LP. Lecture 8: Chapter 13: Network flow problems, cont.

We continue our study of (MCF): the minimum cost network flow
problem.

» We now have an algorithm for calculating the tree solution x
for a given spanning tree T.
» Will explain why spanning trees correspond to LP bases.

» Will also study how the other calculations of a pivot can be
done.
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Let A be the incidence matrix of the directed graph D = (V, E).
We have the following result:

Proposition. Assume that D is connected (our standing

assumption). Then
rank (A)=n—1

where n = |V/|.

Proof: Since the sum of all the row vectors is the zero vector, the
rows in A are linearly dependent. So, if one of the rows is removed
the resulting (n — 1) x m matrix A will have full row rank: the
reason is that the submatrix B of A consisting of the columns that
correspond to a spanning tree will be nonsingular. Actually, such a
matrix B will, after appropriate permutations of rows and columns,
be triangular and have only &1 on the diagonal. And then the
determinant must be +1 so B is nonsingular. U
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Exercise:
1. Check this property with B for a suitably small graph.

2. Prove the property in general.

Consider again the matrix A above, and let r be the node that
corresponds to the row we deleted in A; one often calls r the root
node (for the spanning trees). Let b arise from the supply/demand
vector b by deleting the component corresponding to the root node
r. The original flow balance equations Ax = —b are equivalent to

Ax = —b

because we have deleted a redundant equation. (The deleted row in
A'is a linear combination of the rows in A and because ) b, =0
b, is a corresponding linear combination of the other b, 's.)
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With this rewriting the (MCF) problem becomes

min cTx

subj.to

Ax = —b
x> 0.

and the coefficient matrix A has full rowrank. We are now “in LP
business’! Let N =n—1, so Ais a N x m matrix, and here m > N

because D is connected.

Recall that a basis in A is a non singular N x N submatrix of A:
so, this kind of matrix corresponds to N selected columns or edges
of the graph and B are a basis just when these edges constitute a
spanning tree.

4/19



Theorem 13.1 An N x N square submatrix B of A is a basis if and
only if the columns in B correspond to a spanning tree in D.

Proof: If the columns correspond to a spanning tree, we can as
mentioned permute into a triangular matrix with =1 on the
diagonal; this occurs by arranging nodes and edges according to a
successive elimination of leaves in the tree. If the columns do not
corresponding to a spanning tree, these edges must contain a cycle
(because there are n — 1 edges), and the corresponding columns in
A are linearly dependent (the sum of the rows in the matrix is the
zero vector). U

So: there is a one-to-one correspondence between the spanning
trees in the graph and LP bases (in A).
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We also note from the proof that:

» the structure of each basis B (i.e., is triangular with =1 on the
diagonal) means that the linear equations with B or BT as
coefficient matrix are simple to solve by using backwards
substitution and without multiplication or division. Will soon
look at the details of this.

This is the main reason why (MCF) problems can be solved very
efficiently by the simplex algorithm.

Example: Look at the graph below and the spanning tree T (thick
lines) where the numbers denote the numbering of the nodes and
the edges (r is the root node) based on leaf elimination.

! 3
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The corresponding basis B (with rows and columns numbered as
mentioned) becomes

1 0 00
0 -1 00
B= -1 1 -1 0
0 0 11

Will now take a closer look at the simplex algorithm for (MCF).
First, we partition A by
A=[B NI

where B is the basis that corresponds to a spanning tree T.
(Actually, it is a column permutation of A which equals the matrix
on the right side.) Then Ax = —b is equivalent to

Xg = B_l(—B) — B 'Nxy, xy free

where the variable vector x is partitioned into the basic variables xg
and the nonbasic variables xy.
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The corresponding basic solution is then given by

XB = B_l(—[)), XN = 0.

We have already found an algorithm that calculates xg for a given
spanning tree T (and the corresponding basis B):

Algorithm for calculating xg for a given T:

1. Choose a leaf of the spanning tree T which means a node is
incident to precisely one edge e in T.

2. Calculate x, for this edge e.

3. "Remove” e from T, and go back to step 1 above until all
the variables are determined.

But we also need to calculate all the dual variables associated with
the basis B. How do we do that?
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Remember that the dual problem is

max —> ey buyy
subj.to
W —Yut2Zu = Cuw ((Uv V) € E)
zy >0 ((u,v) € E).

We will now find the dual variables like this:

» Let y, = 0. Actually, we have no dual variable for the root
node r because it has been deleted. But since we have only
differences of the dual variables in the equations above, y, + A
will also satisfy the equations if y, satisfies them. Thereby, we
can “normalize” in such a way that this works with y, = 0.
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» By complimentary slack z,, = 0 for every (u,v) € E(T)
(alternatively: every z,, = 0 is a nonbasic variable in the
dual). So from the equations in the dual we have that
Cuv = Vv — Yu + Zuv = ¥v — Yu Which means that

Yv = Yu = Cuy ((uv V) € E(T))

By starting at the root node r and working our way through
T by leaf elimination we can use the equations to calculate the
yy's one by one.
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3. The primal network simplex algorithm

We will start with a spanning tree T where the corresponding tree
solution xg is feasible, which means that xg > O. We will explain
how to find such a tree later.

The algorithm can be summed up like this:

» Check optimality by calculating the dual variables y and z and
checking if z > O.

» If not optimal: perform a pivot. This is done by choosing an
edge (u, v) where z,, < 0 (which means a negative reduced
cost), and finding a new spanning tree T’ by adding e and
removing a certain other edge (so that 7’ becomes a spanning
tree). Update the tree solution x.
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Comments:

» The calculation of both x and y is done by “leaf elimination”
by using the triangularity like we have seen. The calculation of
each z,, is done directly from the corresponding equation in
the dual problem:

Zyy = Cuv + Yu — Yv-

» So for each edge (u, v) outside the tree we perform this
(simple) calculation. (This is still the most time consuming
part for very large problems in graphs with many edges.)

We will take a closer look at the method through a small example.

12/19



Example. The following figure shows the graph. Let w be the root
node.
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1. iteration: We choose a spanning tree (thick lines in the next
figure) and compute x (also denoted) that is feasible.

IS

After this y is computed:

14 /19



Based on y and the original costs ¢ we find z (we will denote these
only for edges outside T; in the tree z,, = 0):

The solution is not optimal, e.g. zp, = —8 < 0. We now choose to
take this variable into the basis. So this edge is going into the tree.

How much can we increase zp,,? If we let z,, = ¢, we find that the
basic variables get the values x,,, =5 —¢€, x,y =3 —€, x;p =1+ €.
Here we have used the equations that express the basic variables as
a function of the nonbasic variables.
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We can see that the maximal value of € is 3; because a larger value
would give a nonfeasible primal basic solution. For € = 3 the new
values of the basic variables will be x,,, = 2, x,y, =0, x,p = 4. As
expected, one of the basic variables becomes 0, namely x,,, so we
update the basis by replacing x,, with xp,, in the basis. This gives
us the new spanning tree and a corresponding tree solution as
denoted in the next figure:

We have completed iteration 1.
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2. iteration: Computing y:

Computing z:

The solution is not optimal because z,, < 0.
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We now add the edge (v, p) to the tree and get a cycle. Then, we
send a flow of € in this cycle in the direction of (v, p). The result is
that the maximal € is 2 and then the flow in (v, w) will equal 0. So
the tree is updated by (v, w) is replaced by (v, p). The updated
tree solution x is:
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3. iteration: So, once again we compute y and z which become
(shown in the same figure):

5

Now z > O, so the solution is optimal (both the primal and the
dual solution).

Problem solved!

In the next lecture we will summarize the method and make some
concluding comments.
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