The shortest path problem (section 15.3) We study a basic combinatorial problem. But first: ▶ A (directed) walk in a directed graph D = (V, E) is a sequence $$P = (v_0, e_1, v_1, e_2, \dots, e_k, v_k)$$ where $k \ge 0$, $v_i \in V$ $(0 \le i \le k)$ and $e_i = (v_{i-1}, v_i)$ $(i \le k)$. We say that P goes from v_0 to v_k , and call P a v_0v_k -walk. - ▶ A (directed) path is walk P where v_0, v_1, \ldots, v_k are distinct; it is called a v_0v_k -path. - ▶ The difference is that a walk may contain cycles. The shortest path problem: given a directed graph D = (V, E) with a nonnegative number (length, weight) c_{ij} for each edge (i, j), and two nodes s and r, find a shortest path P from s to r. Here the length of a path is the sum of the c_{ij} 's for its edges. - ▶ The problem has immediate applications in most types of networks, for instance, road networks (shortest route to drive), flight networks,, or in dynamic optimization problems that arise e.g. in economics/finance. - ► The shortest path problem is also a <u>subproblem</u> in many different, more complicated problems. - ▶ Often we wish to find a shortest path between several node-pairs. Several algorithms actually find a shortest path from the initial node *s* to all other nodes, so we may use such an algorithm from each initial node. Example: dynamic programming (dynamical systems with sequencial decisions): this important example will be given at the end! #### Network flow formulation The shortest path problem is a special case of the minimum cost network flow problem: $$\min\{c^Tx: Ax = -b, \ x \ge 0\}.$$ - ▶ Here A is the node-edge incidence matrix of the graph, c is the cost vector (the edge lengths), and $b = (b_v : v \in V)$ is the vector given by $b_s = 1$, $b_r = -1$ and $b_v = 0$ otherwise. - This approach works because there is an integer optimal solution, and the edges with positive flow must contain a path from s to r: x_{ij} = 1 for all edges in the path, and x_{ij} = 0 otherwise. (If there are edges with zero length, one may get cycles in addition to the path.) - ▶ So one may solve the shortest path problem as a min. cost network flow problem using the network simplex algorithm. - ► However, simpler and faster algorithms also exist! We shall discuss two such methods. ## The Bellman-Ford algorithm ▶ For $v \in V$ og $k \ge 0$ (integer), we define $d_k(v)$ as the minimum length of an sv-walk with at most k edges. If there is no such walk, define $d_k(v) = \infty$. How can we compute these these distance functions? The Bellman-Ford's algorithm: let $d_0(s) = 0$ and $d_0(v) = \infty$ for each $v \neq s$. Compute the functions d_1, d_2, \ldots, d_n by $$d_{k+1}(v) = \min\{d_k(v), \min_{u:(u,v)\in E} (d_k(u) + c_{uv})\}$$ (1) for all $v \in V$. Theorem: The Bellman-Ford algorithm finds the correct distances, i.e., $d_k(v)$ becomes the minimum length of an sv-walk with at most k edges. In particular, $d_{n-1}(v)$ is the length of a shortest sv-path (here n is the number of nodes in the graph). Proof: A shortest sv-path with at most k+1 edges has either (i) at most k edges or (ii) it has k+1 edges and contains an edge (u,v) as its final edge. But in case (ii) the subpath to u must be a shortest su-path with at most k edges (for otherwise we could find another shorter su-path and thereby improve the sv-path). - ▶ The equation (1) for computing d_{k+1} based on d_k is called Bellman's equation. It is also used in similar problems called (discrete) dynamic programmering or optimal control (continuous version); the equation is then called the Hamilton-Jacobi-Bellman (HJB) equation. - ▶ The BF-algorithm has complexity (number of arithmetic computations) O(nm) where the graph has n nodes and m edges. - ▶ The algorithm has another important property: it can also be used if there are negative lengths on the edges. The BF algorithm will then decide if there exists a cycle reachable from s with total length which is negative; then $d_n(v) < d_{n-1}(v)$. If this does not happen, the BF algorithm finds a shortest sv-path. # Dijkstra's algorithm - ► This is also an algorithm for the shortest path problem. - ► It only works for nonnegative edge lengths (which is most common in applications!) - ▶ Dijkstra's algorithm is faster than the Bellman-Ford algorithm. - Note: our description is slightly different than the one in the book: we start at s and move forward along edges while Vanderbei goes backwards! - ▶ A usual *n* is the number of nodes. - ▶ The algorithm performs n iterations, in each iteration one node is added to a certain set \mathcal{F} and certain computations are done. At the start $\mathcal{F} = \emptyset$. - ▶ One has a value (a label) d_i , for each node i: d_i is an upper bound on the (shortest) distance from s to i. Initially: $d_s = 0$, and $d_i = \infty$ otherwise. \mathcal{F} consist of the nodes to which one already has found a shortest path, for these nodes d_i is equal to the distance from s to i. - In each iteration: - 1. choose an $i \notin \mathcal{F}$ with d_i smallest possible ("a closest node"), and update $\mathcal{F} := \mathcal{F} \cup \{i\}$. - 2. for each edge $(i,j) \in E$ where $j \notin \mathcal{F}$, set $$d_i = \min\{d_i, d_i + c_{ii}\}$$ and, if d_i was reduced, set a pointer prev(i) = i. ▶ This means that, at the start of each iteration, d(v) is equal to the length of a shortest sv-path that only uses nodes in \mathcal{F} . We have (without giving the proof, which is a rather simple induction proof, by the way): Theorem: Dijkstra's algorithm finds a shortest path, and corresponding distances d_v , from s to each node v. The complexity is $O(n^2)$. Example: use Dijkstra (and Bellman-Ford) here: ### Application: Dynamic programming In dynamic programming (DP) one has a discrete dynamic process which one wants to control best possible by a decision at each discrete time step t_i ($i \le m$). The process is described by functions f_i where $$s_{i+1} = f_i(s_i, x_i) \quad (i \le m)$$ (2) and s_i is the state at time t_i and x_i is a variable called the *control* at time t_i . We assume that everything here is discrete (actually finite), so the control $x_i \in \mathcal{X}$ and the state $s_i \in \mathcal{S}$ where \mathcal{X} and \mathcal{S} are finite sets. Further, $f_i: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$. There are also given *cost functions* $g_i(s_i, x_i)$ giving the "cost" by choosing the control x_i at state s_i in time t_i ($i \leq m$). The problem in DP is to find a *control* x_1, x_2, \ldots, x_m that minimizes the total cost $$\sum_{i=1}^m g_i(s_i,x_i)$$ subject to the constraints (2) and $s_i = s^*$, $s_{m+1} = s^{**}$ where s^* og s^{**} are the given initial and terminal state of the system. Construct a directed graph D with nodes (t_i, s_j) for each time t_i $(i \le m)$ and each state $s_j \in \mathcal{S}$. Furthermore, introduce an edge from (t_i, s_j) to (t_{i+1}, s_k) if there is a control x_i such that $s_k = f_i(s_i, x_i)$, and let this edge have cost equal to $g_i(s_i, x_i)$ (the smallest such cost, if there are several controls that give this state). Note that the graph D gets nodes as in a grid, where edges are directed "towards the right" bewteen nodes (t_i, \cdot) and nodes (t_{i+1}, \cdot) . Therefore D has no directed cycle. We can solve DP by finding a shortest path in D from the node (s^*, t_1) to the node (s^{**}, t_{m+1}) !!! - ▶ This is simple and powerful!! Still, DP is a very general model, with lots of application in science, engineering and economics. So such problems may be solved using e.g. The Bellman-Ford algorithm as described above, very efficiently. (Well, at least is the number of states is "reasonable"). - A variant with variable terminal state can also be treated in a similar way. - ► There are more complicated extensions of DP: stochastic state transitions, continuous time etc. This requires more sophisticated methods.