UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in: MAT-INF3600 — Mathematical logic.

Day of examination: Tuesday, November 29, 2016.

Examination hours: 9:00-13:00.

This problem set consists of 3 pages.

Appendices: None.

Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Part I

Let P and Q be unary relation symbols, and let a and b be constant symbols. Let \mathcal{L} be the language $\{a, b, P, Q\}$. Let Σ be the set of \mathcal{L} -formulas given by

$$\Sigma = \{ Pa, \neg Pb, Qb, \forall x[Px \rightarrow Qx] \}.$$

Problem 1

Give an \mathcal{L} -structure \mathfrak{A} such that $\mathfrak{A} \models \Sigma$.

Problem 2

Give an \mathcal{L} -structure \mathfrak{B} such that $\mathfrak{B} \not\models \Sigma$.

Problem 3

Give a Σ -deduction of Qa. Give a full deduction. Name all the logical axioms and inference rules involved in the deduction.

Problem 4

Give a Σ -deduction of $\neg \forall x [Qx \to Px]$. Give a full deduction. Name all the logical axioms and inference rules involved in the deduction.

Problem 5

What does it mean that a set of \mathcal{L} -formulas is consistent? (Give the definition.) Is the set $\Sigma \cup \{ \forall x [Px] \}$ consistent? Is the set $\Sigma \cup \{ \forall x [\neg Px] \}$ consistent? Justify your answers.

Problem 6

Use the Soundness Theorem to prove that $\Sigma \not\vdash \forall x [Px \lor Qx]$.

Part II

Problem 7

Let \mathcal{L} be a first-order language without constant symbols and functions symbols (thus, \mathcal{L} contains only relation symbols). Let $n \in \mathbb{N}$, let $x_1, \ldots, x_n, y_1, \ldots, y_n$ be variables, and let $\phi(z_1, \ldots, z_n)$ be an \mathcal{L} -formula with free variables z_1, \ldots, z_n . Prove that

$$\vdash (x_1 = y_1 \land \ldots \land x_n = y_n) \rightarrow (\phi(x_1, \ldots, x_n) \rightarrow \phi(y_1, \ldots, y_n)) .$$

Use induction on the structure of the formula ϕ . You will need the axiom scheme

$$(x_1 = y_1 \land \dots \land x_n = y_n) \to (Rx_1 \dots x_n \to Ry_1 \dots y_n). \tag{E3}$$

Note that (E3) requires that R is a relation symbol. Note that ϕ does not contain constant symbols and function symbols.

Part III

Recall that $\mathfrak{A} \simeq \mathfrak{B}$ denotes that \mathfrak{A} and \mathfrak{B} are isomorphic. Recall that $\mathfrak{A} \equiv \mathfrak{B}$ denotes that \mathfrak{A} and \mathfrak{B} are elementarily equivalent. Recall that \mathcal{L}_{NT} is the language $\{0, S, +, \cdot, E, <\}$. Recall that \mathfrak{N} is the standard \mathcal{L}_{NT} -structure.

Let Σ be a set of \mathcal{L}_{NT} -sentences such that $\mathfrak{N} \models \Sigma$. We consider four properties the set Σ might possess:

(1) for every \mathcal{L}_{NT} -structure \mathfrak{A} , we have

$$\mathfrak{A} \models \Sigma \Rightarrow \mathfrak{A} \equiv \mathfrak{N}$$

(2) for every \mathcal{L}_{NT} -sentence ϕ , we have

$$\mathfrak{N} \models \phi \Rightarrow \Sigma \vdash \phi$$

(3) for every \mathcal{L}_{NT} -sentence ϕ , we have

$$\Sigma \cup \{\phi\} \not\vdash \bot \Rightarrow \mathfrak{N} \models \phi$$

(4) for every \mathcal{L}_{NT} -structure \mathfrak{A} , we have

$$\mathfrak{A} \models \Sigma \Rightarrow \mathfrak{A} \simeq \mathfrak{N}$$
.

(Continued on page 3.)

Problem 8

Prove that (1), (2) and (3) are equivalent.

Problem 9

Does (4) follow from (1)? Does (1) follow from (4)? Justify your answers.

Problem 10

Does there exist a set Σ of \mathcal{L}_{NT} -sentences such that $\mathfrak{N} \models \Sigma$ and (4) holds? Does there exist a set Σ of \mathcal{L}_{NT} -sentences such that $\mathfrak{N} \models \Sigma$ and (1) holds? Does there exist a recursive set Σ of \mathcal{L}_{NT} -sentences such that $\mathfrak{N} \models \Sigma$ and (1) holds? Justify your answers.

END