UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in: MAT-INF3600 — Mathematical logic.

Day of examination: Friday, December 15, 2017.

Examination hours: 9:00 – 13:00.

This problem set consists of 3 pages.

Appendices: None.

Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Part I

Let R and S be a unary relation symbols, and let a be a constant symbol. Let \mathcal{L} be the language $\{a, R, S\}$.

Problem 1

State the Soundness Theorem for first-order logic. State the Completeness Theorem for first-order logic.

Problem 2

Let ϕ be an \mathcal{L} -formula such that $\not\vdash \phi$. Explain why there exists an \mathcal{L} -structure \mathfrak{A} such that $\mathfrak{A} \not\models \phi$. Give a brief answer.

Problem 3

Below you will find six \mathcal{L} -formulas $(\phi_1, \phi_2, \phi_3, \phi_4, \phi_5, \phi_6)$. For each formula ϕ_i , we either have $\vdash \phi_i$ or $\not\vdash \phi_i$. If $\vdash \phi_i$, you should give a detailed deduction of ϕ_i (name all the axioms and inference rules involved in the deduction). If $\not\vdash \phi_i$, you should give an \mathcal{L} -structure \mathfrak{A} such that $\mathfrak{A} \not\models \phi_i$.

- $\phi_1 :\equiv Ra \to (Sa \to Ra)$
- $\phi_2 :\equiv \exists x [Rx] \to \exists x [Sx \to Rx]$
- $\phi_3 :\equiv \forall x[Rx] \to \forall x[Sx \to Rx]$
- $\phi_4 :\equiv \exists x[Sx \to Rx] \to \exists x[Rx]$
- $\phi_5 := \forall x[Sx \to Rx] \to \forall x[Rx]$

(Continued on page 2.)

•
$$\phi_6 :\equiv (\forall x[Rx] \to Ra) \lor (\forall x[Sx \to Rx] \to \forall x[Rx])$$

Part II

Let < be a binary relation symbol, let S be unary function symbols, and let 0 be a constant symbol. Let \mathcal{L} be the language $\{0, S, <\}$. Let T be the \mathcal{L} -theory where we have the following non-logical axioms:

- $(T_1) \ \forall x [\neg Sx = 0]$
- $(T_2) \ \forall xy[Sx = Sy \rightarrow x = y]$
- $(T_3) \ \forall x[\neg Sx = x]$
- $(T_4) \ \forall x [\neg x < 0]$
- $(T_5) \ \forall xy[x < Sy \leftrightarrow (x < y \lor x = y)]$

Problem 4

Prove that the axiom T_3 is independent of the other axioms of T, that is, prove that

$$\{T_1, T_2, T_4, T_5\} \not\vdash T_3$$
 and $\{T_1, T_2, T_4, T_5\} \not\vdash \neg T_3$.

Let $\phi(x)$ be any \mathcal{L} -formula (as usual $\phi(t)$ denotes $\phi(x)$ where every free occurrence of the variable x is replaced by the term t). We will consider three axiom schemes.

The scheme of Zero Intolerance. This is the scheme

$$\forall x [\phi(Sx)] \to \forall x [\phi(x)] \tag{Z}$$

The theory T_Z is the theory T extended by this axiom scheme.

The scheme of Pseudo Induction. This is the scheme

$$(\phi(0) \land \forall x [\phi(Sx)]) \rightarrow \forall x [\phi(x)]$$
 (P)

The theory T_P is the theory T extended by this axiom scheme.

The scheme of Induction. This is the scheme

$$(\phi(0) \land \forall x [\phi(x) \to \phi(Sx)]) \to \forall x [\phi(x)]$$
 (I)

The theory T_I is the theory T extended by this axiom scheme.

Problem 5

Give a T_Z -deduction of $\neg 0 = 0$. Give a full deduction. Name all the axioms and inference rules involved in the deduction.

(Continued on page 3.)

Problem 6

Explain why we have $T_Z \vdash \theta$ for every \mathcal{L} -formula θ .

Problem 7

Prove that

$$T_P \vdash \forall x [x = 0 \lor \exists y [Sy = x]].$$

Sketch a T_P -deduction of the formula. Name all the non-logical axioms involved in the deduction.

Problem 8

Prove that

$$T \not\vdash \forall x [x = 0 \lor \exists y [Sy = x]].$$

Problem 9

Let θ be any \mathcal{L} -formula. Prove that $T_P \vdash \theta$ implies $T_I \vdash \theta$.

Problem 10

Does it exist an \mathcal{L} -formula η such that $T_I \vdash \eta$ and $T_P \not\vdash \eta$? Justify your answer. If you can, prove that your answer is correct.

END