LP. Lecture Game theory

Chapter 11: game theory

- matrix games
- optimal strategies
- von Neumann's minmax theorem
- connection to LP
- useful LP modeling of (certain) minmax and maxmin problems

Example: Paper-Scissors-Rock (= saks-pose-stein)

The game:

- Two persons independently choose one of the three options:

Paper, Scissors or Rock

- Rules: Paper beats Rock, Rock beats Scissors, Scissors beats Paper.

Payoff matrix:

$$
A=\left[\begin{array}{rrr}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right]
$$

- Row player (R) chooses a row i, the Column player (K) chooses a column j, and the payoff is the entry $a_{i j}$: the row player pays the column player $a_{i j}$ kroner (NOK).
- Similar for a general $m \times n$ matrix $A=\left[a_{i j}\right]$; this is called a Matrix game.

Pure strategies

- The choice above is called a pure strategy (or deterministic strategy): choose a row (or column). Note: in Paper-Scissors-Rock no pure strategy will be guaranteed to win (if the game is repeated), e.g., if R always chooses Paper K will soon choose Scissors.
- Goal: analyse Matrix games in general

Define

$$
\begin{aligned}
& P_{R}(i)=\max _{j \leq n} a_{i j} \quad \text { : largest payoff for } \mathrm{R} \text { using strategy } i \\
& P_{K}(j)=\min _{i \leq m} a_{i j} \quad: \text { smallest payoff for } K \text { using strategy } j \\
& V_{*}=\max _{j \leq n} P_{K}(j) \text { : largest guaranteed payoff to K } \\
& V^{*}=\min _{i \leq m} P_{R}(i) \text { : smallest guaranteed payoff from } \mathrm{R}
\end{aligned}
$$

If $P_{K}(j)=V_{*}$ then j is called a pure maxmin strategy. If $P_{R}(i)=V^{*}$ then i is called a pure minmax strategy. If $V_{*}=V^{*}$, we say that the game has a value, namely $V:=V_{*}=V^{*}$.
In Paper-Scissors-Rock: $V_{*}=-1<1=V^{*}$.

Example: Consider the matrix game given by

$$
A=\left[\begin{array}{llll}
5 & 2 & 7 & 6 \\
1 & 2 & 2 & 0 \\
1 & 4 & 3 & 3
\end{array}\right]
$$

Then $P_{K}(1)=1, P_{K}(2)=2, P_{K}(3)=2, P_{K}(4)=0$, so $V_{*}=\max _{j} P_{K}(j)=2$. Furthermore: $P_{R}(1)=7, P_{R}(2)=2$,
$P_{R}(3)=4$, so $V^{*}=\min _{i} P_{R}(i)=2$.
Therefore $V_{*}=V^{*}=V=2$. A pure maxmin strategy for K is $j=3$ since $P_{K}(3)=2=V$, and a pure minmax strategy for R is $i=2$ since $P_{R}(2)=2=V$.

Proposition

$$
\begin{array}{ll}
\text { (i) } & P_{K}(j) \leq a_{i j} \leq P_{R}(i) \\
\text { (ii) } & P_{K}(j) \leq V_{*} \leq V^{*} \leq P_{R}(i)
\end{array} \quad(i \leq m, j \leq n)
$$

Proof. $\quad P_{K}(j)=\min _{k} a_{k j} \leq a_{i j} \leq \max _{k} a_{i k}=P_{R}(i)$. And (ii) follows from (i) by first taking max over j, which gives $P_{K}(j) \leq V_{*} \leq P_{R}(i)$ and then taking min over i; this gives (ii).

A pair (r, s) of strategies (for R and K) is called a saddle point if

$$
a_{r j} \leq a_{r s} \leq a_{i s} \text { for all } i, j
$$

so r is the best choice for R when K chooses s, and s is the best choice for K when R chooses r. Note: $a_{r s}$ is smallest in its column, and largest in its row.

Example: $(r, s)=(2,1)$ is saddlepoint in

$$
A=\left[\begin{array}{ll}
3 & 5 \\
2 & 1
\end{array}\right]
$$

In the example on the previous page both $(2,2)$ and $(2,3)$ are saddlepoints. Some matrices have a saddlepoint, others do not.

Theorem The game has a value, player R has a pure minmax strategy r and player K has a pure maxmin strategy s if and only if (r, s) is a saddlepoint in A. In that case the value is $V=a_{r s}$.

Proof. (i) Assume the game has a value V, player R has a pure minmax strategy r and player K has a pure maxmin strategy s. Then

$$
a_{i s} \geq P_{K}(s)=V_{*}=V=V^{*}=P_{R}(r) \geq a_{r j} \quad(i \leq m, j \leq n)
$$

In particular, for $i=r, j=s$, we get $a_{r s} \geq V \geq a_{r s}$, so $V=a_{r s}$, and (again from the inequalities) $a_{i s} \geq a_{r s} \geq a_{r j}$ for all i, j, which means that (r, s) is a saddlepoint.
(ii) Assume (r, s) is a saddlepoint, so $a_{r j} \leq a_{r s} \leq a_{i s}$ for alle i, j Then

$$
V_{*}=\max _{j} P_{K}(j) \geq P_{K}(s)=\min _{i} a_{i s}=a_{r s}
$$

and similarly $V^{*}=\min _{i} P_{R}(i) \leq P_{R}(r)=\max _{j} a_{r j}=a_{r s}$, so $V_{*} \geq V^{*}$. But, by the Proposition, $V_{*}=V^{*}$ and the equations imply that $V_{*}=V^{*}=a_{r s}, r$ is a pure minmax strategy for R and s is a pure maxmin strategy for K .

Randomized strategies

- The choice studied above is called a deterministic strategy: choose one row (or column).
- In Paper-Scissors-Rock no deterministic strategy can always win (if the game is played repeatedly), e.g., if R always chooses Paper, soon K will choose Scissors.
- May be better to use a randomized strategy: R chooses row i with probability y_{i}, and, independently, K chooses column j with probability x_{j}.
- So:

$$
\begin{aligned}
& \sum_{i=1}^{m} y_{i}=1, \quad y_{i} \geq 0 \quad(i \leq m) \\
& \sum_{j=1}^{m} x_{j}=1, \quad x_{j} \geq 0 \quad(j \leq n)
\end{aligned}
$$

The Expected payoff from R to K is (recall probability theory!):

$$
\sum_{i} \sum_{j} y_{i} a_{i j} x_{j}=y^{\top} A x
$$

Which strategy to use?

If player K chooses (randomized) strategy x, then the best choice for player R is to choose y so that $y^{\top} A x$ is minimized (since R has to pay this amount). Therefore the best choice for K is to choose an x which is optimal in the problem

$$
\max _{x} \min _{y} y^{\top} A x
$$

This is called a maxmin strategy.
Similarly analysis from player R's perspective: the best choice for R is a y which is optimal in the problem

$$
\min _{y} \max _{x} y^{T} A x
$$

This is called a minmax strategy.
In the (simple) Paper-Scissors-Rock game it follows from symmetry that $(1 / 3,1 / 3,1 / 3)$ is both a maxmin strategy (for K) and a minmax strategy (for R).

The maxmin problem: strategy for player K

Let e_{i} be the i th coordinate vector and e the all ones vector (of suitable size). Note that an LP with the feasible set being the standard simplex $S=\left\{y: \sum_{i} y_{i}=1, y \geq O\right\}$ is easy, so we get:

$$
v^{*}=\max _{x} \min _{y} y^{T} A x=\max _{x} \min _{i} e_{i}^{T} A x
$$

Therefore player K's strategy problem may be written as the LP problem

$$
\max \left\{v: v \leq e_{i}^{\top} A x(i \leq m), \sum_{j} x_{j}=1, x \geq O\right\}
$$

with variables $v \in \mathbb{R}, x \in \mathbb{R}^{n}$; or in matrix notation:

$$
\begin{array}{ccc}
& \max & v \\
(\mathrm{LP}-\mathrm{K}) & \text { s.t. } & \\
& & v e-A x \leq 0 \\
& & e^{T} x=1 \\
& & x \geq 0
\end{array}
$$

Thus: we can find an optimal strategy x for K efficiently by solving this LP.

The minmax problem: strategy for player R

Similar analysis for player R :

$$
u^{*}=\min _{y} \max _{x} y^{\top} A x=\min _{y} \max _{j} y^{T} A e_{j}
$$

So, player R's strategy problem becomes the LP problem

$$
\min \left\{u: u \geq y^{\top} A e_{j}(j \leq n), \sum_{i} y_{i}=1, y \geq O\right\}
$$

with variables $u \in \mathbb{R}, y \in \mathbb{R}^{m}$; which is

$$
\begin{array}{ccc}
& \min & u \\
(\mathrm{LP}-\mathrm{R}) & \text { s.t. } & \\
& & u e-A^{T} y \geq 0 \\
& & e^{T} y=1 \\
& & y \geq 0
\end{array}
$$

The minmax theorem
Theorem [John von Neumann(1928)] Let x^{*} be an optimal strategy for player K and y^{*} an optimal strategy for player R. Then

$$
v^{*}=\max _{x}\left(y^{*}\right)^{T} A x=\min _{y} y^{T} A x^{*}=u^{*}
$$

i.e., $\min _{y} \max _{x} y^{\top} A x=\max _{x} \min _{y} y^{\top} A x$.

Proof. One can check that problem LP-R is the dual LP of problem LP-K. (Exercise!) So, by the duality theorem of LP the optimal value v^{*} of LP-K equals the optimal value u^{*} of LP-R, and this proves the theorem.

- The common value $v^{*}=u^{*}$ is called the value of the game: this is the expected payoff when both players play optimally
- It is also possible to prove the LP duality theorem from von Neumann's theorem
- Solve the LP's above, for some selected A 's, using OPL-CPLEX.

