UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in: MAT-INF3600 — Mathematical logic.

Day of examination: Thursday, December 9, 2010.

Examination hours: 9.00-13.00.

This problem set consists of 3 pages.

Appendices: None.

Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

The following theorem is known from Leary's book.

Theorem (A). Let \mathcal{L} be a first-order language. For any \mathcal{L} -theory T, any variable x, and any \mathcal{L} -formula ϕ , we have

$$T \vdash \forall x \phi \Leftrightarrow T \vdash \phi$$
.

Problem 1

Prove Theorem (A).

Let 0 be a constant symbol, let \prime be a unary function symbol, and let < be a binary relation symbol. Let \mathcal{L} be the first-order language $\{0, \prime, <\}$, and let T be the \mathcal{L} -theory consisting of the following non-logical axioms:

(T1)
$$\forall x [\neg x < x]$$

$$\text{(T2)} \ \forall xyz \left[\, x < y \ \land \ y < z \ \rightarrow x < z \, \right]$$

(T3)
$$\forall xy [x < y \rightarrow x' < y']$$

Problem 2

Give a T-derivation of 0' < 0''. Name the logical and the non-logical axioms involved in the derivation.

(Continued on page 2.)

Problem 3

Give a T-derivation of $\forall xy[x < y \to \neg x = y]$. Name the logical and the non-logical axioms involved in the derivation. You may apply Theorem (A). [Hint: You will need the logical axiom $x = x \land x = y \to (x < y \to x < x)$ (E3).]

For $n \in \mathbb{N}$, we define the \mathcal{L} -term $0^{[n]}$ by $0^{[0]} \equiv 0$ and $0^{[m+1]} \equiv 0^{[m]'}$.

Problem 4

Prove that

$$m < n \Rightarrow T \vdash \neg 0^{[m]} = 0^{[n]}$$
.

[Hint: Use induction on n to prove that we have $T \vdash 0^{[i]} < 0^{[n+1]}$ for any $i \leq n$.]

Let T^- denote T without the axiom (T4), that is, T^- is the first-order theory consisting of the axioms (T1), (T2) and (T3).

Problem 5

Give a model ${\mathfrak A}$ for T^- such that the universe of ${\mathfrak A}$ contains exactly 17 elements.

Problem 6

Explain why (T4) is independent of the other axioms in T, that is, explain why $T^- \not\vdash (T4)$, and explain why $T^- \not\vdash \neg (T4)$.

We define the \mathcal{L} -structure \mathfrak{N} : The universe N is the set of natural numbers, that is, $\{0,1,2,\ldots\}$. The relation $<^{\mathfrak{N}}$ is the standard strict ordering of the natural numbers. The function $\prime^{\mathfrak{N}}$ is the successor function, that is, $n'^{\mathfrak{N}} = n + 1$ for any $n \in N$. Finally, $0^{\mathfrak{N}} = 0$.

Recall that an \mathcal{L} -structure \mathfrak{A} is elementary equivalent to an \mathcal{L} -structure \mathfrak{B} if, and only if, we have

$$\mathfrak{A} \models \phi \Leftrightarrow \mathfrak{B} \models \phi$$

for any \mathcal{L} -sentence ϕ .

Problem 7

Give a model \mathfrak{A} for T that is not elementary equivalent to \mathfrak{N} . Give an \mathcal{L} -sentence ϕ such that $\mathfrak{A} \models \phi$ and $\mathfrak{N} \models \neg \phi$.

Problem 8

Construct a countable model \mathfrak{A} for T that is elementary equivalent, but not isomorphic, to \mathfrak{N} . [Hint: Use the Compactness Theorem.]

Problem 9

Give a standard definition of the primitive recursive functions. You can e.g. give the definition from Lewis's & Padimitriou's book.

We define the bounded quantifiers in the standard way, that is $\forall x < y[\phi] \equiv \forall x[x < y \to \phi]$ and $\exists x < y[\phi] \equiv \exists x[x < y \land \phi]$. A Δ_0 -formula is an \mathcal{L} -formula where all quantifiers are bounded.

Theorem (B). For any Δ_0 -formula $\phi(x_1, \ldots, x_n)$, there exists a primitive recursive function f_{ϕ} such that

- $\mathfrak{N} \models \phi(0^{[a_1]}, \dots, 0^{[a_n]}) \Leftrightarrow f_{\phi}(a_1, \dots, a_n) = 0$
- $\mathfrak{N} \models \neg \phi(0^{[a_1]}, \dots, 0^{[a_n]}) \Leftrightarrow f_{\phi}(a_1, \dots, a_n) = 1.$

Problem 10

Prove Theorem (B). You can refer to well-known facts about the primitive recursive functions, e.g., to facts stated in Lewis's & Padimitriou's book.

Problem 11

Do you think Theorem (B) holds for \mathcal{L} -formulas in general, that is, is the theorem still true if we replace "any Δ_0 -formula $\phi(x_1, \ldots, x_n)$ " by "any \mathcal{L} -formula $\phi(x_1, \ldots, x_n)$ "? Answer short, but justify your answer.