
The shortest path problem (section 15.3)

We study a basic combinatorial problem. But first:

I A (directed) walk in a directed graph D = (V ,E) is a
sequence

P = (v0, e1, v1, e2, . . . , ek , vk)

where k ≥ 0, vi ∈ V (0 ≤ i ≤ k) and ei = (vi−1, vi) (i ≤ k).
We say that P goes from v0 to vk , and call P a v0vk -walk.

I A (directed) path is walk P where v0, v1, . . . , vk are distinct;
it is called a v0vk -path.

I The difference is that a walk may contain cycles.

The shortest path problem: given a directed graph D = (V ,E)
with a nonnegative number (length, weight) cij for each edge (i , j),
and two nodes s and r , find a shortest path P from s to r . Here
the length of a path is the sum of the cij ’s for its edges.

1 / 10

I The problem has immediate applications in most types of
networks, for instance, road networks (shortest route to drive),
flight networks,, or in dynamic optimization problems that
arise e.g. in economics/finance.

I The shortest path problem is also a subproblem in many
different, more complicated problems.

I Often we wish to find a shortest path between several
node-pairs. Several algorithms actually find a shortest path
from the initial node s to all other nodes, so we may use such
an algorithm from each initial node.

Example: dynamic programming (dynamical systems with
sequencial decisions): this important example will be given at the
end!

2 / 10

Network flow formulation
The shortest path problem is a special case of the minimum cost
network flow problem:

min{cT x : Ax = −b, x ≥ O}.

I Here A is the node-edge incidence matrix of the graph, c is the
cost vector (the edge lengths), and b = (bv : v ∈ V) is the
vector given by bs = 1, br = −1 and bv = 0 otherwise.

I This approach works because there is an integer optimal
solution, and the edges with positive flow must contain a path
from s to r : xij = 1 for all edges in the path, and xij = 0
otherwise. (If there are edges with zero length, one may get
cycles in addition to the path.)

I So one may solve the shortest path problem as a min. cost
network flow problem using the network simplex algorithm.

I However, simpler and faster algorithms also exist! We shall
discuss two such methods.

3 / 10

The Bellman-Ford algorithm

I For v ∈ V og k ≥ 0 (integer), we define dk(v) as the
minimum length of an sv -walk with at most k edges. If there
is no such walk, define dk(v) =∞.

How can we compute these these distance functions?

The Bellman-Ford’s algorithm: let d0(s) = 0 and d0(v) =∞ for
each v 6= s. Compute the functions d1, d2, . . . , dn by

dk+1(v) = min{dk(v), min
u:(u,v)∈E

(dk(u) + cuv)} (1)

for all v ∈ V .

Theorem: The Bellman-Ford algorithm finds the correct distances,
i.e., dk(v) becomes the minimum length of an sv-walk with at
most k edges. In particular, dn−1(v) is the length of a shortest
sv-path (here n is the number of nodes in the graph).

4 / 10

Proof: A shortest sv -path with at most k + 1 edges has either (i)
at most k edges or (ii) it has k + 1 edges and contains an edge
(u, v) as its final edge. But in case (ii) the subpath to u must be a
shortest su-path with at most k edges (for otherwise we could find
another shorter su-path and thereby improve the sv -path).

I The equation (1) for computing dk+1 based on dk is called
Bellman’s equation. It is also used in similar problems called
(discrete) dynamic programmering or optimal control
(continuous version); the equation is then called the
Hamilton-Jacobi-Bellman (HJB) equation.

I The BF-algorithm has complexity (number of arithmetic
computations) O(nm) where the graph has n nodes and m
edges.

I The algorithm has another important property: it can also be
used if there are negative lengths on the edges. The BF
algorithm will then decide if there exists a cycle reachable from
s with total length which is negative; then dn(v) < dn−1(v). If
this does not happen, the BF algorithm finds a shortest
sv -path.

5 / 10

Dijkstra’s algorithm

I This is also an algorithm for the shortest path problem.
I It only works for nonnegative edge lengths (which is most

common in applications!)
I Dijkstra’s algorithm is faster than the Bellman-Ford algorithm.
I Note: our description is slightly different than the one in the

book: we start at s and move forward along edges while
Vanderbei goes backwards!

I A usual n is the number of nodes.

6 / 10

I The algorithm performs n iterations, in each iteration one
node is added to a certain set F and certain computations are
done. At the start F = ∅.

I One has a value (a label) di , for each node i : di is an upper
bound on the (shortest) distance from s to i . Initially: ds = 0,
and di =∞ otherwise. F consist of the nodes to which one
already has found a shortest path, for these nodes di is equal
to the distance from s to i .

I In each iteration:
1. choose an i 6∈ F with di smallest possible (“a closest node”),

and update F := F ∪ {i}.
2. for each edge (i , j) ∈ E where j 6∈ F , set

dj = min{dj , di + cij}

and, if dj was reduced, set a pointer prev(j) = i .

7 / 10

I This means that, at the start of each iteration, d(v) is equal
to the length of a shortest sv-path that only uses nodes in F .

We have (without giving the proof, which is a rather simple
induction proof, by the way):

Theorem: Dijkstra’s algorithm finds a shortest path, and
corresponding distances dv , from s to each node v. The complexity
is O(n2).

Example: use Dijkstra (and Bellman-Ford) here:

s

u v

1

3

5 2

7
r

8 / 10

Application: Dynamic programming

In dynamic programming (DP) one has a discrete dynamic process which
one wants to control best possible by a decision at each discrete time
step ti (i ≤ m). The process is described by functions fi where

si+1 = fi (si , xi) (i ≤ m) (2)

and si is the state at time ti and xi is a variable called the control at time
ti . We assume that everything here is discrete (actually finite), so the
control xi ∈ X and the state si ∈ S where X and S are finite sets.
Further, fi : S × X → S. There are also given cost functions gi (si , xi)
giving the “cost” by choosing the control xi at state si in time ti (i ≤ m).
The problem in DP is to find a control x1, x2, . . . , xm that minimizes the
total cost

m∑
i=1

gi (si , xi)

subject to the constraints (2) and si = s∗, sm+1 = s∗∗ where s∗ og s∗∗

are the given initial and terminal state of the system.

9 / 10

Construct a directed graph D with nodes (ti , sj) for each time ti (i ≤ m)
and each state sj ∈ S. Furthermore, introduce an edge from (ti , sj) to
(ti+1, sk) if there is a control xi such that sk = fi (si , xi), and let this edge
have cost equal to gi (si , xi) (the smallest such cost, if there are several
controls that give this state).

Note that the graph D gets nodes as in a grid, where edges are directed
“towards the right” bewteen nodes (ti , ·) and nodes (ti+1, ·). Therefore D
has no directed cycle.

We can solve DP by finding a shortest path in D from the node (s∗, t1)
to the node (s∗∗, tm+1) !!!

I This is simple and powerful!! Still, DP is a very general model, with
lots of application in science, engineering and economics. So such
problems may be solved using e.g. The Bellman-Ford algorithm as
described above, very efficiently. (Well, at least is the number of
states is “reasonable”).

I A variant with variable terminal state can also be treated in a
similar way.

I There are more complicated extensions of DP: stochastic state
transitions, continuous time etc. This requires more sophisticated
methods. 10 / 10

