
LP. Kap. 17: Interior-point methods

I the simplex algorithm moves along the boundary of the
polyhedron P of feasible solutions

I an alternative is interior-point methods
I they find a path in the interior of P , from a starting point to

an optimal solution
I for large-scale problems interior-point methods are usually

faster
I we consider the main idea in these methods
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1. The barrier problem

Consider the LP problem

max cT x
s.t.

Ax ≤ b,
x ≥ O

and its dual
min bT y
s.t.

AT y ≥ c ,
y ≥ O

Introduce slack variables w in the primal and (negative) slack z in
the dual, which gives
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Primal (P):
max cT x
s.t.

Ax + w = b,
x ,w ≥ O

Dual (D):
min bT y
s.t.

AT y − z = c ,
y , z ≥ O

I We want to rewrite the problems such that we eliminate the
constraints x ,w ≥ O og y , z ≥ O, but still avoid negative
values (and 0) on the variables!!

I This is achieved by a logarithmic barrier function, and we get
the following modified primal problem
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The barrier problem:

max cT x + µ
∑

j log xj + µ
∑

i logwi

(Pµ) : s.t.
Ax + w = b

I (Pµ) is not equivalent to the original problem (P), but it is an
approximation

I it contains a parameter µ > 0.
I remember: xj → 0+ implies that log xj → −∞.
I (Pµ) is a nonlinear optimization problem
I interpretation/geometry: see Figure 17.1 in Vanderbei: level

curves for fµ, polyhedron P , central path when µ→ 0.

I Goal: shall see that (Pµ) has a unique optimal solution x(µ)
for each µ > 0, and that x(µ)→ x∗ when µ→ 0+, where x∗

is the unique optimal solution of (P). (Note: w is uniquely
determined by x)
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2. Lagrange multiplier

From (for instance) T. Lindstrøm, “Optimering av funksjoner av
flere variable”, MAT1110, multivariable calculus) we have the
following Lagrange multiplier rule:

Theorem Assume U ⊆ IRn is open, and that f , gi : U → IR are
functions with continuous partial derivatives (i ≤ m), and let
b1, . . . , bm ∈ IR. Assume that x∗ is a local maximum (or
minimum) for f on the set S = {x ∈ IRn : gi (x) = bi (i ≤ m)},
and that ∇g1(x∗), . . . ,∇gm(x∗) are linearly independent. Then
there are constants λ1, . . . , λm such that

(∗) ∇f (x∗) =
m∑

i=1

λi∇gi (x∗).

I λi ’s are called Lagrange multipliers
I This is a necessary optimality condition and leads to n + m

equations for finding x and λ (n + m variables).
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This can also be expressed by the Lagrange function (we redefine
the function gi by gi := gi − bi , such that we now consider
gi (x) = 0):

L(x , y) = f (x)−
m∑

i=1

yigi (x).

Then (∗) says that
∇xL(x∗, y) = O

while the constraints gi (x∗) = 0 (i ≤ m) become (where y = λ)

∇yL(x∗, y) = O.

These equations are called the first-order optimality conditions and
a solution x∗ is called a critical point.

Are these conditions also sufficient for optimality?
Consider the Hessian matrix

Hf (x) = [
∂2f (x)

∂xi∂xj
] ∈ IRn×n

Note: f (x) = o(g(x) when x → 0 means limx→0 f (x)/g(x) = 0 6 / 16



Theorem 17.1 Let the gi ’s be linear functions, and assume x∗ is a
critical point. Then x∗ is a local maximum if

zTHf (x∗)z < 0

for each z 6= O satisfying zT∇gi (x∗) = 0 (i ≤ m).

Proof: Second order Taylor formula gives

f (x∗ + z) = f (x∗) +∇f (x∗)T z + (1/2)zTHf (x∗)z + o(‖z‖2)

where z is a perturbation from the point x∗. To preserve feasibility
z must be chosen such that x∗ + z satisfies the constraints, i.e.,
zT∇gi (x∗) = 0 (i ≤ m). But, since x∗ is a critical point

∇f (x∗)T z = (
m∑

i=1

λi∇gi (x∗))T z = 0

so the assumption (zTHf (x∗)z < 0 for ...) and Taylor’s formula
give that f (x∗ + z) ≤ f (x∗), so x∗ is a local maximum.
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3. Lagrange applied to the barrier problem

The barrier problem (Pµ):

max cT x + µ
∑

j log xj + µ
∑

i logwi

s.t.
Ax + w = b

Introduce the Lagrange function

L(x ,w , y) = cT x + µ
∑

j

log xj + µ
∑

i

logwi + yT (b − Ax − w)

First-order optimality condition becomes

∂L
∂xj

= cj + µ 1
xj
−

∑
i yiaij = 0 (j ≤ n)

∂L
∂wi

= µ 1
wi
− yi = 0 (i ≤ m)

∂L
∂yi

= bi −
∑

j aijxj − wi = 0 (i ≤ m)
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Notation: write X for the diagonal matrix with the vector x on the
diagonal. e is the vector with only 1’s.

Then first order optimality conditions become, in matrix form:

AT y − µX−1e = c

y = µW−1e

Ax + w = b

Introduce z = µX−1e and we obtain (1.OPT)

Ax + w = b

AT y − z = c

z = µX−1e

y = µW−1e
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We had:

Ax + w = b

AT y − z = c

z = µX−1e

y = µW−1e

Multiply the third equation by X and the fourth with W and we get

Ax + w = b

(∗∗) AT y − z = c

XZe = µe

YWe = µe

The last two equations say: xjzj = µ (j ≤ n) and yiwi = µ
(i ≤ m) which is µ-complementarity (approximative
complementary slack). These are nonlinear. In total we have
2(n + m) equations and the same number of variables.
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It is quite simple:

I Interior-point methods (at least this type) consist in solving
the equations (∗∗) approximately using Newton’s method for a
sequence of µ’s (converging to 0).
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4. Second order information
We show: if there is a solution of the opt. condition (∗∗), then it
must be unique! We use Theorem 17.1 and consider the barrier
function f (x ,w) = cT x + µ

∑
j log xj + µ

∑
i logwi

First derivative:

∂f
∂xj

= cj + µ
xj

= 0 (j ≤ n)

∂f
∂wi

= µ
wi

(i ≤ m)

Second derivative:

∂2f
∂x2

j
= − µ

x2
j

(j ≤ n)

∂2f
∂w2

i
= − µ

w2
i

(i ≤ m)

So the Hessian matrix is a diagonal matrix with negative diagonal
elements: this matrix is negative definite. Uniqueness then follows
from Teorem 17.1.
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5. Existence

Theorem 17.2 There is a solution of the barrier problem if and only
if both the primal feasible region and the dual feasible region have a
nonempty interior.

Proof: Shall show the “if”-part.
I Assume there is a (x̄ , w̄) > O such that Ax̄ + w̄ = b (relative

interior point in the (x ,w)-space), and (ȳ , z̄) > O with
AT ȳ − z̄ = c .

I Let (x ,w) be primal feasible. Then

z̄T x + ȳTw = (AT y − c)T x + ȳT (b − Ax) = bT ȳ − cT x .

so
cT x = −z̄T x − ȳTw + bT ȳ

I The barrier function f becomes
f (x ,w) = cT x + µ

∑
j log xj + µ

∑
i logwi

=
∑

j(−z̄jxj + µ log xj) +
∑

i (−ȳiwi + µ logwi ) + bT ȳ
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I The terms in each sum has the form h(v) = −av + µ log v
where a > 0 and 0 < v <∞ and this function has a unique
maximum in µ/a and tends to −∞ as v →∞. This implies
that the set {(x ,w) : f (x ,w) ≥ δ} is bounded for each δ.

I Let now δ = f̄ = f (x̄ , w̄) and define the set

P̄ = {(x ,w) : Ax + w = b, x ≥ O, w ≥ O, }
∩ {(x ,w) : x > O, w > O, f (x ,w) ≥ f̄ }.

Then P̄ is closed. Because: P̄ is an intersection between two
closed sets; the last set is closed as f is continuous (that the
domain {(x ,w) : x > O, w > O} is not closed does not
matter here.)

I Therefore P̄ is closed and bounded, i.e., compact. P̄ is also
nonempty (it contains (x̄ , w̄)). By the extreme value theorem
f attains its supremum on P̄ , and therefore also on
{(x ,w) : Ax + w = b, x > O, w > O} as desired.
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We then obtain (using an exercise saying that the dual has an
interior point when the primal feasible region is bounded):

Corollary 17.3 If the primal feasible region has interior points and
is bounded, then for each µ > 0 there exists a unique solution

(x(µ),w(µ), y(µ), z(µ))

of (∗∗).

We then get a path (curve)
p(µ) := {(x(µ),w(µ), y(µ), z(µ)) : µ > 0} in IR2(m+n) which is
called the primal-dual central path.

In the primal-dual path following method one computes a sequence
µ(1), µ(2), . . . converging to 0, and for each µ(k) one approximately
solves the nonlinear system of equations (∗∗) using Newton’s
method. The corresponding sequence p(µ(k)) will then converge
towards an optimal optimal primal-dual solution.
A more precise result on this convergence, and more details, are
found in Chapter 18 and 19 (not syllabus).
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Example: A problem with m = 40 and n = 100. We show `2-norm
of the the residuals for each iteration: (primal) ρ = b − Ax − w ;
(dual) σ = c − AT y + z ; (compl.slack.) γ = zT x + yTw . We
find an optimal solution.

Iter. primal dual KS
2 189.61190 124.81236 103.89923
4 117.87500 77.59142 49.26126
6 81.95498 53.94701 30.11503
8 55.11458 36.27926 18.64561

10 30.92967 20.35951 9.75917
12 10.05169 6.61654 3.24588
14 4.37507 2.87990 1.52481
16 1.62442 1.06928 0.59844
18 0.64896 0.42718 0.25285
20 0.37908 0.24953 0.15657
22 0.14284 0.09402 0.06359
24 0.11378 0.07490 0.05191
26 0.00145 0.00095 0.00413
28 0.00000 0.00000 0.00005
30 0.00000 0.00000 0.00000
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