UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in: MAT-INF3600 — Mathematical logic.

Day of examination: Wednesday, December 18, 2019.

Examination hours: 14:30 – 18:30.

This problem set consists of 3 pages.

Appendices: None.

Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Part I

Let P and Q be unary relation symbols. Let R be a binary relation symbol. Let c be a constant symbol. Let f be a unary function symbol. Furthermore, x and y denote variables.

Problem 1 (weight 10 %)

Let $\Sigma = \{ \neg Qc, \forall x[Px \rightarrow Qx] \}$. Give a full Σ -deduction of $\neg \forall x[Px]$. Name all the logical axioms and inference rules involved in the deduction.

Problem 2 (weight 10 %)

Let $\Sigma' = \{ \neg Qc, \forall x[Px \rightarrow Qx], \forall x[Px] \}$. Is Σ' consistent? Does Σ' have a model? Give a brief justification of your answers.

Problem 3 (weight 20 %)

Twenty Questions: Answer each question with a YES or a NO (and nothing else). If you do not answer a question, your answer to that question will be considered as wrong.

- 1. Does $\forall x[Qx]$ follow tautologically from $\{ \ \forall x[Px] \rightarrow \forall x[Qx] \,,\, \forall x[Px] \ \}$?
- 2. Does $\forall x[Qx]$ follow logically from $\{ \forall x[Px] \rightarrow \forall x[Qx], \forall x[Px] \}$?
- 3. Does Qc follow tautologically from $\{ \forall x[Px] \rightarrow \forall x[Qx], \forall x[Px] \}$?
- 4. Does Qc follow logically from $\{ \forall x[Px] \rightarrow \forall x[Qx], \forall x[Px] \}$?
- 5. Does $\forall x[Px \to Qx]$ follow logically from $\{ \forall x[Px] \to \forall x[Qx], \forall x[Px] \}$?

- 6. Does $\forall x[Px] \to \forall x[Qx]$ follow logically from $\{ \forall x[Px \to Qx], \forall x[Px] \}$?
- 7. Does $\forall x[Px \to Qx]$ follow logically from $\{ \forall x[Px] \to \forall x[Qx] \}$?
- 8. Does $\forall x[Px] \rightarrow \forall x[Qx]$ follow logically from $\{ \ \forall x[Px \rightarrow Qx] \ \}$?
- 9. Does $\exists y \forall x [Rxy]$ follow logically from $\{ \forall x [Rxfx] \}$?
- 10. Does $\forall x \exists y [Rxy]$ follow logically from $\{ \forall x [Rxfx] \}$?
- 11. Does $\exists y \forall x [Rxy]$ follow logically from $\{ \forall x [Rxc] \}$?
- 12. Does $\forall x \exists y [Rxy]$ follow logically from $\{ \forall x [Rxc] \}$?
- 13. Does Qf(c) follow tautologically from $\{ \forall x[Px \to Qx], \forall x[Px] \to \forall x[Qx] \}$?
- 14. Does Qf(c) follow logically from $\{ \forall x[Px \to Qx], \forall x[Px] \to \forall x[Qx] \}$?
- 15. Does $Pc \to \forall x[Qx]$ follow logically from $\{Pc \to Qx\}$?
- 16. Does $Px \to \forall x[Qx]$ follow logically from $\{Px \to Qx\}$?
- 17. Does $\exists x[Px] \to \forall x[Qx]$ follow logically from $\{Px \to \forall x[Qx]\}$?
- 18. Does x = x follow logically from \emptyset ?
- 19. Does x = y follow logically from \emptyset ?
- 20. Does $\neg x = y$ follow logically from \emptyset ?

Part II

Let \mathcal{L} be the first-order language $\{\leq, f, c\}$ where \leq is a binary relation symbol, f is a binary function symbol and c is a constant symbol. Let T be the \mathcal{L} -theory consisting of the non-logical axioms

- $(T_1) \ \forall xy [\ \neg c = f(x,y)\]$
- $(T_2) \ \forall x_1 x_2 y_1 y_2 [\ f(x_1, x_2) = f(y_1, y_2) \ \rightarrow \ (x_1 = y_1 \land x_2 = y_2) \]$
- $(T_3) \ \forall x [\ x \leq c \leftrightarrow x = c \]$
- $(T_4) \ \forall xy_1y_2 [\ x \leq f(y_1, y_2) \ \leftrightarrow \ (\ x = f(y_1, y_2) \lor x \leq y_1 \lor x \leq y_2) \].$

Problem 4 (weight 10 %)

Show that

$$T \vdash \neg f(c,c) = f(f(c,c),c)$$
.

Sketch a formal deduction.

Problem 5 (weight 10 %)

Show that

$$T \vdash \neg s = t$$
.

for any variable-free \mathcal{L} -terms s, t where $s \neq t$ (so s and t are not syntactically equal). Use induction on the structure of s.

Lemma 1. For any variable-free \mathcal{L} -terms s and t, we have $T \vdash s \leq t$ or $T \vdash \neg s \leq t$.

Problem 6 (weight 10 %)

Prove Lemma 1. Use induction on the structure of t.

Problem 7 (weight 10 %)

Let ϕ be a quantifier-free and variable-free \mathcal{L} -formula. Prove that we have $T \vdash \phi$ or $T \vdash \neg \phi$. Use Lemma 1.

Problem 8 (weight 10 %)

Do we have $T \vdash \forall x [\neg x = f(x, x)]$? Justify your answer.

We say that an \mathcal{L} -structure \mathfrak{A} is *ill-founded* if its universe contains elements a_0, a_1, a_2, \ldots such that $a_{i+1} \neq a_i$ and $a_{i+1} \leq^{\mathfrak{A}} a_i$ (for all $i \in \mathbb{N}$).

Problem 9 (weight 10 %)

Explain why any consistent extension of T has an ill-founded model.

END