UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in:	MAT-INF3600 — Mathematical logic.
Day of examination:	Monday, December 10, 2012.
Examination hours:	9:00-13:00.
This problem set consists of 3 pages.	
Appendices:	None.
Permitted aids:	None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Part I

Let \mathcal{L} be a countable first-order language.

Problem 1

What does it means that a set of \mathcal{L} -sentences is consistent?

Problem 2

State the Deduction Theorem for first-order logic.

Problem 3

Let Σ be a consistent set of \mathcal{L} -formulas, and let ϕ be an \mathcal{L} -sentence. Prove that a least one of the sets $\Sigma \cup \{\phi\}$ and $\Sigma \cup \{\neg\phi\}$ is consistent.

Problem 4

Let $\{\Sigma_i\}_{i\in\mathbb{N}}$ be an infinite sequence of consistent sets of \mathcal{L} -sentences such that $\Sigma_0 \subseteq \Sigma_1 \subseteq \Sigma_2 \subseteq \ldots$ Prove that the set $\bigcup_{i\in\mathbb{N}}\Sigma_i$ is consistent.

Problem 5

Show that any consistent set of \mathcal{L} -sentences can be extended to a maximal consistent set.

Part II

Let \mathcal{L} be the first-order language $\{c_0, S\}$ where S is a binary relation symbol and c_0 is a constant symbol. We will write the relation symbol in infix notation. Let T be the \mathcal{L} -theory consisting of the non-logical axioms

- $(A_1) \quad \forall x [\neg x S x]$
- $(A_2) \quad \forall x[\neg xSc_0]$
- $(A_3) \ \forall xyz[xSy \land xSz \ \rightarrow \ y=z]$
- $(A_4) \ \forall xyz[ySx \land zSx \ \rightarrow \ y=z]$
- $(A_5) \ \forall x [x \neq c_0 \ \rightarrow \ \exists y [ySx]].$

Problem 6

Give a model for T where the universe is $\{0, 1, 2, 3\}$.

Problem 7

Prove that $T \vdash xSy \rightarrow y \neq x$ by giving a T-derivation.

Let x_1, x_2, \ldots be variables. For $n \ge 1$, we define the formula ϕ_n by

- $\phi_1 \equiv c_0 S x_1$
- $\phi_{n+1} \equiv \phi_n \wedge x_n S x_{n+1}$.

Lemma (A). Let i, j, n be natural numbers such that $1 \le n$ and $i, j \le n$ and $i \ne j$. Then

 $T \vdash \phi_n \rightarrow x_i \neq x_j$.

Problem 8

Name the axioms of T that will be needed in a proof of Lemma (A), and name the axioms of T that will not needed in a proof of Lemma (A). (You are not asked to prove the lemma.)

We extend the language \mathcal{L} by infinitely many constants c_1, c_2, \ldots . For each $i \in \mathbb{N}$, we extend the theory T by the axiom $c_i S c_{i+1}$. An \mathcal{L} -formulas is atomic if it is in form $t_1 S t_2$ or in the form $t_1 = t_2$ (for some terms t_1 and t_2).

Problem 9

Let α be a variable-free atomic formula. Show that $T \vdash \alpha$ or $T \vdash \neg \alpha$.

Let \mathfrak{N} be the \mathcal{L} structure where the universe is the set of natural numbers \mathbb{N} and

- $c_i^{\mathfrak{N}} = i$ for any $i \in \mathbb{N}$
- $S^{\mathfrak{N}} = \{ \langle i, i+1 \rangle \mid i \in \mathbb{N} \}.$

We define a Σ -formula inductively by

- α and $\neg \alpha$ are Σ -formulas if α is an atomic formula
- $(\alpha \wedge \beta)$ is a Σ -formula if α and β are Σ -formulas
- $(\alpha \lor \beta)$ is a Σ -formula if α and β are Σ -formulas
- $(\exists x)(\alpha)$ is a Σ -formula if α is a Σ -formula and x is a variable.

Theorem (B). Let $\psi(x_1, \ldots, x_m)$ be a Σ -formula with free variables x_1, \ldots, x_m , and let t_1, \ldots, t_m be variable-free \mathcal{L} -terms. Then,

 $\mathfrak{N} \models \psi(t_1, \dots, t_m) \Rightarrow T \vdash \psi(t_1, \dots, t_m).$

Problem 10

Prove Theorem (B).

Problem 11

Show that theory T is incomplete, that is, show that there exists an \mathcal{L} -formula θ such that $T \not\vdash \theta$ and $T \not\vdash \neg \theta$.

END