UNIVERSITY OF OSLO
 Faculty of Mathematics and Natural Sciences

Examination in: MAT-INF3600 - Mathematical logic.
Day of examination: Wednesday, December 18, 2019.
Examination hours: 14:30-18:30.
This problem set consists of 3 pages.
Appendices: None.
Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Part I

Let P and Q be unary relation symbols. Let R be a binary relation symbol. Let c be a constant symbol. Let f be a unary function symbol. Furthermore, x and y denote variables.

Problem 1 (weight 10%)

Let $\Sigma=\{\neg Q c, \forall x[P x \rightarrow Q x]\}$. Give a full Σ-deduction of $\neg \forall x[P x]$. Name all the logical axioms and inference rules involved in the deduction.

Problem 2 (weight 10%)

Let $\Sigma^{\prime}=\{\neg Q c, \forall x[P x \rightarrow Q x], \forall x[P x]\}$. Is Σ^{\prime} consistent? Does Σ^{\prime} have a model? Give a brief justification of your answers.

Problem 3 (weight 20%)

Twenty Questions: Answer each question with a YES or a NO (and nothing else). If you do not answer a question, your answer to that question will be considered as wrong.

1. Does $\forall x[Q x]$ follow tautologically from $\{\forall x[P x] \rightarrow \forall x[Q x], \forall x[P x]\}$?
2. Does $\forall x[Q x]$ follow logically from $\{\forall x[P x] \rightarrow \forall x[Q x], \forall x[P x]\}$?
3. Does $Q c$ follow tautologically from $\{\forall x[P x] \rightarrow \forall x[Q x], \forall x[P x]\}$?
4. Does $Q c$ follow logically from $\{\forall x[P x] \rightarrow \forall x[Q x], \forall x[P x]\}$?
5. Does $\forall x[P x \rightarrow Q x]$ follow logically from $\{\forall x[P x] \rightarrow \forall x[Q x], \forall x[P x]\}$?
6. Does $\forall x[P x] \rightarrow \forall x[Q x]$ follow logically from $\{\forall x[P x \rightarrow Q x], \forall x[P x]\}$?
7. Does $\forall x[P x \rightarrow Q x]$ follow logically from $\{\forall x[P x] \rightarrow \forall x[Q x]\}$?
8. Does $\forall x[P x] \rightarrow \forall x[Q x]$ follow logically from $\{\forall x[P x \rightarrow Q x]\}$?
9. Does $\exists y \forall x[R x y]$ follow logically from $\{\forall x[R x f x]\}$?
10. Does $\forall x \exists y[R x y]$ follow logically from $\{\forall x[R x f x]\}$?
11. Does $\exists y \forall x[R x y]$ follow logically from $\{\forall x[R x c]\}$?
12. Does $\forall x \exists y[R x y]$ follow logically from $\{\forall x[R x c]\}$?
13. Does $Q f(c)$ follow tautologically from $\{\forall x[P x \rightarrow Q x], \forall x[P x] \rightarrow \forall x[Q x]\}$?
14. Does $Q f(c)$ follow logically from $\{\forall x[P x \rightarrow Q x], \forall x[P x] \rightarrow \forall x[Q x]\}$?
15. Does $P c \rightarrow \forall x[Q x]$ follow logically from $\{P c \rightarrow Q x\}$?
16. Does $P x \rightarrow \forall x[Q x]$ follow logically from $\{P x \rightarrow Q x\}$?
17. Does $\exists x[P x] \rightarrow \forall x[Q x]$ follow logically from $\{P x \rightarrow \forall x[Q x]\}$?
18. Does $x=x$ follow logically from \emptyset ?
19. Does $x=y$ follow logically from \emptyset ?
20. Does $\neg x=y$ follow logically from \emptyset ?

Part II

Let \mathcal{L} be the first-order language $\{\preceq, f, c\}$ where \preceq is a binary relation symbol, f is a binary function symbol and c is a constant symbol. Let T be the \mathcal{L}-theory consisting of the non-logical axioms
$\left(T_{1}\right) \forall x y[\neg c=f(x, y)]$
$\left(T_{2}\right) \forall x_{1} x_{2} y_{1} y_{2}\left[f\left(x_{1}, x_{2}\right)=f\left(y_{1}, y_{2}\right) \rightarrow\left(x_{1}=y_{1} \wedge x_{2}=y_{2}\right)\right]$
$\left(T_{3}\right) \forall x[x \preceq c \leftrightarrow x=c]$
$\left(T_{4}\right) \forall x y_{1} y_{2}\left[x \preceq f\left(y_{1}, y_{2}\right) \leftrightarrow\left(x=f\left(y_{1}, y_{2}\right) \vee x \preceq y_{1} \vee x \preceq y_{2}\right)\right]$.

Problem 4 (weight 10%)

Show that

$$
T \vdash \neg f(c, c)=f(f(c, c), c)
$$

Sketch a formal deduction.

Problem 5 (weight 10%)

Show that

$$
T \vdash \neg s=t .
$$

for any variable-free \mathcal{L}-terms s, t where $s \neq t$ (so s and t are not syntactically equal). Use induction on the structure of s.

Lemma 1. For any variable-free \mathcal{L}-terms s and t, we have $T \vdash s \preceq t$ or $T \vdash \neg s \preceq t$.

Problem 6 (weight 10 \%)

Prove Lemma 1. Use induction on the structure of t.

Problem 7 (weight 10%)

Let ϕ be a quantifier-free and variable-free \mathcal{L}-formula. Prove that we have $T \vdash \phi$ or $T \vdash \neg \phi$. Use Lemma 1.

Problem 8 (weight 10%)

Do we have $T \vdash \forall x[\neg x=f(x, x)]$? Justify your answer.

We say that an \mathcal{L}-structure \mathfrak{A} is ill-founded if its universe contains elements $a_{0}, a_{1}, a_{2}, \ldots$ such that $a_{i+1} \neq a_{i}$ and $a_{i+1} \preceq^{\mathfrak{A}} a_{i}$ (for all $i \in \mathbb{N}$).

Problem 9 (weight 10%)

Explain why any consistent extension of T has an ill-founded model.

