UNIVERSITY OF OSLO
 Faculty of Mathematics and Natural Sciences

Examination in: MAT-INF3600 - Mathematical logic.
Day of examination: Tuesday, December 10, 2013.
Examination hours: 9:00-13:00.
This problem set consists of 3 pages.
Appendices: None.
Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Part I

Let \mathcal{L} be the language $\{R\}$ where R is a binary relation symbol.

Problem 1

Give an \mathcal{L}-structure \mathfrak{A} such that

$$
\mathfrak{A} \models \forall x \exists y[R x y] \rightarrow \exists y \forall x[R x y] .
$$

Problem 2

Give an \mathcal{L}-structure \mathfrak{B} such that

$$
\mathfrak{B} \not \models \forall x \exists y[R x y] \rightarrow \exists y \forall x[R x y] .
$$

Problem 3

Is $\forall x \exists y[R x y] \rightarrow \exists y \forall x[R x y]$ a valid formula? Justify your answer.

Problem 4

Prove that

$$
\vdash \forall x \forall y[R x y] \rightarrow \forall x[R x x]
$$

by giving a deduction.

Problem 5

Is $\forall x \forall y[R x y] \rightarrow \forall x[R x x]$ a valid formula? Justify your answer.

Part II

Let \mathcal{L} be a first-order language, and let \mathcal{L}^{\exists} be \mathcal{L} extended with fresh (new) constant symbols $c_{1}^{\psi}, \ldots, c_{n}^{\psi}$ for each \mathcal{L}-sentence of the form $\exists x_{1} \ldots x_{n}\left[\psi\left(x_{1}, \ldots, x_{n}\right)\right]$. When Σ is a set of \mathcal{L} formulas, let Σ^{\exists} denote the least set of \mathcal{L}^{\exists}-formulas such that
(1) Σ^{\exists} contains all formulas in Σ
(2) for each \mathcal{L}-sentence of the form $\exists x_{1} \ldots x_{n}\left[\psi\left(x_{1}, \ldots, x_{n}\right)\right]$, the set Σ^{\exists} contains the $\mathcal{L}^{\exists}-$ formula

$$
\exists x_{1} \ldots x_{n}\left[\psi\left(x_{1}, \ldots, x_{n}\right)\right] \rightarrow \psi\left(c_{1}^{\psi}, \ldots, c_{n}^{\psi}\right)
$$

Note that (2) requires $\exists x_{1} \ldots x_{n}\left[\psi\left(x_{1}, \ldots, x_{n}\right)\right]$ to be a sentence, that is, there are no free variables in $\psi\left(x_{1}, \ldots, x_{n}\right)$ except x_{1}, \ldots, x_{n}. Furthermore, note that the constant symbols $c_{1}^{\psi}, \ldots, c_{n}^{\psi}$ will occur in one, and only one, formula in the set Σ^{\exists}.
Let \mathcal{L}_{0} be the language $\{P, Q\}$ where P and Q are unary relation symbols. Let

$$
\Sigma_{0}=\{\exists x y[P x \wedge Q y], \forall x[\neg(P x \wedge Q x)]\}
$$

Problem 6

Give a Σ_{0}^{\exists}-deduction of $\exists x[P x]$.

Problem 7

Give a Σ_{0}^{\exists}-deduction of $\exists x y[x \neq y]$. Try to give a full deduction. Do not argue that such a deduction exists by referring to lemmas and theorems in Leary's book.

Problem 8

Let ξ be the formula $\exists x \exists y[P x \wedge P y \wedge x \neq y]$. Explain why $\Sigma_{0} \nvdash \xi$. Explain why $\Sigma_{0} \nvdash \neg \xi$.

Problem 9

Let \mathcal{L} be a first-order language, and let Σ be a set of \mathcal{L}-formulas. Prove that Σ has a model if, and only if, Σ^{\exists} has a model.

Problem 10

Let \mathcal{L} be a first-order language, let Σ be a set of \mathcal{L}-formulas, and let ϕ be an \mathcal{L}-sentence. Prove that

$$
\Sigma \vdash \phi \quad \Leftrightarrow \quad \Sigma^{\exists} \vdash \phi
$$

You may use the Deduction Theorem and the Completeness Theorem.

Problem 11

Give a Σ_{0}-deduction of $\exists x y[x \neq y]$.

