
LP. Lecture 9: Chapter 13: Network flow problems,
continued.2

Let’s do the last part about (MCF): the minimum cost network
flow problem.

I Will sum up the algorithm.
I Look at a few details.
I Some combinatorial applications.

1 / 17



The primal network simplex algorithm
Summary of the algorithm: We start with a spanning tree T where
the corresponding tree solution xB is feasible, which means that
xB ≥ O.

I Check optimality by calculating the dual variables y and z and
check if z ≥ O.

I If not optimal: do a pivot. This means choosing an edge (u, v)
where zuv < 0, and finding a new spanning tree T ′ by adding
e and removing a certain other edge (so that T ′ becomes a
spanning tree). Update the tree solution x .

The calculation of both x and y is done through “leaf elimination”
by using the triangularity like we have seen. The calculation of each
zuv is made directly from the corresponding equation in the dual
problem:

zuv = cuv + yu − yv .

2 / 17



Efficient updating of the variables in a pivot

Updating of x : We don’t need to start all over again when a new
x is to be calculated. The reason is that x only changes for certain
edges. The new edge e (the ingoing basic variable) belongs to a
cycle C in the graph. The change of x becomes

I Let the ingoing variable be equal to some number ε (which is
going to be determined).

I For each edge f ∈ C with the same direction as e in the cycle
(“forward edges”), xf will be increased by ε. In the edges in C
that have the opposite direction (“backward edges”) the flow
will be reduced by ε. The flow in edges outside the cycle C
remains the same.

I ε is chosen as the minimum of the flow in the backward edges.

3 / 17



Updating the spanning tree T : The ingoing edge e replaces a
backward edge f in the cycle which has now gotten the value
xf = 0. This gives us a new spanning tree T ′.

Comments:

1. There may be several backward edges that obtain the flow
value 0; we then have a degenerate solution after the pivot. If
one does not use a specific pivoting rule, one of these edges is
simply chosen randomly as the outgoing variable.

2. Degeneration often occurs in (MCF) problems. Some claim
that about 70-80% of the pivots tend to be degenerate! But,
luckily, cycling is not considered a practical problem. Further,
there is a pivoting rule (via so called strongly allowed spanning
trees) that avoids cycling (and that in practice often reduces
the number of pivots).

4 / 17



3. If the cycle C does not have any backward edges the problem
is unbounded. So: we can by sending a suitable flow around in
this cycle get the total cost to approach −∞. (This usually
does not happen i practical problems.)

4. As mentioned one often has upper bounds on x in (MCF)
problems:

0 ≤ xuv ≤ auv ((u, v) ∈ E ).

The algorithm can easily be adapted to this more general
situation. Briefly, the changes are the following: Each xe
where e 6∈ T (non basic variables) either has the value 0 or the
upper bound ae . When determining the maximal ε we also
have to make sure that no forward edges receive a larger flow
than their capacity. The nonbasic variables that are on their
upper bound, can only be reduced, so the test of optimality
must be extended in accordance to this. This means that such
a variable can be taken into basis if the corresponding
z-component is positive (while for nonbasic variables on their
lower bound 0 they are candidates when z is negative there).

5 / 17



Updating of y : Assume that we are going to add e and remove f
from our spanning tree T . T \ {f } consists of two (sub)trees
Tr and T ′ where Tr contains the root node r . Then the following
applies for the update of the dual variables y :

I If the new edge e goes from Tr to T ′, all the dual variables in
T ′ are increased by the same size ∆ (equal to the value of the
dual slack variable ze , so δ < 0). The variables in Tr remain
unchanged.

I If the new edge e goes from T ′ to Tr , all the dual variables in
T ′ are reduced by ∆. The variables in Tr remain unchanged.

6 / 17



Updating of z : The following applies:

I There is no alteration of zuv if u and v lie in the same of the
two subtrees Tr and T ′ (because yu and yv are altered by the
same size).

I For edges between the two subtrees and that have the same
direction as the ingoing edge e, z will be reduced by (the
original) value ze , while those that go in the opposite direction
will be increased by ze .

How to find an initial feasible solution?

So far, we have just assumed that we have an initial feasible
solution, which means that we have a spanning tree so that the
corresponding tree solution is nonnegative. Sometimes, one is lucky
and observes such a solution directly, but usually it takes more work.

7 / 17



I There are several techniques for finding a initial feasible
solution. One possibility is to use the dual simplex algorithm,
adapted to the structure in the (MCF). We will explain this
method next.

I We remark that another possibility is to reformulate the
problem as a maximum flow problem: this is a basic network
problem for which very fast algorithms have been developed.

8 / 17



The dual simplex algorithm for finding an initial feasible
solution:

Step 1. Look at the (MCF) problem with a modified cost function,
namely where c = O. Then, every spanning tree is dual
feasible, so we choose a (random) spanning tree T . The basis
is dual feasible, and if we’re lucky it will also be primal
feasible. In such a case, the job is done and we simply use T
as the initial solution for our (MCF) algorithm with the
original cost function c . On the other hand, if x has negative
components, we go to step 2.

9 / 17



Step 2. Choose an edge e = (u, v) with xe < 0. We now make a pivot
where e leaves basis. The reason is that we then have flow 0
in e (since the variable becomes nonbasic). The question is:
which variable should go into basis. Look at the two subtrees
Tr and T ′ which occur if e is removed from T (Tr contains
the root node r). To get another spanning tree we have to
choose an edge f that connects the two trees (have an end
node in each tree). It is clear that f must go the in the
opposite direction of e (otherwise, an increase of xf would
result in a lower xe and we want to increase xe). But there
may be several such edges!

10 / 17



Step 2. (cont.) We then choose f with (the dual slack) zf as small as
possible among the edges between the two subtrees and with
the opposite direction of e. The reason for this choice is that
after the pivot we will have a new solution that is also dual
feasible. So, all the candidate edges have their z-values
reduced with the same size; we saw this earlier in connection
to the update of the z-variable in a pivot. In this way, the
outgoing edge e and the ingoing edge f is determined and we
implement the pivot and update the variables as in the usual
(MCF) algorithm. We repeat these pivots until x is
nonnegative. (This is possible if the problem really has an
feasible flow.)

We now leave algorithms and take a look at an interesting
application of the theory in the area of combinatorics.

11 / 17



Application: combinatorics

We call a vector integral if all the components are integers. Here is
the result:

Theorem Consider the (MCF) problem

min{cT x : Ax = −b, x ≥ O}

where b is an integer, and assume that there is an optimal solution.
Then, there exists an optimal solution x which is an integer.

Proof: In each iteration the tree solution x is computed by leaf
elimination. The first variable computed will then equal ±bv which
is an integer. Each of the next variables become a sum of certain
integers (a certain bv and ± other already computed flows that are
integral). Therefore x is integral.

12 / 17



Comments:

I As explained in the proof all the flows x computed during the
algorithm are integral, not just the optimal solution.

I If c is integral, there is an optimal dual solution (y , z) which is
integral. (This can be sees directly from the algorithms for
computing y and afterwards z .)

I The theorem above is also valid when we have integral
capacities on x , so 0 ≤ xe ≤ ae (e ∈ E ) where each a is
integral. So, in this situation there is also an integral optimal
solution x .

13 / 17



This theorem has many applications in combinatorics (discrete
mathematics). Let us have a look at such an application.

Consider the digraph

Let bv = 1 for each of the three nodes to the left and bv = −1 for
the three others. Furthermore, we have certain costs for the edges,
but we don’t have to worry about those now.

14 / 17



I Since b is integral, there is an optimal flow x which is also
integral (and we know how to find it).

I But based on the values in b we see that x must have exactly
three components that equal 1, while the rest is 0.

I Further, the three edges where xe = 1 are disjoint, which
means that they have no endnodes in common. Such an set of
edges (in an undireced graph) is called a perfect matching,
see the edges with boldface lines in the figure.

I In this example there are 3! = 6 different perfect matchings
and they all correspond to allowed solutions in the (MCS)
problem.

I But then it follows that the solution we found actually is a
optimal perfect matching, ie. a perfect matching with
minimum total cost.

15 / 17



I This problem is, naturally, called the minimum cost (weight)
perfect matching problem in a bipartite graph (which is the
graph we get if we ignore the direction of the edges; it is
bipartite because each edge has an end node in each of the
two nodesets (left and right)).

I In general we have n nodes to the left and n nodes to the
right. The number of perfect matchings is then n!, which
even for a moderate n is a gigantic number. So the method
finds an optimal perfect matching in a problem where direct
enumeration of all the possibilities is impossible. This is
important!

I A practical application of perfect matching is when assigning
jobs to people, computers or something else. Assume that
each person can do exactly one job and that each job should
be done by one person. The problem is then to find such an
allocation of jobs with the lowest possible cost: this is called
the assignment problem. There are also other variants of the
simplex algorithm (also theoretically efficient) for this problem.

16 / 17



Other special cases of (MCF) that are important in many
connections are

I the shortest path problem.
I the maximum flow problem.
I the transportation problem. This generalizes the bipartite

perfect matching by general supply/demand b which is
negative “to the left” and positive “to the right”; this may be
given a transportation interpretation (find min. cost
transportation plan from supplies to customers)! And this is a
basic problem within application in transportation
optimization.

Again, there are efficient combinatorial algorithms; more about
these things in the fall course INF-MAT 5360 Mathematical
optimization. There, you will also learn more about the
mathematics that constitute the basis for
analyzing/understanding/solving these problems.

You are invited there!
17 / 17


