UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in: MAT-INF3600 — Mathematical logic.

Day of examination: Monday, December 19, 2022.

Examination hours: 15:00 – 19:00.

This problem set consists of 3 pages.

Appendices: None.

Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

The weights might be adjusted.

PART I

Let Q be a unary relation symbol, let S be a unary function symbol, let S be a constant symbol and let L be the language $\{0, S, Q\}$. Furthermore, let

$$\Sigma_1 = \{ \forall x [Q(Sx) \rightarrow Q(x)], Q(S0) \}.$$

Problem 1 (weight 10 %)

Give a full Σ_1 -deduction of Q(0). Name all the logical axioms and inference rules involved in the deduction.

Problem 2 (weight 10 %)

Give a full Σ_1 -deduction of $0 = x \to Q(x)$. Name all the logical axioms and inference rules involved in the deduction.

For any natural number n, we define the numeral \overline{n} by $\overline{0} = 0$ and $\overline{n+1} = S\overline{n}$. Let

$$\Sigma_n = \{ \forall x [Q(Sx) \to Q(x)], Q(\overline{n}) \}.$$

Problem 3 (weight 10 %)

Do we have $\Sigma_{17} \models \Sigma_{16}$? Do we have $\Sigma_{16} \models \Sigma_{17}$? Justify your answers.

Let
$$\Sigma = \bigcup_{i \in \mathbb{N}} \Sigma_i$$
.

(Continued on page 2.)

Problem 4 (weight 10 %)

Give an \mathcal{L} -sentence ϕ such that $\Sigma \not\vdash \phi$ and $\Sigma \not\vdash \neg \phi$. Prove that we indeed have $\Sigma \not\vdash \phi$ and $\Sigma \not\vdash \neg \phi$.

PART II

Let f be a binary function symbol, let c be a constant symbol and let \mathcal{L} be the language $\{c, f\}$. Let

- $\Gamma_1 = \{ \forall x [x = c], f(c,c) = c \}$
- $\Gamma_2 = \{ \forall x [x = c], \neg (f(c,c) = c) \}$
- $\bullet \ \Gamma_3 \ = \ \{ \ \forall x[\ \neg(x=c)\] \,,\, \neg(f(c,c)=c) \ \}$
- $\Gamma_4 = \{ \neg \forall x [x = c], f(c,c) = c \}.$

Problem 5 (weight 10 %)

What does it mean that a set of first-order formulas is consistent? (Give the definition.) Is Γ_1 consistent? Is Γ_2 consistent? Is Γ_3 consistent? Is Γ_4 consistent? Justify your answers.

For any \mathcal{L} -term t, let $(t)_y^x$ denote the term t where every occurrence of the variable x is replaced by the variable y. E.g., $(ffv_1cfv_2v_1)_{v_3}^{v_1}$ denotes the term $ffv_3cfv_2v_3$ and $(fcc)_{v_7}^{v_3}$ denotes the term fcc.

Theorem 1. For any variables x, y and any \mathcal{L} -term t, we have

$$\vdash x = y \rightarrow t = (t)_y^x$$
.

Problem 6 (weight 10 %)

Prove Theorem 1. Use induction on the structure of the term t.

Problem 7 (weight 10 %)

Do we have $\vdash t = (t)_y^x \to x = y$ (for any variables x, y and any \mathcal{L} -term t)? Do we have $\vdash \neg (t = (t)_y^x \to x = y)$ (for any variables x, y and any \mathcal{L} -term t)? Justify your answers.

PART III

Recall the language \mathcal{L}_{NT} , that is, the language $\{0, S, +, \cdot, E, <\}$, and its standard structure \mathfrak{N} . Some \mathcal{L}_{NT} -formulas contain bounded quantifiers, and some \mathcal{L}_{NT} -formulas are Δ -formulas.

Problem 8 (weight 5 %)

What is a bounded quantifier? What is a Δ -formula?

Let
$$\phi(x) :\equiv (\exists y)[y + y = x]$$
, and let $\psi(x) :\equiv \neg(\exists y)[y + y = x]$.

Problem 9 (weight 5 %)

Give a Δ -formula $\phi_0(x)$ such that $\mathfrak{N} \models \phi_0(\overline{a})$ if and only if $\mathfrak{N} \models \phi(\overline{a})$ (for any natural number a). Give a Δ -formula $\psi_0(x)$ such that $\mathfrak{N} \models \psi_0(\overline{a})$ if and only if $\mathfrak{N} \models \psi(\overline{a})$ (for any natural number a).

Let p_i denote the *i*'th prime, that is, $p_1 = 2$ and $p_2 = 3$ and so on. We encode a nonempty finite sequence of natural numbers a_1, a_2, \ldots, a_k as the single natural number $\langle a_1, a_2, \ldots, a_k \rangle$ where

$$\langle a_1, a_2, \dots, a_k \rangle = p_1^{a_1+1} \cdot p_2^{a_2+1} \cdot \dots \cdot p_k^{a_k+1}.$$

The Δ -formula $IthElement(x_1, x_2, x_3)$ is known from Leary & Kristiansen's textbook. We have $\mathfrak{N} \models IthElement(\overline{b}, \overline{i}, \overline{a})$ if and only if there exists a sequence of natural numbers a_1, a_2, \ldots, a_k such that $a = \langle a_1, a_2, \ldots, a_k \rangle$ and $a_i = b$.

We define the sequence F_0, F_1, F_2, \ldots of Fibonacci numbers by $F_0 = F_1 = 1$ and $F_{n+2} = F_n + F_{n+1}$.

Problem 10 (weight 10 %)

Give an \mathcal{L}_{NT} -formula $\theta(x_1, x_2)$ such that $\mathfrak{N} \models \theta(\overline{i}, \overline{m})$ if and only if $F_i = m$. Use the formula $IthElement(x_1, x_2, x_3)$ to construct $\theta(x_1, x_2)$.

Recall the first-order theory N from Leary & Kristiansen's book (N is given by 11 nonlogical \mathcal{L}_{NT} -axioms).

Problem 11 (weight 10 %)

Give an \mathcal{L}_{NT} -formula $\eta(x_1, x_2)$ such that

- (1) $N \vdash \eta(\overline{i}, \overline{m})$ if $F_i = m$
- (2) $N \vdash \neg \eta(\overline{i}, \overline{m})$ if $F_i \neq m$

and explain why (1) and (2) hold.