
The shortest path problem (section 15.3)

We study a basic combinatorial problem. But first:

I A (directed) walk in a directed graph D = (V ,E ) is a
sequence

P = (v0, e1, v1, e2, . . . , ek , vk)

where k ≥ 0, vi ∈ V (0 ≤ i ≤ k) and ei = (vi−1, vi ) (i ≤ k).
We say that P goes from v0 to vk , and call P a v0vk -walk.

I A (directed) path is walk P where v0, v1, . . . , vk are distinct;
it is called a v0vk -path.

I The difference is that a walk may contain cycles.

The shortest path problem: given a directed graph D = (V ,E )
with a nonnegative number (length, weight) cij for each edge (i , j),
and two nodes s and r , find a shortest path P from s to r . Here
the length of a path is the sum of the cij ’s for its edges.
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I The problem has immediate applications in most types of
networks, for instance, road networks (shortest route to drive),
flight networks, ...., or in dynamic optimization problems that
arise e.g. in economics/finance.

I The shortest path problem is also a subproblem in many
different, more complicated problems.

I Often we wish to find a shortest path between several
node-pairs. Several algorithms actually find a shortest path
from the initial node s to all other nodes, so we may use such
an algorithm from each initial node.

Example: dynamic programming (dynamical systems with
sequencial decisions): this important example will be given at the
end!
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Network flow formulation
The shortest path problem is a special case of the minimum cost
network flow problem:

min{cT x : Ax = −b, x ≥ O}.

I Here A is the node-edge incidence matrix of the graph, c is the
cost vector (the edge lengths), and b = (bv : v ∈ V ) is the
vector given by bs = 1, br = −1 and bv = 0 otherwise.

I This approach works because there is an integer optimal
solution, and the edges with positive flow must contain a path
from s to r : xij = 1 for all edges in the path, and xij = 0
otherwise. (If there are edges with zero length, one may get
cycles in addition to the path.)

I So one may solve the shortest path problem as a min. cost
network flow problem using the network simplex algorithm.

I However, simpler and faster algorithms also exist! We shall
discuss two such methods.
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The Bellman-Ford algorithm

I For v ∈ V og k ≥ 0 (integer), we define dk(v) as the
minimum length of an sv -walk with at most k edges. If there
is no such walk, define dk(v) =∞.

How can we compute these these distance functions?

The Bellman-Ford’s algorithm: let d0(s) = 0 and d0(v) =∞ for
each v 6= s. Compute the functions d1, d2, . . . , dn by

dk+1(v) = min{dk(v), min
u:(u,v)∈E

(dk(u) + cuv )} (1)

for all v ∈ V .

Theorem: The Bellman-Ford algorithm finds the correct distances,
i.e., dk(v) becomes the minimum length of an sv-walk with at
most k edges. In particular, dn−1(v) is the length of a shortest
sv-path (here n is the number of nodes in the graph).
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Proof: A shortest sv -path with at most k + 1 edges has either (i)
at most k edges or (ii) it has k + 1 edges and contains an edge
(u, v) as its final edge. But in case (ii) the subpath to u must be a
shortest su-path with at most k edges (for otherwise we could find
another shorter su-path and thereby improve the sv -path).

I The equation (1) for computing dk+1 based on dk is called
Bellman’s equation. It is also used in similar problems called
(discrete) dynamic programmering or optimal control
(continuous version); the equation is then called the
Hamilton-Jacobi-Bellman (HJB) equation.

I The BF-algorithm has complexity (number of arithmetic
computations) O(nm) where the graph has n nodes and m
edges.

I The algorithm has another important property: it can also be
used if there are negative lengths on the edges. The BF
algorithm will then decide if there exists a cycle reachable from
s with total length which is negative; then dn(v) < dn−1(v). If
this does not happen, the BF algorithm finds a shortest
sv -path.
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Dijkstra’s algorithm

I This is also an algorithm for the shortest path problem.
I It only works for nonnegative edge lengths (which is most

common in applications!)
I Dijkstra’s algorithm is faster than the Bellman-Ford algorithm.
I Note: our description is slightly different than the one in the

book: we start at s and move forward along edges while
Vanderbei goes backwards!

I A usual n is the number of nodes.
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I The algorithm performs n iterations, in each iteration one
node is added to a certain set F and certain computations are
done. At the start F = ∅.

I One has a value (a label) di , for each node i : di is an upper
bound on the (shortest) distance from s to i . Initially: ds = 0,
and di =∞ otherwise. F consist of the nodes to which one
already has found a shortest path, for these nodes di is equal
to the distance from s to i .

I In each iteration:
1. choose an i 6∈ F with di smallest possible (“a closest node”),

and update F := F ∪ {i}.
2. for each edge (i , j) ∈ E where j 6∈ F , set

dj = min{dj , di + cij}

and, if dj was reduced, set a pointer prev(j) = i .
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I This means that, at the start of each iteration, d(v) is equal
to the length of a shortest sv-path that only uses nodes in F .

We have (without giving the proof, which is a rather simple
induction proof, by the way):

Theorem: Dijkstra’s algorithm finds a shortest path, and
corresponding distances dv , from s to each node v. The complexity
is O(n2).

Example: use Dijkstra (and Bellman-Ford) here:

s

u v

1

3

5 2

7
r

8 / 10



Application: Dynamic programming

In dynamic programming (DP) one has a discrete dynamic process which
one wants to control best possible by a decision at each discrete time
step ti (i ≤ m). The process is described by functions fi where

si+1 = fi (si , xi ) (i ≤ m) (2)

and si is the state at time ti and xi is a variable called the control at time
ti . We assume that everything here is discrete (actually finite), so the
control xi ∈ X and the state si ∈ S where X and S are finite sets.
Further, fi : S × X → S. There are also given cost functions gi (si , xi )
giving the “cost” by choosing the control xi at state si in time ti (i ≤ m).
The problem in DP is to find a control x1, x2, . . . , xm that minimizes the
total cost

m∑
i=1

gi (si , xi )

subject to the constraints (2) and si = s∗, sm+1 = s∗∗ where s∗ og s∗∗

are the given initial and terminal state of the system.
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Construct a directed graph D with nodes (ti , sj) for each time ti (i ≤ m)
and each state sj ∈ S. Furthermore, introduce an edge from (ti , sj) to
(ti+1, sk) if there is a control xi such that sk = fi (si , xi ), and let this edge
have cost equal to gi (si , xi ) (the smallest such cost, if there are several
controls that give this state).

Note that the graph D gets nodes as in a grid, where edges are directed
“towards the right” bewteen nodes (ti , ·) and nodes (ti+1, ·). Therefore D
has no directed cycle.

We can solve DP by finding a shortest path in D from the node (s∗, t1)
to the node (s∗∗, tm+1) !!!

I This is simple and powerful!! Still, DP is a very general model, with
lots of application in science, engineering and economics. So such
problems may be solved using e.g. The Bellman-Ford algorithm as
described above, very efficiently. (Well, at least is the number of
states is “reasonable”).

I A variant with variable terminal state can also be treated in a
similar way.

I There are more complicated extensions of DP: stochastic state
transitions, continuous time etc. This requires more sophisticated
methods. 10 / 10


