
Compulsory project 2 in
MAT-INF3100 Linear Optimization 1

• General information: You should give/send your project by April
10. to

Torkel Haufmann [torkelah@math.uio.no]

either (i) by email in a single pdf-file denoted “username.pdf” (your
username!) and program files with names “username interior.m” and
“username simplex.m”, or (ii) give a paper print to Torkel, or (iii) use
the Devilry system. You should also read the general information about
compulsory projects at the course web page.

This is mostly a numerical project on linear optimization algorithms.
The goal is to learn more about these algorithms by implementing simplified
versions. We focus on (the matrix version of) the primal simplex algorithm
and an interior point algorithm, see below. But, first, there is a theoretical
question.

1 Some theoretical questions

Consider the LP problem

(P) max {cTx : Ax ≤ b}

where A is an m × n matrix, and b and c are vectors of length m and n,
respectively. Note that we do not require x ≥ O.

(i) Find the dual (D) of (P).

(ii) Show that the dual of (D) is equivalent to (P). (Hint: write (P) in the
standard form used in the book by replacing x by some nonnegative
variables.)

(iii) Consider the special case of (P) where c = O (the zero vector). So
solving (P) really means finding a feasible solution, i.e., an x satisfying
Ax ≤ b. Use the dual (D) to characterize whenever Ax ≤ b has a
solution.

1Geir Dahl, UiO, geird@math.uio.no

1



2 Algorithms/implemention

Your task is to implement the following two LP algorithms:

• Algorithm S: the primal simplex algorithm.

• Algorithm I: the path-following interior point algorithm.

Here are further details on this:

• You may choose any programming language you like, but we recom-
mend MATLAB (or perhaps Python) as it makes the programming
more easy.

• Algorithm S is explained in detail in Section 6.2 in Vanderbei’s book.
This is the matrix version of the primal simplex algorithm. You need
to solve some linear systems of equations and for this you may use
Matlab’s command V \ d for solving V x = d.

• Algorithm I is given i Fig. 18.1 in Vanderbei and it is explained in
Chapters 17, 18 and 19. (Actually, only chapter 17 is included in our
syllabus, but you just need to read a few lines in chapters 18 and 19 to
know what to do.) The main part is to solve the equations called the
KKT-system (Karush-Kuhn-Tucker system, the optimality conditions
for the barrier problem) to find the steps ∆x, ∆y, ∆z and ∆w. This
can be done in different ways, but I suggest using the normal equations
in primal form, see start of section 19.2, eq. (19.9) for finding ∆y, then
find ∆x etc.

• You can concentrate on LP problems in the standard form

max {cTx : Ax ≤ b, x ≥ O}

where the vectors b and c and the matrix A are given (m × n). For
simplicity we only work with matrices A ≥ O and assume that b ≥ O,
so x = O is a feasible solution.

• Report your code and a test run, for both algorithms, based on the data
file on the course web page (print a line or two with useful information
for each (or maybe every second) iteration.

Good luck!

2


