compulsory projects at the course web page.

Problem 1.

Let $n \geq 1$ and $r_{1}, r_{2}, \ldots, r_{n}>0$. Consider the LP problem

$$
\begin{array}{lc}
\max & \sum_{j=1}^{n} r_{j} x_{j} \\
\text { subject to } & \\
& \sum_{j=1}^{n} x_{j} \leq 1 \tag{1}\\
& x_{1}, x_{2}, \ldots, x_{n} \geq 0
\end{array}
$$

with variables $x_{1}, x_{2}, \ldots, x_{n}$.
a) Let $n=2$. Draw the feasible set F (i.e., the set of points $\left(x_{1}, x_{2}\right)$ satisfying the constraints in (1)) in the plane, and solve problem (1) geometrically for each value of $r_{1}, r_{2}>0$.
b) Again let $n=2$ in (1). Let $\eta\left(r_{1}, r_{2}\right)$ denote the optimal value in (1). It depends on r_{1}, r_{2} and therefore defines a function $\eta: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Determine this function η. Is it differentiable?
c) Consider (1) but for general n (with $r_{1}, r_{2}, \ldots, r_{n}>0$). Explain why the problem has an optimal solution, and find one. Next, find all optimal solutions in (1); the answer here depends on the parameters $r_{1}, r_{2}, \ldots, r_{n}$. Is there an optimal solution x with $\sum_{j} x_{j}<1$?

Problem 2.

a) Use the simplex method to solve the LP problem (by hand)

$$
\begin{align*}
& \max \quad x_{1}+2 x_{2}+x_{3} \\
& \text { subj. to } \\
& \begin{array}{rlr}
-2 x_{1}+x_{2} & \leq 2 \\
-x_{1}+2 x_{2} & \leq 7 \\
x_{1} & & \leq x_{3}
\end{array} \tag{2}\\
& x_{1}, x_{2}, x_{3} \geq 0 \text {. }
\end{align*}
$$

[^0]b) A student wants to buy food for dinner on a rather limited budget. The price of one "unit" of fish, chicken, beef, and apples are, respectively, 35, 20, 60 and 5 (in NOK). Her budget is 50 NOK , and she decides ${ }^{2}$ to make her dinner choice by solving the LP problem
\[

$$
\begin{array}{lc}
\max & v_{1} x_{1}+v_{2} x_{2}+v_{3} x_{3}+v_{4} x_{4} \\
\text { subj. to } \\
& 35 x_{1}+20 x_{2}+60 x_{3}+5 x_{4} \leq 50 \tag{3}\\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$
\]

Explain, briefly, why this model makes (some) sense by commenting on the assumptions, limitations, interpretation of the v_{j} 's.
c) Consider the LP problem
$\max \quad \sum_{j=1}^{n} v_{j} x_{j}$
subj. to

$$
\begin{gather*}
\sum_{j=1}^{n} a_{j} x_{j} \leq a_{0} \tag{4}\\
\sum_{j=1}^{n} b_{j} x_{j} \leq b_{0} \\
0 \leq x_{j} \leq p_{j} \quad(j \leq n)
\end{gather*}
$$

where the x_{j} 's are the variables and the v_{j} 's, a_{j} 's etc. are nonnegative parameters.

Write an OPL-CPLEX program for the LP problem (4). Write both a modfile and a dat-file. Set up two test problems (your choice!) and run your program on these test cases. Report the solutions.

Finally, use your program to solve a variation of the student's dinner problem (3) where we add one constraint. Use $v_{1}=4, v_{2}=2, v_{3}=5, v_{4}=1$, and add the constraint

$$
7 x_{1}+5 x_{2}+5 x_{3}+10 x_{4} \leq \alpha
$$

where $\alpha>0$ is a parameter. You may interprete this as a weight constraint (the weight of fish is 700 grams pr unit etc.) and she does not want the total weight to be more that α. Now, solve this problems for a couple of "interesting" values of α. (You have some freedom in the choice of data in this exercise).

Good luck!

[^1]
[^0]: ${ }^{1}$ Geir Dahl, MI/UiO, geird@math. uio.no

[^1]: ${ }^{2}$ being a student of optimization, of course!

