UNIVERSITY OF OSLO
 Faculty of Mathematics and Natural Sciences

Examination in: MAT-INF3600 - Mathematical logic.
Day of examination: Tuesday, December 1, 2020.
Examination hours: 15:00-19:00.
This problem set consists of 4 pages.
Appendices: None.
Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

The weights might be adjusted.

PART I

Let P and Q be unary relation symbols. Let a, b and c be constant symbols. Let f and g be unary function symbols. Furthermore, x and y denote variables.

Problem 1 (weight 10%)

Let $\Sigma=\{\forall x[P x]\}$. Give a full Σ-deduction of $\forall x[Q c \rightarrow P x]$. Name all the logical axioms and inference rules involved in the deduction.

Problem 2 (weight 10%)

Let \mathcal{L} be the language $\{P, Q, c\}$ Give an \mathcal{L} structure \mathfrak{A} such that $\mathfrak{A} \vDash \forall x[Q c \rightarrow P x]$ and $\mathfrak{A} \not \vDash \forall x[P x]$, Explain briefly why we have $\{\forall x[Q c \rightarrow P x]\} \nvdash \forall x[P x]$.

Problem 3 (weight 10%)

Ten Questions: Answer each question with a YES or a NO (and nothing else). If you do not answer a question, your answer to that question will be considered as wrong.

1. Is the set $\{a \neq b, f(a)=f(b)]\}$ consistent?
2. Is the set $\{a=b, f(a) \neq f(b)]\}$ consistent?
3. Is the set $\{f(a)=g(b), g(b)=f(c), g(f(a)) \neq g(f(c))]\}$ consistent?
4. Is the set $\{\forall x y[f(x) \neq f(y)], \exists x y[f(x) \neq f(y)]\}$ consistent?
5. Is the set $\{\forall x y[f(x)=f(y)], \exists x y[f(x)=f(y)]\}$ consistent?
6. Does $\forall x[f(x)=x]$ follow logically from $\{\forall x[f(f(x))=f(x)], \forall x[g(f(x))=x]\}$?
7. Does $\forall x y[x \neq y \rightarrow f(x) \neq f(y)]$ follow logically from $\{\forall x[g(f(x))=x]\}$?
8. Does $\forall x \exists y[f(y)=x]$ follow logically from $\{\forall x[g(f(x))=x]\}$?
9. Does $\forall x[f(g(x))=x]$ follow logically from $\{\forall x[g(f(x))=x]\}$?
10. Does $\exists x[g(x)=c]$ follow logically from $\{\forall x[g(f(x))=x]\}$?

PART II

Let e be a constant symbol, let S_{0} and S_{1} be unary function symbols, let o be a binary function symbol and, furthermore, let \mathcal{L} be the first-order language $\left\{e, S_{0}, S_{1}, \circ\right\}$ and T be the \mathcal{L}-theory consisting of the non-logical axioms

```
\(\left(T_{1}\right) \forall x y\left[S_{0}(x) \neq e \wedge S_{1}(x) \neq e\right]\)
\(\left(T_{2}\right) \forall x y\left[x \neq y \rightarrow\left(S_{0}(x) \neq S_{0}(y) \wedge S_{1}(x) \neq S_{1}(y)\right)\right]\)
\(\left(T_{3}\right) \forall x y\left[S_{0}(x) \neq S_{1}(y)\right]\)
( \(T_{4}\) ) \(\forall x[e \circ x=x]\)
\(\left(T_{5}\right) \forall x y\left[S_{0}(y) \circ x=S_{0}(y \circ x)\right]\)
\(\left(T_{6}\right) \forall x y\left[S_{1}(y) \circ x=S_{1}(y \circ x)\right]\).
```

We have $T \vdash S_{0}(e) \circ S_{0}(e) \neq S_{1}(e)$ and $T \vdash S_{0}\left(S_{0}(e)\right) \neq S_{0}(e)$.

Problem 4 (weight 5%)

Name the non-logical axioms of T we need to deduce $S_{0}(e) \circ S_{0}(e) \neq S_{1}(e)$. Give a brief answer.

Problem 5 (weight 5%)

Name the non-logical axioms of T we need to deduce $S_{0}\left(S_{0}(e)\right) \neq S_{0}(e)$. Give a brief answer.

Problem 6 (weight 10%)

Show that $\left\{T_{1}, T_{2}, T_{4}, T_{5}, T_{6}\right\} \nvdash T_{3}$.

Problem 7 (weight 10%)

Show that $\left\{T_{1}, T_{2}, T_{4}, T_{5}, T_{6}\right\} \nvdash \neg T_{3}$.
We define the canonical \mathcal{L}-terms inductively: e is a canonical term; $S_{0}(s)$ is a canonical term if s is a canonical term; $S_{1}(s)$ is a canonical term if s is a canonical term. (So a canonical term is a variable-free term with no occurrences of 0 .)

Theorem I. For every variable-free \mathcal{L}-term t, there exists a canonical term s such that $T \vdash t=s$.

Problem 8 (weight 10%)

Prove Theorem I.

PART III

The next theorem is also known as the Compactness Theorem for first-order logic.
Theorem II. Let \mathcal{L} be a first-order language, and let Σ be a set of \mathcal{L}-formulas. If every finite subset of Σ has a model, then Σ has a model.

Problem 9 (weight 10%)

Prove Theorem II. The proof should refer to the Completeness Theorem for first-order logic (do not prove the Completeness Theorem).

Let $\mathcal{L}_{N T}$ be the language of number theory, that is, the language $\{0, S,+, \cdot, E,<\}$. Let \mathfrak{N} be the standard $\mathcal{L}_{N T}$-structure, and let $T h(\mathfrak{N})$ denote the theory of \mathfrak{N}, that is,

$$
\operatorname{Th}(\mathfrak{N})=\left\{\phi \mid \phi \text { is an } \mathcal{L}_{N T} \text {-formula and } \mathfrak{N} \models \phi\right\} .
$$

Let \mathbb{Q} denote the set of rational numbers. For each $i \in \mathbb{Q}$ we introduce a unique constant symbol c_{i}. Let \mathcal{L}_{*} be $\mathcal{L}_{N T}$ extended by $\left\{c_{i} \mid i \in \mathbb{Q}\right\}$. Let

$$
\Sigma=\operatorname{Th}(\mathfrak{N}) \cup\left\{c_{i}<c_{j} \mid i, j \in \mathbb{Q} \text { and } i<j\right\} \cup\left\{\exists x\left[S S S 0+x=c_{i}\right] \mid i \in \mathbb{Q}\right\}
$$

and

$$
\Gamma=\operatorname{Th}(\mathfrak{N}) \cup\left\{c_{i}<c_{j} \mid i, j \in \mathbb{Q} \text { and } i<j\right\} \cup\left\{\exists x\left[c_{i}+x=S S S 0\right] \mid i \in \mathbb{Q}\right\} .
$$

Obviously, Σ and Γ are sets of \mathcal{L}_{*}-formulas.

Problem 10 (weight 10%)

Prove that one of the two sets Σ and Γ has a model. Prove that the other set does not have have model.
Let \mathfrak{A} be an $\mathcal{L}_{N T}$ structure. An infinite sequence $a_{0}, a_{1}, a_{2}, \ldots$ is an \mathfrak{A}-predecessor chain if $S^{\mathfrak{A}}\left(a_{i+1}\right)=a_{i}$ (for all $i \in \mathbb{N}$). An \mathfrak{A}-predecessor chain $a_{0}, a_{1}, a_{2}, \ldots$ lies below an \mathfrak{A}-predecessor chain $b_{0}, b_{1}, b_{2}, \ldots$ if $a_{0}<^{\mathfrak{A}} b_{i}$ (for all $i \in \mathbb{N}$). If $a_{0}, a_{1}, a_{2}, \ldots$ lies below $b_{0}, b_{1}, b_{2}, \ldots$, then $b_{0}, b_{1}, b_{2}, \ldots$ lies above $a_{0}, a_{1}, a_{2}, \ldots$.

Problem 11 (weight 10%)

Prove that $\operatorname{Th}(\mathfrak{N})$ has a model \mathfrak{A} such that

- there are infinitely many \mathfrak{A}-predecessor chains
- if one \mathfrak{A}-predecessor lies below another \mathfrak{A}-predecessor chain, then there is an \mathfrak{A} predecessor chain in between, that is, a chain that lies above one of the chains and below the other.

