
LP. Lecture 3. Chapter 3: degeneracy.

I degeneracy
I example cycling
I the lexicographic method
I other pivot rules
I the fundamental theorem of LP
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Repetition

I the simplex algorithm: sequence of pivots starting with initial
feasible basic solution

I the simplex method: 2 times the simplex algorithm: Phase I
and Phase II

I Phase I: solve the Phase I problem to find, if possible, an initial
feasible solution. In that case we also have a basic feasible
solution for the next task.

I Phase II: solve Phase II problem with the solution from the
Phase I problem as a starting point. Using the simplex
algorithm we then find an optimal solution of the original
problem or ....

I unbounded problem: ... no basic variable goes towards zero,
and we find a ray along which the objective function η goes
towards infinity.
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Degeneracy

Consider the LP problem:

max
∑n

j=1 cjxj

subject to ∑n
j=1 ai ,jxj ≤ bi for i = 1, . . . ,m

xj ≥ 0 for j = 1, . . . , n.

By the start of a pivot we have the dictionary:

η = η̄ +
∑

j∈N c̄jxj

xi = b̄i −
∑

j∈N āi ,jxj for i ∈ B .

We call the dictionary degenerate if b̄i = 0 for at least one i . We
then have a degenerate basic solution. Note that we always have

b̄i ≥ 0. Why?
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The reason is: we start with each b̄i ≥ 0 and this property is
maintained during the iterations since we do not increase the
entering variable too much. So far we have assumed that b̄i > 0.

Consequence: we have always been able to increase the entering
variable by a positive amount.
Degeneracy and problems:

I degeneracy may not cause problems
I degeneracy could give problems.

For instance a degenerate dictionary may be optimal:

η = 2 − 3x4 − x5

x1 = 1 + x4 + x5

x2 = 2 + 5x4 + x5

x3 = 0 − x5

No problem with this! And a similar remark holds for unbounded
problem.
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But: if a degenerate dictionary gives a degenerate pivot, we may
get into trouble. This means that the entering variable cannot be
increased, θ = 0. Example:

η = 2 + 3x4 − x5

x1 = 0 − x4 + x5

x2 = 2 + 5x4 + x5

x3 = 0 − x5

I We want to increase x4, but this cannot be done as x1 then
becomes negative.

I However, we can still make this degenerate pivot by taking x4
into the basis and x1 out of the basis. But the solution x is
still the same and therefore η is unchanged.

I So: we have done a pivot, but we have the same point
x ∈ IRn. Geometrically, there is no change, but algebraically
there is: we have a new basis.
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Do degenerate pivots cause problems?
Note necessarily. But if we have a number of denerate pivots and
return to the same basis, then this cycle of pivots would be
repeated infinitely many times. So the algorithm would get
trapped. This phenomenon is called cycling.
Comments on degeneracy and cycling:

I cycling is hardly any problem in practice. For LP problems in
practice one has hardly ever seen that cycling occuring.

I degeneracy arises frequently in practical LP problems. So,
several or even most of the pivots may be degenerate. But this
feature seems to be hard to avoid (after several attempts
duringf the development of LP).

I cycling may happen. The first such example was constructed
in 1953 by Alan Hoffman.
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Cycling, example
Let us use as pivot rule: choose as entering variable the nonbasic
variable with c̄j largest possible, and as leaving variable the one
with the smallest index.

Dictionary 0:

η = 0 10x1 − 57x2 − 9x3 − 24x4

w1 = 0 − 0.5x1 + 5.5x2 + 2.5x3 − 9x4

w2 = 0 − 0.5x1 + 1.5x2 + 0.5x3 − x4

w3 = 1 − x1

Dictionary 1:

η = 0 − 20w1 + 53x2 + 41x3 − 204x4

x1 = 0 − 2w1 + 11x2 + 5x3 − 18x4

w2 = 0 + w1 − 4x2 − 2x3 + 8x4

w3 = 1 + 2w1 − 11x2 − 5x3 + 18x4
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Dictionary 2:

η = 0 − 6.75w1 − 13.25w2 + 14.5x3 − 98x4

x1 = 0 + 0.75w1 − 2.75w2 − 0.5x3 + 4x4

x2 = 0 + 0.25w1 − 0.254w2 − 0.5x3 + 2x4

w3 = 1 − 0.75w1 − 13.25w2 + 0.5x3 − 4x4

Dictionary 3:

η = 0 + 15w1 − 93w2 − 29x1 + 18x4

x3 = 0 + 1.5w1 − 5.5w2 − 2x1 + 8x4

x2 = 0 − 0.5w1 + 2.5w2 + x1 − 2x4

w3 = 1 − x1
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Dictionary 4:

η = 0 + 10.5w1 − 70.5w2 − 20x1 − 9x2

x3 = 0 − 0.5w1 + 4.5w2 + 2x1 − 4x2

x4 = 0 − 0.25w1 + 1.25w2 + 0.5x1 − 0.5x2

w3 = 1 − x1

Dictionary 5:

η = 0 − 21x3 + 24w2 + 22x1 − 93x2

w1 = 0 − 2x3 + 9w2 + 4x1 − 8x2

x4 = 0 + 0.5x3 − w2 − 0.5x1 + 1.5x2

w3 = 1 − x1
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Dictionary 6:

η = 0 + 10x1 − 57x2 − 9x3 − 24x4

w1 = 0 − 0.5x1 + 5.5x2 + 2.5x3 − 9x4

w2 = 0 − 0.5x1 + 1.5x2 + 0.5x3 − x4

w3 = 1 − x1

We see that dictionary 6 is the same as dictionary 0. So we have
cycling!

Cycling is therefore a (theoretical) problem. However, cycling is in
fact the only problem that arises because we have the following
result ....
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An important theorem

Theorem 3.1. If the simplex method does not terminate, then it
must cycle.

Proof: How many dictionaries are there? An upper bound is(
m + n

n

)
= (m + n)!/(n!m!)

which is the number of ways of selecting m elements (the basic
variables) from n + m elements (all variables). (Remark: we here
use that the dictionary is determined by the basic variables (when
the equations are ordered e.g. according to the index of the basic
variables): this is most easy to verify when we have introduced the
matrix version of LP). If the simplex algorithm does not terminate,
then two of these dictionaries must occur twice, so we have
cycling.
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The lexicographic method

The lexicographic method (or the closely related perturbation
method) is a method to avoid cycling.

I The idea: perturb the right-hand sides to avoid degeneracy!
I If these perturbations are small enough, the problem will

change so little that we still obtain a correct optimal solution.

Example (with a degenerate basic solution):

η = 4 +2x1 − x2

w1 = 0.5 − x2

w2 = 0 −2x1 + 4x2

w3 = 0 x1 − 3x2
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We now introduce symbols (unspecified small numbers) where

0 < ε3 � ε2 � ε1 � all data

and the perturbed dictionary

η = 4 +2x1 − x2

w1 = 0.5 +ε1 − x2

w2 = 0 +ε2 −2x1 + 4x2

w3 = 0 +ε3 +x1 − 3x2

Not degenerate! Pivot: x1 in, and w2 out.
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Next:

η = 4 +ε2 +2w2 + 3x2

w1 = 0.5 +ε1 − x2

x1 = 0.5ε2 −0.5w2 + 2x2

w3 = 0.5ε2 +ε3 −0.5w2 − x2

and ...

η = 4 +2.5ε2 +3ε3 −2.5w2 −3w3

w1 = 0.5 +ε1 −0.5ε2 −ε3 +0.5w2 +w3

x1 = 1.5ε2 +2ε3 −1.5w2 −2w3

x2 = 0.5ε2 +ε3 −0.5w2 −w3

This dictionary is optimal.
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Now drop the perturbations to obtain

η = 4 −2.5w2 −3w3

w1 = 0.5 +0.5w2 +w3

x1 = 0 −1.5w2 −2w3

x2 = 0 −0.5w2 −w3

which gives an optimal solution of the original LP problem!

I The perturbations will only affect the constant terms, not the
coefficients of the variables. Why?

I Therefore the choice of entering variable is not affected. But
the leaving variable is uniquely determined in every iteration.
(see below).
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Another important theorem!

Theorem 3.2. The simplex method will always terminate whenever
the leaving variable is selected using the lexicographic method.

Proof: It is enough to show that we never get a degenerate
dictionary. Consider the “constant part” which initially is:

ε1
. . .

εm

or I ε in matrix form (where I is the identity matrix, and ε is the
column vector with components being the εi ’s). During the pivots
a multiple of one row is added to other rows, and this corresponds
to multiplication from the left by certain nonsingular (i.e.,
invertible, in fact, elementary) matrices.
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By the start of an arbitrary pivot the constant part is

r11ε1 . . . rimεm
...

...
rm1ε1 . . . rmmεm

i.e., in matrix form Rε. Since R is nonsingular, it has no row equal
to the zero vector. Thus we do not get a degenerate
dictionary.
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Bland’s rule
In 1977 R. Bland published a new and simple pivot rule for the
simplex algorithm. Consider an LP problem with variables
(x1, x2, . . . , xn) (where some may be slack variables, this plays no
rule here).

Bland’s rule:
I If there are several candidates for entering variable, always

choose the one with smallest index (subscript).
I If there are several candidates for leaving variable, always

choose the one with smallest index.

For instance, in an iteration where c̄3, c̄5, c̄9 are positive, while
c̄j ≤ 0 for j 6= 3, 5, 9, Bland’s rule tells us to choose x3 as the
entering variable.
Note: Bland’s rule is applied to both entering and leaving variables.
This is in contrast to the lexicographic rule which only involved a
certain choice for the leaving variable.
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Theorem 3.3. The simplex method will always terminate whenever
the entering and leaving variable are selected using the Bland’s rule.

The proof is found in Vanderbei’s book (it is rather cryptical, but
all known proof for this result are, unfortunately.)

Some comments on pivot rules:

Bland’s rule:
I Strength: avoids cycling, easy to understand, easy to

implement.
I Weakness: one typically gets a small increase in the objective

function in each iteration, so many pivots and long
computational time.

Dantzig’s rule =largest coefficient rule (1951):
I Choose entering variable with c̄j largest possible, and leaving

variable with smallest index.
I This rule is often used in practice, and it works well (small

computational time).
I But it might, in theory, give cycling.
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There are other pivot rules, e.g.:

The steepest edge rule:

I Choose entering variable such that the angle between c and
the direction vector x1 − x0 is smallest possible. (Why is this
done?) Here x0 and x1 are old and new basic solution.

I This rule seems to be one of the best ones in practice (but
gives no guarantee against cycling).

Best improvement rule:

I Choose entering variable such that the improvement of the
objective function is largest possible.

I May seem clever, but takes too much time in each iteration.
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The fundamental theorem of LP

There are two theorems in LP that are more important than all
others; they are

I The fundamental theorem of LP, and
I The duality theorem.

We are ready for the first of these! (And duality is coming later.)

Theorem 3.3. For every LP problem the following is true:
I If there is no optimal solution, then the problem is either

nonfeasible or unbounded.
I If the problem is feasible, there exist a basic feasible solution.
I If the problem has an optimal solution, then there exist an

optimal basic solution.
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Proof: The Phase I problem determines if the original problem is
feasible, and if it is, it also finds a basic feasible solution. Then
Phase II determines if there is an optimal solution or if the problem
is unbounded. These are the only possibilities since the method
terminates due to the existence of anticycling rules.
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Geometry and degeneracy

I example: an Egyption pyramid!
I the slack variables “measure” distance to the hyperplane
I degeneracy type 1: redundant inequalities
I degeneracy type 2: P ⊂ IRn, a vertex is on more than n facets
I degenerate pivots: represents the same vertex x in different

ways (there may be several selctions of n linearly independent
hyperplanes through x)
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