LP. Lecture 5

Chapter 5: duality theory

» motivation
» the dual problem
» weak and strong duality

» the dual of LP problems in other forms
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Motivation

Associated to every LP problem (P) there is another “mirrored” LP
problem (D). Here (D) is called the dual problem of (P), and (P) is
called the primal problem. It turns out that the dual problem of

(D) is (P)! (Double mirroring!)
LP problems occur in couples: one primal and one dual problem.

The duality theory is useful because:

» the dual problem can be used to quickly give bounds of the
optimal value of an LP problem

» instead of solving an LP problem (P) one may solve the dual

(D). One will get a solution of (P) “for free"! This can be
more efficient.
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The dual problem

Consider the LP problem (P), the primal problem, given by

(P) max Y7, g

s.t.

Z}’Zla;jxj- < b; fori=1,...,
xi >0 forj=1,...

We define the dual problem (D) like this:

(D) min Y37, by

s.t.

Ef’;ly,-a;j ZCJ' forj=1,...
yi >0 fori=1,...

3/26



Rules to remember:

X1 ... Xn
yi| a1 ... 4din by
Ym|dml ... dmpn bm
ca oL Cn

Now, let A = [ajj] be the coefficient matrix.

Observe:

» (D): the variables are associated to the rows in A, while the
constraints are attached to the columns in A

» (P): reversed! Then: the variables are associated to the
columns in A, while the constraints are associated to the rows
in A

> bi-s make up the right-hand side in (P), but are included in
the objective function in (D)

> ¢j-s are a part of the objective function in (P), but constitute
the right-hand side in (D)
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> the constraints in (D) are >

» (D) is also a LP problem. We will soon rewrite it to its
“standard form".

We will first give an important result which is the motivation for
duality: any feasible solution of an LP problem is the source of a
bound of the optimal value in the dual.

Theorem 5.1: ( Weak duality) If (x,...,xy) is feasible in (P) and
(y1,---,Ym) Is feasible in (D) we have

Z cjxj < Z biy;.
j=1 i=1
Proof: From the constraints in (P) and (D) we have

ZCJXJ<ZZ}/13U Zylzaux_/<2)/l i

j=1 i=1 i=1 j=1
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Example 1:

(P) maximize 5x1+ 6xo+ 8x3
assuming that
x1+ 2x+ 3x3 <5bH
4x1+ bBxp+ 6x3 <11

X1, Xx2,x3 > 0.

(D) minimize S5y1+ 1lys
assuming that
it 4y 25
21+ 5y =6
31+ 6y> >3
yi,y2 > 0.
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We now see that, for instance, (y1,y2) = (1,1) is an feasible
solution in (D), and the corresponding value of the objective
function in (D) is 5+ 11 = 16. Then, the optimal value in (P) can
not be more than 16. On the other side (x1,x2, x3) = (0,0,5/3) is
feasible in (P) with corresponding value n = 40/3 ~ 13.33. So,
the optimal value n* in (P) must lie between 13.33 and 16.

How about x* = (x1, x2, x3) = (1/2,0,3/2) and

y* = (y1,52) = (1/3,7/6)7 We have that 37 ; ¢jx* = 29/2 and
S22 | by =29/2. But then it follows from weak duality that x* is
optimal in (P) and that y* is optimal in (D)!

Weak duality gives a principle for showing optimality, or
“almost-optimality”.
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Interpretation of (D): any feasible x in (P) satisfies > 7_; ajx; < b;
and therefore also a nonnegative linear combination of these:

(%) Z%‘(Z ai) <) yibi

i=1
Here y; is a nonnegative multiplier for inequality nr. /.

If we also choose the yj-s so that >_7"; yiaj > ¢; the left side in
(*) will be > 3°7; ¢jx;. Then we have an upper bound for the
optimal value, n* is (P), namely >, yibj- We would like to have
the best possible bound, which means lowest possible, and this
gives the problem

m m
min{Zy,-b; : Zy,-a,'j > ¢ for alle j, y; >0 for alle i}
i=1 i=1
which is the dual problem!
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Strong duality
Natural question: Weak duality implies that optimal value in (P)
< optimal value in (D). Can we have a strict inequality here? The
answer is, among other things, important for testing of optimality.
The answer is: no, except in very special situations. We have:

Theorem 5.2: ( Strong duality) If (P) has an optimal solution
x* = (x{,...,xp), then (D) has an optimal solution

y*=(yf,...,yy) so that

ZCJ beyw

O

Consequence: (P) and (D) have the same optimal value when (P)
has an optimal solution.

Will later discuss the situation where (P), and sometimes (D), is
unbounded, or if neither (P) or (D) is feasible (this can happen, but

not for “interesting problems”).
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Strong duality can be proved short via the simplex algorithm,
especially in matrix notation. But to increase understanding we will
stick to component notation and study closer what happens in (P)
and (D) during a simplex pivot.

Pivot, primal and dual
Example: m =2, n = 3. Introducing slack variables z; in (D) and
writing also (D) as a problem of maximization. In dictionary form:

n = 0 4+ 43 + x2 + 3x3
P) w =1 x1 — 4x
wo = 3 — 3x3 + X — X3
£ = 0 - yn - 3
2= =4 + yn + 3n
o - ’
7 = + 4y ¥2
zz = -3 +
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Note the “ negative-transpose property” on the right side:

0 4 1 3 0 -1 -3
1f1f40H_413
3 -3 1 -1 -1 4 -l

-3 0 1

Pivoting now in (P): x3 into basis and ws out of basis. Do
corresponding pivot in (D): x3 corresponds to z3 and w»

corresponds to y». So, in (D) y» goes into basis and z3 out of basis.

Note: the pivot is carried out in the regular way (switching roles +
row operations) even though we “accidentally” don't have an
feasible basis solution in (D). Result:
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n = 9 — bxy + 4xo — 3w
(P) w1 1 — X1 — 4X2
x3 = 3 — 3x1 + Xy — Wo
£ = -9 - »n - 3z
z] = 5 + v+ 323
(D) _ B
z = 4 4+ 4y z3
Y2 = 3 + =3

Observe again that the negative-transpose property holds. In
particular we see that the value of the primal solution equals the
value of the dual solution. But the dual solution is not feasible.

New pivot: in (P): x2 in and w; out. Corresponding pivot in (D):

y1 in and z, out. Result:
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n = 10 — 6x1 — wi — 3w

(P) x = 025 — 025%x — 0.25wg
x3 = 325 — 325xq — 025w3 — w»
—£& = —-10 — 025z — 3.25z
71 = 6 + 025z + 3.25z3
(D) i = 1 + 025z + 0.25z
2 = 3 + z3

Can now see that:

» the negative transpose property still holds
» optimal solution in (P), and therefore:
» for the first time the dual basis solution is feasible
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Lemma PIV: (Pivot in (P) and (D)) Assume that every pivot is
done in both (P) and (D) so that if x; replaces w; in the primal
basis, y; will replace z; in the dual basis. Then the

negative-transpose property will hold in each iteration.

Exercise: prove Lemma PIV by checking the following:

b a
c:/ c
—b —d
—a —c

pivot
—

pivot
—

“b/a 1/a
ARG
b/a —d + bc/a
—1./a ~c/a
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Proof of strong duality:

From Lemma PIV it follows that in every iteration k we have a
primal basis solution x¥ and a dual basis solution y* with the same
value of the corresponding objective functions, which means that:

n m

k k
E ,CJXJ = § biyj*.
j=1 i=1

The primal simplex algorithm terminates with an feasible basis
variable x* and this happens when all the coefficients in front of the
nonbasic variables in (P) are nonpositive.

But by Lemma PIV this means that the corresponding dual basis
solution y* is feasible (the basis variables are nonnegative). As
wished: D7, ¢ix = >, by U
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Complementary slack
Shall study an optimality condition in LP; called complementary
slack. Assume that x = (x1,...,x,) is a feasible solution in (P)
and that y = (y1,...,ym) is a feasible solution in (D). (Whether
they are basic solutions or not is of no importance now.)

Question: what is required for x to be optimal in (P) and
y optimal in (D)7

Analysis: Since (P) and (D) have the same optimal value
(consequence of strong duality) we see that: x and y are both
optimal (according to (P) and (D)) if and only if

n m
> a =3 .
Jj=1 i=1

But, from the constraints we get that (as in the proof for weak
duality)

ZCJXJ<ZZ}’13UXJ ZYIZQUXJ<ZYI ji-

j=1 i=1 i=1 j=1 16 /26



So (*) holds if and only if

> Y, yiaj = ¢ if x; >0, and

> > g aix = biif y; > 0.
These two conditions are called complementary slack.
We have therefore shown the following result:

Theorem 5.3:  (Complementary slack) Assume that

x = (x1,...,Xn) is a feasible solution in (P) and that
y = (y1,.-.,Ym) Is a feasible solution in (D). Let (w1,...,wn) be
the corresponding primal slack variables, and (zi, ..., z,) be the

corresponding dual slack variables.
Then x is optimal in (P) and y is optimal in (D) if and only if

xjizi=0 forj=1,...,n,

wiyi=0 fori=1,...,m.
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Complementary slack therefore says: if there is slack in an
inequality (the slack variably is positive) in one of the problems, the
corresponding dual variable has to be zero.

Complementary slack is therefore an optimality property. Note that
these conditions are nonlinear equations:

Xj;/ =0 (j f; n).

This is the nonlinearity of linear optimization !! This makes LP
more difficult to solve that linear equations. But this nonlinearity is
still fairly simple, which may explain why LP problems can be
solved so efficiently.

By the way: in interior point methods for LP, one uses Newton's
method for solving a modified set of equations which consists of
the original equations from (P) and (D) (where the slack variables
are introduced), in addition to complementary slack).
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“Schemes” for LP algorithms.

About algorithms for LP.
From Theorem 5.3 we can see that solving an LP problem consists
of fulfilling three properties at once

» 1. primal feasibility,
» 2. dual feasibility, and

» 3. complementary slack.

One gets different algorithms by making sure that two of these
properties hold in each iteration, while one strides for the third one
to hold as well; then the problem is solved.

» The algorithm we have studied fulfills 1 and 3 and aims at 2; it
is often called the primal simplex algorithm.
» Another possibility is to fulfill 1 and 2 and aim at 3; this

results in so called primal-dual algorithms. (Both simplex and
“non-simplex” algorithms).
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The dual simplex algorithm:

» Fulfills properties 2 and 3, and aims at 1.

» Often used if it is easy to find a dual feasible initial solution,
because then one does not have to do the Phase | problem (in
primal simplex). Used for ‘reoptimization” have solved a
problem and will solve a new problem where we have added
e.g. another constraint

» May be used for Phase 1: just insert another objective
function so that initial dictionary is dual feasible!!

» Also used often if a problem has more constraints than
variables; this reduces the number of pivots and is faster.

» corresponds to using the primal simplex algorithm on the dual
problem, and this can be uses to perform the algorithm
directly in the primal dictionary. Based on that the initial
solution is dual feasible (coefficients in front of nonbasic
variables are nonpositive).

» See section 6.6 and 6.7 for further details.
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The dual simplex algorithm: example

n = 12 — 4x X — X3
x2 = —4 + 3x 11, + x3

1. dual pivot: x4 leaves and x3 enters (as +x3 and 1/1 < 4/3).

n 8 — x 120 — xy
X3 = 4 — 3x3 4+ 1lxo 4+ xa
xs = —5 4+ bx 19 — 2xa
2. dual pivot: x5 leaves and x; enters (as +x1).
n =7 — 02x — 158x — ldxa
x3 = 1 — 06xs — 04x — 0.2x
x1 = 1 4+ 02x5 4+ 3.8x + 0.4xy

Dual feasible, so go on with primal pivots: done right away!
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Duality, other forms
Our standard form of (P) and (D) is:

(P)

D ST
subject to

Zf:l aijXj

Xj

min S biyi
subject to

2ot Yidjj

Yi

In matrix form:
(P) max{c’x : Ax < b, x > O}
(D)  min{bTy: ATy >c, y > O}.

fori=1,...,m
forj=1,...,n
forj=1,...,m
fori=1,...,m.
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One may meet LP problems in other forms. But: every LP problem
may be rewritten in the form (P). To do so, certain techniques are
needed:

» each equations is written as two inequalities

» minf = — max(—f)

> a free variable x is replaced by x™ — x~ where x*,x~ >0

One may then (if desirable) find the dual problem (since the primal
now has the “right” form) and write this in the simplest form
possible.
It is important to practise the techniques to

» write any LP problem on the form (P), and

» find the dual of any LP problem.

It is recommended to use the matrix form in this rewriting of the
problem.
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We then need to work on partitioned matrices, see section on this
in the linear algebra book (MAT1120). In particular, we need a rule
for matrix multiplication:

Al A xP] [ Apaxt + Apax?
Axi Axn x2 | 7| Anxt 4 Apx?

Another useful rule is for the transpose of a partitioned matrix:

.
[An A12] [ AL AL

Axi Ax N [ AL, AL ]
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Example:

max{cx! + dTx?: Alx? > bt, A%x! 4+ A3x2 < b?, X, x%* > O}

Here the variables are x* og x? (suitable vectors). We may write
this in the form (P):

mod[ ][5 ][ B][ 5] <[ 5] ez

Then the dual may be determined and, finally, one sees if the dual
may be simplified.

This, and related, examples are given on the blackboard. (For
instance, where a variable vector x is free (that is, no sign
constraint) and is replaces by x’ — x” where x’, x"” > 0O.)
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Last comment on this, a connection between the primal and the
dual:

» an equation in one of the problems corresponds to a free
variable in the other problem,

» an inequality in one of the problems corresponds to a
nonnegative variable in the other problem.
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