UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in MAT-INF3600 — Mathematical logic.

Day of examination: Monday, December 7, 2009.

Examination hours: 9.00-12.00.

This problem set consists of 4 pages.

Appendices: None.

Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

Theorem (A). Let \mathcal{L} be a first-order language and let ϕ be an \mathcal{L} -formula such that the term t is substitutable for the variable x in ϕ . We have

$$T \vdash \phi \implies T \vdash \phi_t^x$$

for any \mathcal{L} -theory T.

a) Prove Theorem (A) by constructing a derivation of ϕ_t^x from a derivation of ϕ . Name the (logical) axioms and the inference rules involved in the derivation.

Let \circ be a binary function symbol, and let a, b and e be constant symbols. Let \mathcal{L}_{BS} be the first-order language $\{a, b, e, \circ\}$, and let B be the \mathcal{L}_{BS} -theory consisting of the following non-logical axioms:

B1
$$\forall x [x = e \circ x]$$

B2
$$\forall x [x = x \circ e]$$

B3
$$\forall xyz [x \circ (y \circ z) = (x \circ y) \circ z]$$

B4
$$\forall x [e \neq a \circ x \land e \neq b \circ x]$$

B5
$$\forall xy [x \neq y \rightarrow (a \circ x \neq a \circ y \land b \circ x \neq b \circ y)]$$

(Continued on page 2.)

Theorem (B). $B \vdash \forall x [e \circ x = x \circ e].$

b) Prove Theorem (**B**) by giving a *B*-derivation of $\forall x[e \circ x = x \circ e]$. Name the logical and the non-logical axioms involved in the derivation. You may refer to Theorem (**A**). Hint: You will need the logical axiom

$$x_1 = y_1 \land x_2 = y_2 \rightarrow (x_1 = x_2 \rightarrow y_1 = y_2)$$
 (E3)

c) Prove that

$$B \vdash \forall x y_1 \dots y_n \left[(y_n \circ (y_{n-1} \circ \dots (y_1 \circ e) \dots)) \circ x = (y_n \circ (y_{n-1} \circ \dots (y_1 \circ (x \circ e)) \dots)) \right]$$

for any $n \ge 0$. Hints: Use induction on n. The case n = 0 follows from Theorem (B).

We define the *prime terms* of the language \mathcal{L}_{BS} by

- \bullet e is a prime term
- $(a \circ t)$ is a prime term if t is a prime term
- $(b \circ t)$ is a prime term if t is a prime term.

Hence, e.g., $(a \circ (b \circ (b \circ e)))$ is a prime term whereas $((a \circ b) \circ (e \circ b))$ is not.

Theorem (C). For any variable-free \mathcal{L}_{BS} -term t there exists a prime term p such that $B \vdash t = p$.

d) Prove Theorem (C).

Problem 2

We will use some notation from Levis & Papadimitriou's textbook: Σ^* denotes the set of all strings over the alphabet Σ , and $|\alpha|$ denotes the length of the string α . We use ϵ to denote the empty string, and $\alpha \cdot \beta$ denotes the concatenation of the strings α and β . Occasionally, we will write $\alpha\beta$ in place of $\alpha \cdot \beta$. When convenient, we may also drop parenthesis and write e.g. $\alpha\beta\gamma$ in place of $(\alpha\beta)\gamma$.

We will now define the \mathcal{L}_{BS} -structure \mathfrak{B} . The universe of \mathfrak{B} is the set $\{0,1\}^*$, that is, the set of all bit sequences: $\epsilon,0,1,00,01,10,11,000,001,\ldots$ Furthermore,

- $e^{\mathfrak{B}} = \epsilon$ (the empty string)
- $a^{\mathfrak{B}} = 0$ (the string where the one and only bit is 0)
- $b^{\mathfrak{B}} = 1$ (the string where the one and only bit is 1)

(Continued on page 3.)

and $\circ^{\mathfrak{B}} = \cdot$ (the concatenation operator). Hence, we have e.g. that $\epsilon \circ^{\mathfrak{B}} 100 = 100 \circ^{\mathfrak{B}} \epsilon = 100$ and $101 \circ 1001 = 1011001$. It is obvious that \mathfrak{B} is a model for the theory B, that is, $\mathfrak{B} \models B$.

- a) Is B a consistent theory? Give a short answer, and justify the answer by referring to a theorem in Leary's textbook.
- b) Do we have $B \vdash a \neq b$? Do we have $B \vdash a = b$? Justify your answers.

We say that α is a substring of β iff there exists γ_1 and γ_2 such that $\gamma_1 \alpha \gamma_2 = \beta$.

c) Give an \mathcal{L}_{BS} -formula θ such that

$$\mathfrak{B} \models \theta[s[y|\alpha][x|\beta]] \Leftrightarrow \alpha \text{ is a substring of } \beta$$
.

Give an \mathcal{L}_{BS} -formula η such that

$$\mathfrak{B} \models \eta[s[x|\alpha]] \Leftrightarrow \alpha \in \{0\}^*$$
.

- d) Give an \mathcal{L}_{BS} -formula Add such that $\mathfrak{B} \models Add[s[x|\alpha]]$ holds if and only if
 - $-\alpha$ is of the form $\alpha \equiv 1\gamma_1 1\gamma_2 1\gamma_3 1$ where $\gamma_1, \gamma_2, \gamma_3 \in \{0\}^*$, and
 - $|\gamma_1| + |\gamma_2| = |\gamma_3|.$

(Hint: Use the formulas from Problem **b**.)

Theorem (D). There exist \mathcal{L}_{BS} -formulas Mul and Exp such that

- $\mathfrak{B} \models Mul[s[x|\alpha]]$ if and only if
 - α is of the form $\alpha \equiv 1\gamma_1 1\gamma_2 1\gamma_3 1$ where $\gamma_1, \gamma_2, \gamma_3 \in \{0\}^*$, and
 - $|\gamma_1| \times |\gamma_2| = |\gamma_3|$
- $\mathfrak{B} \models Exp[s[x|\alpha]]$ if and only if
 - α is of the form $\alpha \equiv 1\gamma_1 1\gamma_2 1\gamma_3 1$ where $\gamma_1, \gamma_2, \gamma_3 \in \{0\}^*$, and
 - $|\gamma_1|^{|\gamma_2|} = |\gamma_3|.$

The proof of Theorem (D) is involved, and you are *not* asked to prove this theorem.

Let \mathcal{L}_{NT} be the first-order language of number theory, that is, $\mathcal{L}_{NT} = \{0, S, +, \times, E, <\}$, and let \mathfrak{N} be the standard \mathcal{L}_{NT} -structure. Both \mathcal{L}_{NT} and \mathfrak{N} are known from Leary's textbook. Furthermore, let Σ be an alphabet containing all the symbols of the first-order languages \mathcal{L}_{NT} and \mathcal{L}_{BS} .

(Continued on page 4.)

e) Argue that there exists a recursive (Turing computable) function $f: \Sigma^* \to \Sigma^*$ such that for any \mathcal{L}_{NT} -sentence ϕ

$$\mathfrak{N} \models \phi \Leftrightarrow \mathfrak{B} \models f(\phi)$$
.

You may refer to Theorem (D).

Let

$$Th(\mathfrak{B}) = \{ \phi \mid \phi \text{ is an } \mathcal{L}_{BS}\text{-sentence and } \mathfrak{B} \models \phi \}$$

and

$$Pr(B) = \{ \phi \mid \phi \text{ is an } \mathcal{L}_{BS}\text{-sentence and } B \vdash \phi \}.$$

- f) Is the set $Th(\mathfrak{B})$ recursive (decidable)? Is the set $Th(\mathfrak{B})$ recursively enumerable (semi-decidable)? Is the set Pr(B) recursively enumerable (semi-decidable)? Justify your answers.
- g) Is the theory $B \cup \{a \neq b\}$ complete or incomplete? Justify your answer.

END