
Compulsory project 1 in

MAT-INF3100 Linear optimization, Spring 2015:

Nonnegative vectors and mathematical finance

• NOTE. Send the project by Thursday February 19 at 15:00 to Torkel
Haufmann (torkelah@math.uio.no) in a single PDF file that you name
“username.pdf” (your username!). Moreover, you should read the general
information about compulsory projects at the course web page.

In this project we study nonnegative vectors in certain subspaces and how
linear optimization plays a role for such questions. Moreover we shall relate these
questions to some important problems in mathematical finance. No background
in finance/economics is needed.

1 Nonnegative vectors and column spaces

A vector y is called nonnegative, written y ≥ O (where O is the zero vector),
when yi ≥ 0 for each i ≤ n. Let IRn

+ be the set of nonnegative vectors in IRn.

Let A ∈ IRm×n be a real m×n matrix and let its columns be a1, a2, . . . , an.
Recall (from linear algebra) that the column space of A is

Col(A) = {Ay : y ∈ IRn}

which is the same as the set of all linear combinations of the columns a1, a2, . . . , an.
This is a subspace of IRm.

Consider now the linear transformation

T (x) = Ax.

Assume we have a “system” which takes a vector x ∈ IRn as input, and then
produces the output y = T (x) = Ax ∈ IRm. The goal is to study some questions
concerning such a system; in particular when it produces nonnegative output.
Moreover we shall relate these questions to mathematical finance.

The first questions are basic linear algebra. This gives you a chance, which
you should not miss (!), to recall some linear algebra!

• Question 1: Assume that m = n and that A is invertible. Show that any
nonnegative output vector y can be produced. Actually, for any y ∈ IRm

+

there exists a unique x ∈ IRn such that y = T (x). Moreover, give a formula
for this x.
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• Answer: If A is invertible, let y ∈ Rm
+ . Then if x = A−1y, we have

y = Ax as desired. That this is unique is known from linear algebra, but
we can note that if there exist x1, x2 such that Ax1 = Ax2 = y, then
A(x1−x2) = y−y = 0, and if x1−x2 6= 0 this contradicts the invertibility
of A.

• Question 2: Assume that m ≤ n and that rank(A) = m. Show that for
any y ∈ IRm

+ there exists an x ∈ IRn such that y = T (x). How can you
find such an x?

• Answer: As rank(A) = m, A has m linearly independent columns and
Col(A) = Rm. Hence for any y ∈ Rm

+ there is an x so y = Ax, but in
general this x is not unique. Such an x may be obtained by standard
methods for solving systems of linear equations.

So we now know a large class of matrices that contain an arbitrary nonneg-
ative vector in its column space. We shall study what happens when rank(A) <
m.

• Question 3: Find an 2×2 matrix A such that the only nonnegative vector
in Col(A) is the zero vector. Then, consider the matrix

A =

 1 −1
−2 3
−1 −2

 .
Find the columnspace of A and verify that O is its only nonnegative vector.
Finally, modify a32 into another number (different from −2) such that the
columnspace of the new A contains a nonzero, nonnegative vector y, and
find such a vector y.

• Answer: First, consider the matrix[
1 1
− 1 −1

]
.

The column space of this matrix is spanned by [1,−1]T , and it is clear that
any nonzero vector in this subspace has at least one negative element.

For the second part, Col(A) is spanned by the columns of A:

Col(A) = Span


 1
− 2
−1

 ,
 −1

3
− 2

 .

Now, if y ∈ Col(A) there exist x1, x2 such that

y =

 x1 − x2
− 2x1 + 3x2
− x1 − 2x2

 .
We split into three cases.

(i) If x1 = x2, y =
[
0, x1,−3x1

]T
, which has a negative and a positive

component if x1 6= 0, or is O if x1 = 0.
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(ii) If x1 > x2, the first component of y is positive. We will see that one
of the other two is negative. Note that −x1 + x2 < 0, so −2x1 + 3x2 =
−2x1 +2x2 +x2 < x2. If x2 < 0 we’re done. If not, x2 ≥ 0 implies x1 > 0,
so −x1 − 2x2 < 0 and we’re done.

(iii) If x2 > x1 the first component of y is negative, and we’re done.

Finally, consider the matrix obtained by modifying a32 to be 2. Then 1 −1
− 2 3
− 1 2

[1
1

]
=

0
1
1

 .
2 Why are these questions of interest?

Consider the situation above, with input vector x and output vector y, so
y = Ax. Assume that x is an investment vector with one component for each
investment possibility (at time t0), say in n different assets (Norwegian: verdi-
papir, f.eks. aksje). xj is the number of units we buy of asset j. Usually, xj ≥ 0.
However, xj < 0 is permitted; for instance, xj = −1 means borrowing one asset
(of asset j) at time t0 and the value of this at time t1 has to be paid back
then. This means that you earn money if the value of the asset goes down (i.e.,
aij < 0 for state ωi). The value of each asset after one time step (say a month),
i.e., at time t1, is unknown, so any model must capture this uncertainty. Let
ω1, ω2, . . . , ωm be possible “states of the world” at time t1 and

• let aij be the value of asset j under state ωi at time t1 minus the value of
asset j at time t0, i.e., the net profit.

These numbers may be organized into an m×n matrix A = [aij ]. The num-
bers in column j of A give the net profit for asset j in the different states. Typ-
ically, this column contains both positive and negative numbers (and perhaps
zeros): we may win or we may lose depending on the economic development.
Note here that the matrix A completely specifies the random outcomes (so aij
is not a random variable). However, the value (at time t1) of asset j is a random
variable with possible realizations a1j , a2j , . . . , amj . We do not here specify the
probability of each of the m states ωi, but this is also used in financial modeling.

So, with this interpretation and when y = Ax, it means that y is the “net
profit vector” under different states for the given investment vector x. (The
vector x is usually called a trading strategy in mathematical finance).

It should be clear that finding an x such that the net profit y = Ax is
nonnegative (and nonzero) is an interesting task! If we succeed, it means that
we do not lose money in any state, and, in at least one state, we gain money.
This possibility, if it exists, is called an arbitrage.

By the way, note the beauty of this model: the financial market is simply
specified by a matrix A; great!

• At this point, you might say: “This was interesting, but where is linear
programming?”

OK, see the next section!
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3 Connection to LP

Let A be an m× n matrix. Consider the LP problem

max
∑m

i=1 yi

subject to

y = Ax

y ≥ O.

(1)

The variable vector here is (x, y) where x = (x1, x2, . . . , xn) and y = (y1, y2,
. . . , ym) (viewed as column vectors). Note that we have nonnegativity con-
straints only on y.

• Question 4: Show that the LP problem (1) is either unbounded or has
an optimal solution with optimal value 0.

• Answer: By the Fundamental Theorem of LP (Theorem 3.4 in Vander-
bei), the problem either has an optimal solution or is infeasible or un-
bounded. (x, y) = (0, 0) is always feasible in (1) with objective value 0, so
the problem is always feasible.

Now, if there exists a solution with greater objective value than 0, there
is a pair (x, y) such that y = Ax, y ≥ 0 and eT y > 0, then for any λ > 0
we have λy ≥ 0, λy = Aλx and eT (λy) = λ(eT y). By increasing λ we
obtain arbitrarily large solution values in (1), and hence the problem is
unbounded. The conclusion follows.

• Question 5: Consider the LP problem (1) where A represents a financial
market. Show that the optimal value in (1) is zero if and only if the market
has no arbitrage.

• Answer: If there is a solution (x, y) to (1) where y 6= 0, this y is an
arbitrage by definition, so this is possibly only if the market A has an
arbitrage. On the other hand, if the market has no arbitrage, then any
vector y = Ax with y ≥ 0 has to satisfy y = 0. Then the optimal objective
function value in (1) has to be 0.

• Question/task 6: Use OPL-CPLEX to implement the model (1). Write
both a mod-file and a dat-file. Run your program on the matrix A in
Question 3. Make a couple of other matrices and report your computa-
tions. Find an example where changing a single entry in the matrix makes
all the difference when it comes to existence of arbitrage.

• Answer: The code is located in the appendix, along with DAT files
for the example market in Q3. OPL reports an optimal solution with
objective value 0 when there is no arbitrage, and an unbounded problem
when there is none.

Reasonable other matrices would involve a larger selection of assets and
states. As a small example, we consider the following matrix:

A =


− 1 3 5

1 −2 10
− 2 1 −7

2 −3 −8

 .
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Here there is no arbitrage, but changing a23 to −10 causes there to be.

4 A theorem in mathematical finance

It is a natural, and interesting, question to “explain” when an arbitrage possi-
bility exists. One may argue that in any “natural market” it should not exist.
Mathematically one therefore seeks a characterization of this existence question.
We briefly discuss this.

Let again A be the matrix of a financial market. A risk-neutral probability
measure is a vector z with positive components that sum to 1 such that the
dot product of z and each column of A is zero. Mathematically, this means
that zTA = O, i.e., that z ∈ Nul(A)T (here Nul denotes the null space). Such
a z may be viewed as a probability distribution on the set of possible states
ω1, ω2, . . . , ωm. Then z is a risk-neutral probability measure precicely when the
expected payoff of each asset is zero.

Here is a basic theorem in mathematical finance:

Theorem 1 (Arbitrage theorem) The market A has no arbitrage if and only
if there is a risk-neutral probability measure z.

This theorem may be proved using LP theory. Actually, it involves LP
duality theory which we shall present later in the course. Here we only take a
brief look at this. Recall first that

• sup(K) is the smallest upper bound of a set K of real numbers; if the set
is unbounded above we write sup(K) =∞,

• inf(K) is the largest lower bound of K; if K = ∅ we write inf(K) =∞.

Define the two sets

S = {(x, y) ∈ IRn × IRm : y = Ax, y ≥ O}
T = {(z, w) ∈ IRm × IRm : AT z = O, z = w + e, w ≥ O}

where e denotes an all ones vector, e = (1, 1, . . . , 1) (again identified with the
corresponding column vector).

From LP duality theory it follows that

sup {
∑
i

yi : (x, y) ∈ S} = inf {0 : (z, w) ∈ T}. (2)

Later you will learn how to derive this, so here you may just accept it! The
infimum on the right-hand side may look a bit stange: it is the infimum of the
constant function 0 (of (z, w)) over the set T . If T is empty, this infimum is ∞,
otherwise it is 0.

• Question 7: Prove Theorem 1 using (2).

• Answer: Assume there is a z ∈ T . Define z′ = (1/eT z)z. Then eT z′ = 1,
and (z′)TA = O (as zTA = O), so z′ is a risk-neutral probability measure.
If we have a risk-neutral probability measure z′, let ε be the smallest
component of z′ (Recall z′ > 0). Then define z = (1/ε)z′. Now z ≥ e,
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and as (z′)TA = O we have zTA = O. In other words, z ∈ T . So T is
non-empty if and only if there is a risk-neutral probability measure for the
market A.

The supremum in (2) is the optimal value of the LP (1), so by Q5 we
know that this is 0 if and only if there is no arbitrage (and ∞ otherwise).
Then T is non-empty if and only if there is no arbitrage, and so there is a
risk-neutral probability measure if and only if there is no arbitrage.

Good luck!

References

[1] G. Dahl. An Introduction to Convexity. Lecture notes, University of Oslo,
2014 (may be downloaded from course webpage).

[2] S.R. Pliska. Introduction to Mathematical Finance: Discrete Time Models.
Blackwell Publishers, 1997.

[3] R. Vanderbei. Linear programming: foundations and extensions. Springer,
Third edition, 2008.

6



OPL-CPLEX code

Model

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ∗ OPL 12.5 Model
3 ∗ Author : t o r k e l a h
4 ∗ Creation Date : 27 . jan . 2015 at 11 .35 .16
5 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
6

7 int m = . . . ;
8 int n = . . . ;
9

10 range s t a t e s = 1 . . n ;
11 range a s s e t s = 1 . .m;
12

13 f loat A[ s t a t e s ] [ a s s e t s ] = . . . ;
14

15 dvar f loat+ y [ s t a t e s ] ;
16 dvar f loat x [ a s s e t s ] ;
17

18 maximize sum( i in s t a t e s ) y [ i ] ;
19

20 subject to {
21 f o ra l l ( i in s t a t e s )
22 y [ i ] == sum( j in a s s e t s ) A[ i ] [ j ] ∗ x [ j ] ;
23 }

Q3 Data file

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ∗ OPL 12.5 Data
3 ∗ Author : t o r k e l a h
4 ∗ Creation Date : 27 . jan . 2015 at 11 .38 .03
5 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
6

7 n = 3 ;
8 m = 2 ;
9

10 A = [ [ 1 , −1] , [−2 ,3 ] , [−1 ,−2] ] ;
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Q3 No arbitrage

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ∗ OPL 12.5 Data
3 ∗ Author : t o r k e l a h
4 ∗ Creation Date : 27 . jan . 2015 at 11 .39 .35
5 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
6

7 n = 3 ;
8 m = 2 ;
9

10 A = [ [ 1 , −1 ] , [ −2 ,3 ] , [ −1 ,2 ] ] ;

Other example

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ∗ OPL 12.5 Data
3 ∗ Author : t o r k e l a h
4 ∗ Creation Date : 30 . jan . 2015 at 10 .47 .05
5 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
6

7 n = 4 ;
8 m = 3 ;
9

10 A = [[−1 , 3 , 5 ] ,
11 [ 1 , −2, 1 0 ] ,
12 [−2 , 1 , −7] ,
13 [ 2 , −3, −8 ] ] ;
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