LP. Lesson 7. Chapter 13: Network flow problems

Will study mathematical models for flows in networks. This has
applications of the type

» physical networks: internet, roads, railroads, airplanes,
telecommunication, computer networks

» logical networks: many possibilities, f.ex. economical
investments, optimal allocation of jobs for computers

Note: we shall look at linear algebraic models, not nonlinear
models or differential equations.

The models we will look are are special cases of linear programming
(LP).
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1. The network flow problem

To present the models we need to introduce the term directed
graph.
» A directed graph is an ordered pair D = (V, E) where ....

» V is a finite set; the elements are called nodes (or vertices,
points)

» E is a finite set which consists of certain ordered pairs of
nodes; these elements are called edges (or lines or arcs)

We can represent any directed graph by a drawing in the plane.
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Example:
V ={u,v,w,p}, E={(u,v),(u,w),(v,w),(w,p)}.

When e = (u, v) we say that u is a initial node for the edge e,
while v is an terminal node for e. And u and v are called the end
nodes of e.

We imagine a flow in a directed graph by picturing that goods
(materials, data, oil, water,...) flow along every edge in the
direction that the edges shows (from the initial node to the
terminal node).

3/19



We assume that in each node there is a certain supply or demand
for goods, the supply in node v is denoted by b, .

» b, > 0: v is the supply node

» b, < 0: v is the demand node

» b, = 0: v is the transshipment node
For a flow to exist we must have that ) .\ b, = 0 since the

network does not receive or send goods to the rest of the world.
Now let

> x,, be the amount of goods that flows along the edge (u, v)
(from u to v along the edge).

We usually have a constraint saying that the flow x,, in each edge
(u, v) should be nonnegative and not above a certain given
capacity a,y, so

0<xyw <aw ((uv)eE).
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We assume that there are costs for shipping goods and that this
cost is linear. For each edge (u, v) there is a given cost c,, so that
the cost for sending x,, along this edge is c,,x,,. The total cost is
then

We require that the flow x = (x,, : (v, v) € E) fulfills the following
equations called flow balance

Z Xyy — Z Xyw =—b, (veV).

u:(u,v)€EE w:(v,w)eE

The first sum equals the total inflow to node v while the other
sum is the total outflow from node v. The left-hand side is then
the net flow into v and this should equal —b,. The minus in front
of by is caused by the definition of b, in front. (We here follow the
notation of Vanderbei.)
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By multiplying the equation for v by —1 it says that outflow minus
inflow equals b, ; this might be easier to remember. But the form
above will be used further on (and affects the dual).

We now have all the ingredients in the model and can write the
minimum cost network flow problem (MCF):

min Z(u,v)EE CuvXuvy
s.t.

Zu:(u,v)EEXUV - ZWZ(V,W)EEX\/vW =—by (V € V)
0 < xy < au ((u,v) € E).

So, this is an LP problem. But it is an LP problem with a special
structure!!

Our further work is mainly about understanding this structure
better. This will also lead to an efficient method for solving the
problem based on a special version of the simplex method.
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We will simplify the presentation a bit by assuming that the
capacities are infinite so that we don't have to consider these
bounds. However, it is possible to treat the general case with a
small modification of the method presented under (quickly
described later).

It is practical to write the problem in matrix form. Let n = |V/]|
and m = |E|. We introduce column vectors x, ¢ and b that
correspond to flow, (unity)costs and supply/demand. We have here
chosen an ordering of V and E, and x and c¢ have length m while b
has length n. Further on we let O signify the zero vector (here of
length m). (MCF) the problem is then on matrix form

min c'x
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The matrix A is a n X m matrix which is chosen so that Ax = —b
represents the equations for flow balance. This means that A has a
column for each edge (u, v) and this column has a component 1 in
row v (which means the row that corresponds to node v), —1 in
row u and apart from that, all the components are 0.

If we instead consider the rows in A, there is one row for each node
v. And row v contains a 1 for each edge which has v as terminal
node and —1 for each edge that has v as initial node; the rest of
the components are 0. We therefore observe that Ax = —b really
corresponds to the flow balance equations.

The matrix A represents the graph D = (V, E) and is called (node
edge) the incidence matrix of the graph.
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Duality.

As usual when one has an LP problem it is a good idea to look at
the dual problem. We will see that it has a very interesting
structure.

By using known techniques one can write the (MCF) in standard
form max{h"x : Wx > gq,x > O} and find the dual problem which
is

max —bTy
s.t.
Aly+z=c
z> 0.

Here the vector y has a component for each node and the vector z
has a component for each edge.

On component form this dual problem becomes (Dual-MCF) the
following
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max — > vev buny
s.t.

Yo—Yu+zZw =cuw ((u,v)€E)
Zyy >0 ((ua V) € E)

So:

» Two types of dual variables.
» The node variable y, is tied to the balance equation for the
node v.
> y, is free, while the edge variable z,, is nonnegative.
» Note that the equation determines z,, uniquely when y is
given.
From the last observation we can see that the (Dual-MCF) is
equivalent to the LP problem

— min Z byy, st v <yu+cuw ((u,v) € E).
veVv
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» Here we have eliminated the z,,-variables (they are not a part
of the objective function and each of these variables are only a
part of one equation).

> If y fulfils these constraints, y is called an feasible potential.
A vy like this is related to the distances in the graph: if we
think of c,, as the length of the edge (u,v), and let y, be the
distance from a certain node r to node v (defined as the
length of a shortest path from r to v), then y will be an
feasible potential. More about potentials later.

We will now apply the general LP theory to the (MCF). We know
that

» we have the optimal solution precisely when we have a feasible
primal solution and an feasible dual solution and these
together fulfil the complimentary slack demands..
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For the (MCF) the complimentary slack conditions become

XuvZyy = 0 ((U, V) € E)

Or equivalently:

> if y, < yu + cuv (which means that z,, > 0), then x,, = 0.

This plays a central part for the algorithm we'll look at later on!
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2. Spanning trees and bases

(MCF) can be solved far more efficiently than general LP problems
because the bases in the problem have a special structure. This is
caused by the structure of the node edge incidence matrix which is
the coefficient matrix. We'll take a closer look at this:

First, we need some graph terms.

Path: a sequence vi, va, ..., v where (vj, viy1) or (vit1,v;) belongs
to E (is a edge in the graph) for all /. We say that the path is
between v; and v; (the end nodes of the path). Here is an example
of a path with 3 edges (and thereby 4 nodes):

e
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We will from now on assume that the graph is connected, which
means that there is a path between each pair of nodes.

Cycle: like a path apart from that the end nodes coincide, f.ex.

Subgraph: new derived graph D' = (V’, E’) where V' C V and
E' C E and where each edge in E’ has both end nodes in V',

Tree: a connected graph T which does not contain any cycle.
(Then the number of edges of T = the number of nodes —1).
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Spanning tree: a connected subgraph T = (V/, E’) where T doesn’t
contain a cycle; note that T contains all the nodes in V (a
spanning subgraph). Here is an example of a graph and a spanning
tree (denoted by thick edges):

The important thing for us now is that

1. Spanning trees correspond to LP bases.

2. Calculations of corresponding basic solutions can be done by
simple operations in the spanning tree.

3. The pivot corresponds to a simple modification of the
spanning tree (into a new spanning tree).
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We should mention that the number of spanning tree can be very
high (it depends on the graph), men we still get an efficient method
(because only some of the spanning trees are "visited").

Let us first study how to calculate the flow x for a given spanning
tree T in the graph.

We shall calculate the corresponding so called tree solution x.

» We require that there is no flow outside the tree, which means
that xe = 0 for all e ¢ E(T) (here E(T) denotes the edges of
the spanning tree T).

» It turns out that this is enough to determine all the variables
of the edges in the tree uniquely! So, each x, for e € E(T)
then becomes uniquely determined.

» Note that this is the same phenomenon we know from general
LP: when the nonbasic variables are chosen, the basic variables
are uniquely determined.
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We will illustrate the principle through the following example:

u: —b_u=-2 v: —=b_v=-6

w: —b_w=

p: —b_p=5 q:-b_g=-1

x = 0 outside T: X,y = Xgp = Xwg =0
Balance in u, outflow-inflow=b, gives x,, = 2.
Balance in w gives x,, = 4.

Balance in g gives xq, = 1.

AE I A

Balance in v gives x,p =6 +1—4 =3.

(In node 4 we could alternatively have used the balance in node p.)
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The important part was that by choosing a clever ordering of the
x-variables, the calculations became simple: in each case the new
variable x. was determined by an equation where only x. was
unknown. F.ex. in step 5 above x,, was determined simply because
we knew all the other variables for the neighboring edges of node v.

Algorithm for calculation of x for a given T:
1. Choose a leaf in the spanning tree T that is a node that is
next to exactly one edge e in T.
2. Calculate x, for this edge e.

3. "Remove” e from T, and go back to step 1 above until all the
variables are determined.
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It is obvious that this procedure works. Here, we use that any tree
has at least one leaf (actually at least two), why?

So:

» We have a simple and efficient algorithm for calculating the
tree solution x for a spanning tree T.

Our next project is to explain
» why spanning trees correspond to LP basics and

» how the other calculations of a pivot can be done.

These questions will be answered during the next lecture.
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