UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in:	MAT-INF3600 — Mathematical logic.
Day of examination:	Tuesday, December 1, 2020.
Examination hours:	15:00-19:00.
This problem set consists of 4 pages.	
Appendices:	None.
Permitted aids:	None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

The weights might be adjusted.

PART I

Let P and Q be unary relation symbols. Let a, b and c be constant symbols. Let f and g be unary function symbols. Furthermore, x and y denote variables.

Problem 1 (weight 10 %)

Let $\Sigma = \{ \forall x [Px] \}$. Give a full Σ -deduction of $\forall x [Qc \rightarrow Px]$. Name all the logical axioms and inference rules involved in the deduction.

Problem 2 (weight 10 %)

Let \mathcal{L} be the language $\{P, Q, c\}$ Give an \mathcal{L} structure \mathfrak{A} such that $\mathfrak{A} \models \forall x[Qc \rightarrow Px]$ and $\mathfrak{A} \not\models \forall x[Px]$, Explain briefly why we have $\{\forall x[Qc \rightarrow Px]\} \not\models \forall x[Px]$.

Problem 3 (weight 10 %)

Ten Questions: Answer each question with a YES or a NO (and nothing else). If you do not answer a question, your answer to that question will be considered as wrong.

- 1. Is the set $\{a \neq b, f(a) = f(b)\}$ consistent?
- 2. Is the set $\{a = b, f(a) \neq f(b)\}$ consistent?
- 3. Is the set $\{ f(a) = g(b), g(b) = f(c), g(f(a)) \neq g(f(c)) \}$ consistent?
- 4. Is the set $\{ \forall xy[f(x) \neq f(y)], \exists xy[f(x) \neq f(y)] \}$ consistent?
- 5. Is the set $\{ \forall xy [f(x) = f(y)], \exists xy [f(x) = f(y)] \}$ consistent?

- 6. Does $\forall x [f(x) = x]$ follow logically from $\{ \forall x [f(f(x)) = f(x)], \forall x [g(f(x)) = x] \}$?
- 7. Does $\forall xy [x \neq y \rightarrow f(x) \neq f(y)]$ follow logically from $\{ \forall x [g(f(x)) = x] \}$?
- 8. Does $\forall x \exists y [f(y) = x]$ follow logically from $\{ \forall x [g(f(x)) = x] \}$?
- 9. Does $\forall x [f(g(x)) = x]$ follow logically from $\{ \forall x [g(f(x)) = x] \}$?
- 10. Does $\exists x [g(x) = c]$ follow logically from $\{ \forall x [g(f(x)) = x] \}$?

PART II

Let e be a constant symbol, let S_0 and S_1 be unary function symbols, let \circ be a binary function symbol and, furthermore, let \mathcal{L} be the first-order language $\{e, S_0, S_1, \circ\}$ and T be the \mathcal{L} -theory consisting of the non-logical axioms

- $(T_1) \ \forall xy[\ S_0(x) \neq e \ \land S_1(x) \neq e]$
- $(T_2) \ \forall xy[\ x \neq y \ \to \ (S_0(x) \neq S_0(y) \land \ S_1(x) \neq S_1(y)) \]$
- $(T_3) \quad \forall xy [S_0(x) \neq S_1(y)]$
- $(T_4) \ \forall x [\ e \circ x = x]$
- $(T_5) \ \forall xy[\ S_0(y) \circ x = S_0(y \circ x)]$
- $(T_6) \quad \forall xy [S_1(y) \circ x = S_1(y \circ x)].$

We have $T \vdash S_0(e) \circ S_0(e) \neq S_1(e)$ and $T \vdash S_0(S_0(e)) \neq S_0(e)$.

Problem 4 (weight 5 %)

Name the non-logical axioms of T we need to deduce $S_0(e) \circ S_0(e) \neq S_1(e)$. Give a brief answer.

Problem 5 (weight 5 %)

Name the non-logical axioms of T we need to deduce $S_0(S_0(e)) \neq S_0(e)$. Give a brief answer.

Problem 6 (weight 10 %)

Show that $\{T_1, T_2, T_4, T_5, T_6\} \not\vdash T_3$.

Problem 7 (weight 10 %)

Show that $\{T_1, T_2, T_4, T_5, T_6\} \not\vdash \neg T_3$.

We define the *canonical* \mathcal{L} -terms inductively: e is a canonical term; $S_0(s)$ is a canonical term if s is a canonical term; $S_1(s)$ is a canonical term if s is a canonical term. (So a canonical term is a variable-free term with no occurrences of \circ .)

(Continued on page 3.)

Theorem I. For every variable-free \mathcal{L} -term t, there exists a canonical term s such that $T \vdash t = s$.

Problem 8 (weight 10 %)

Prove Theorem I.

PART III

The next theorem is also known as the Compactness Theorem for first-order logic.

Theorem II. Let \mathcal{L} be a first-order language, and let Σ be a set of \mathcal{L} -formulas. If every finite subset of Σ has a model, then Σ has a model.

Problem 9 (weight 10 %)

Prove Theorem II. The proof should refer to the Completeness Theorem for first-order logic (do not prove the Completeness Theorem).

Let \mathcal{L}_{NT} be the language of number theory, that is, the language $\{0, S, +, \cdot, E, <\}$. Let \mathfrak{N} be the standard \mathcal{L}_{NT} -structure, and let $Th(\mathfrak{N})$ denote the theory of \mathfrak{N} , that is,

 $Th(\mathfrak{N}) = \{ \phi \mid \phi \text{ is an } \mathcal{L}_{NT}\text{-formula and } \mathfrak{N} \models \phi \}.$

Let \mathbb{Q} denote the set of rational numbers. For each $i \in \mathbb{Q}$ we introduce a unique constant symbol c_i . Let \mathcal{L}_* be \mathcal{L}_{NT} extended by $\{c_i \mid i \in \mathbb{Q}\}$. Let

$$\Sigma = Th(\mathfrak{N}) \cup \{ c_i < c_j \mid i, j \in \mathbb{Q} \text{ and } i < j \} \cup \{ \exists x [SSS0 + x = c_i] \mid i \in \mathbb{Q} \}$$

and

 $\Gamma = Th(\mathfrak{N}) \cup \{ c_i < c_j \mid i, j \in \mathbb{Q} \text{ and } i < j \} \cup \{ \exists x [c_i + x = SSS0] \mid i \in \mathbb{Q} \}.$

Obviously, Σ and Γ are sets of \mathcal{L}_* -formulas.

Problem 10 (weight 10 %)

Prove that one of the two sets Σ and Γ has a model. Prove that the other set does not have have model.

Let \mathfrak{A} be an \mathcal{L}_{NT} structure. An infinite sequence a_0, a_1, a_2, \ldots is an \mathfrak{A} -predecessor chain if $S^{\mathfrak{A}}(a_{i+1}) = a_i$ (for all $i \in \mathbb{N}$). An \mathfrak{A} -predecessor chain a_0, a_1, a_2, \ldots lies below an \mathfrak{A} -predecessor chain b_0, b_1, b_2, \ldots if $a_0 <^{\mathfrak{A}} b_i$ (for all $i \in \mathbb{N}$). If a_0, a_1, a_2, \ldots lies below b_0, b_1, b_2, \ldots , then b_0, b_1, b_2, \ldots lies above a_0, a_1, a_2, \ldots

Problem 11 (weight 10 %)

Prove that $Th(\mathfrak{N})$ has a model \mathfrak{A} such that

- there are infinitely many \mathfrak{A} -predecessor chains
- if one \mathfrak{A} -predecessor lies below another \mathfrak{A} -predecessor chain, then there is an \mathfrak{A} -predecessor chain in between, that is, a chain that lies above one of the chains and below the other.

END