
Problem 1

Problem a

A language is a set of strings over an alphabet. What does it mean that a language is
recursive? What does it mean that a language is recursively enumerable? Give the essence
of the definitions from Lewis & Papadimitriou’s textbook. Give short answers.

—————————- Solution:

See Lewis & Papadimitriou’s textbook.

Problem b

What does it mean that a function f : N× . . .×N → N is primitive recursive? Give a short
answer.

—————————- Solution:

See Lewis & Papadimitriou’s textbook.

Problem c

Let f(x, y) = x+y and g(x, y) = x×y. Prove that f and g are primitive recursive functions.

—————————- Solution:

We will prove that f and g are primitive recursive functions by providing primitive recursive
definitions of f and g, that is, by defining the functions from the primitive recursive basic
functions (succ,idk,j, zerok) by a number of of successive applications of composition and
(primitive) recursion.

• We define h by composition: h(x1, x2, x3) = succ(id3,3(x1, x2, x3)).

• We define f by recursion: f(x, 0) = id1,1(x) and f(x, y + 1) = h(x, y, f(x, y)).

• We define h′ by composition: h′(x1, x2, x3) = f(id3,1(x1, x2, x3), id3,3(x1, x2, x3)).

• We define g by recursion: g(x, 0) = zero1(x) and g(x, y + 1) = h′(x, y, f(x, y)).

The solution given above is very detailed and elaborated. The following solution is satis-
factory and will give full score:

• f(x, 0) = x and f(x, y + 1) = succ(f(x, y)).

• g(x, 0) = 0 and f(x, y + 1) = f(x, g(x, y)).

Problem 2

Let S be a unary function symbol, and let a and 0 be constant symbols. Let L be the
first-order language {a, 0, S}, and let Σ0 be the L-theory consisting of the following three
non-logical axioms:

(ax1) ∀x[0 6= Sx]

(ax2) ∀xy[Sx = Sy → x = y]
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(ax3) a = Sa.

Problem a

Give two L-structures A and B such that A |= Σ0 and B 6|= Σ0.

—————————- Solution:

Let A = N ∪ {α}. Let 0A = 0 and aA = α and

SA(x) =

{

x+ 1 if x ∈ N

x otherwise.

Let B = N. Let 0B = aB = 0 and SB(x) = x+ 1.

—————————–

Lemma 1. Let t1, . . . , tn be substitutable for respectively x1, . . . , xn in the L-
formula φ. Let φx1,...,xn

t1,...,tn
denote φ where x1, . . . , xn are replaced by respectively

t1, . . . , tn. Then, ∀x1, . . . , xnφ ⊢ φx1,...,xn

t1,...,tn
.

Problem b

Prove Lemma 1.

—————————- Solution:

We prove the lemma by induction on n.

Case n = 0: OK, since φ ⊢ φ.

Induction step:

1. ∀x1, . . . , xnφ ⊢ ∀xnφ
x1,...,xn−1

t1,...,tn−1
by ind. hyp.

2. ∀x1, . . . , xnφ ⊢ ∀xnφ
x1,...,xn−1

t1,...,tn−1
→ φ

x1,...,xn

t1,...,tn
Q1

3. ∀x1, . . . , xnφ ⊢ φx1,...,xn

t1,...,tn
1,2,PC

Problem c

Prove that Σ0 ⊢ 0 6= a by providing a derivation. The proof should not refer to any lemmas
or theorems from the textbook, but you can refer to Lemma 1.

—————————- Solution:

We give a Σ0-derivation of 0 6= a.
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1. 0 6= Sa ax1, Lemma 1.

2. a = Sa ax3

3. 0 = 0 by E1

4. 0 = 0 ∧ a = Sa → (0 = a → 0 = Sa) by E3

5. (0 = a → 0 = Sa) → (0 6= Sa → 0 6= a) PC (tautology)

6. 0 = 0 ∧ a = Sa → (0 6= Sa → 0 6= a) PC,4,5

7. 0 6= Sa → 0 6= a PC,2,3,6

8. 0 6= a PC,1,7

The derivation given above is detailed (yet it is not a full derivation). A derivation like e.g.
the following one, will give full score:

1. 0 6= Sa ax1, Lemma 1.

2. a = Sa ax3

3. a = Sa → (0 6= Sa → 0 6= a) by E3

4. 0 6= a PC,1,2,3

—————————-

Let 0 = 0 and n+ 1 = Sn.

Problem d

Prove that Σ0 ⊢ a 6= n for any n ∈ N. Use induction on n.

—————————- Solution:

Induction start: See the solution of Problem c.

Induction step:

1. a 6= n ind. hyp.

2. a = Sa ax3

3. Sa = Sn → a = n ax2, Lemma 1

4. Sa 6= Sn PC,1,3

5. a = Sa → (Sa 6= Sn → a 6= Sn) by E3

6. a 6= Sn PC,2,4,5

7. a 6= n+ 1 ≡, 6

—————————-

We extend L with a unary function symbol f and a binary relation symbol ⊑. Let Σ1 be
Σ0 extended with the non-logical axioms
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(ax4) x ⊑ y ↔ x = a ∨ x = y

(ax5) x ⊑ y → f(x) ⊑ f(y).

Lemma 2. For any L-formula φ, any L-sentence η and any variable x, we have

1. ⊢ φ if and only if ⊢ ∀xφ

2. η ⊢ φ if and only if ⊢ η → φ.

Problem e

Prove that
Σ1 ⊢ f(a) 6= a → ∀x[f(a) = f(x)]

by providing a derivation. You might find Lemma 1 and Lemma 2 helpful.

—————————- Solution:

Let Γ = Σ1∪{f(a) 6= a}. We give a Γ-derivation of ∀x[f(a) = f(x)]. By Lemma 2, we have
Σ1 ⊢ f(a) 6= a → ∀x[f(a) = f(x)].

1. f(a) 6= a Γ

2. a ⊑ x ↔ a = a ∨ a = x ax4, Lemma 1 and 2

3. a = a by E1

4. a ⊑ x PC,2,3

5. a ⊑ x → f(a) ⊑ f(x) ax5, Lem. 1 and Lem. 2.1

6. f(a) ⊑ f(x) PC,4,5

7. f(a) ⊑ f(x) ↔ f(a) = a ∨ f(a) = f(x) ax4, Lemma 1 and 2

8. f(a) = f(x) PC,1,6,7

9. ∀x[f(a) = f(x)] 8, Lemma 2

Problem f

Prove that there exists a closed quantifier-free formula ξ such that Σ1 6⊢ ξ and Σ1 6⊢ ¬ξ. (A
formula is closed when there are no free variables in the formula.)

—————————- Solution: We give two L-structures A and B such that

1. A |= Σ1 and B |= Σ1

2. A |= ¬f(a) = 0 and B |= f(a) = 0.

It follows by the Soundness Theorem for first-order logic that Σ1 6⊢ f(a) = 0 and Σ1 6⊢
¬f(a) = 0.

Let A = B = N ∪ {α}. Let 0A = 0B = 0 and aA = aB = α and

SA(x) = SB(x) =

{

x+ 1 if x ∈ N

x otherwise
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and
⊑A = ⊑B = { 〈x, y〉 | x = α ∨ x = y } .

Let fA(x) = x (the identity function) and fB(x) = 0 (the constant function 0).

—————————-

Let Σ2 be Σ1 extended with the non-logical axiom f(a) = 0.

Problem g

Prove the following assertion: For any closed L-term t there exists n ∈ N such that

Σ2 ⊢ t = n ∨ t = a .

—————————- Solution:

Claim 1. We have Σ2 ⊢ f(t) = 0 for any term t.

We prove the claim. It is trivial that Σ2 ⊢ f(a) = 0. Furthermore, we have Σ2 ⊢ 0 6= a and
Σ2 ⊢ f(a) 6= a → ∀x[f(a) = f(x)] by Problem c and e. Hence, by the Soundness Theorem
for first-order logic, Σ2 |= ∀x[f(x) = 0]. The claim follows by the Completeness Theorem
for first-order logic. This completes the proof of Claim 1.

Claim 2. For any closed term t, we have either (1) Σ2 ⊢ t = n for some n ∈ N

or (2) Σ2 ⊢ t = a.

We prove Claim 2 by induction over the structure of the term t. We will apply the Com-
pleteness Theorem for first-order logic without referring explicitly to this theorem.

The cases t ≡ a and t ≡ 0 hold by E1. Assume t ≡ St′. By the ind. hyp. we have either
(1) Σ2 ⊢ t′ = n for some n ∈ N or (2) Σ2 ⊢ t′ = a. In case (1), we have Σ2 ⊢ t = n+ 1 by
E2; in case (2), we have Σ2 ⊢ t = a by the non-logical axiom ax3. Assume t ≡ f(t′). We
have Σ2 ⊢ t = 0 by Claim 1. We do not need the induction hypothesis in this case. This
completes the proof of Claim 2.

Our proof calculus embodies the inference rule PC. Hence, it follows straightforwardly from
Claim 2 that for any closed term t there exists n ∈ N such that Σ2 ⊢ t = n ∨ t = a

—————————-

Let
Γ = {φ | φ is a closed quantifier-free formula and Σ2 ⊢ φ} .

Problem h

The set Γ can obviously be regarded as a language, that is, as a set of strings over an
alphabet. Prove that Γ is a recursive language.
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—————————- Solution:

Claim 3. For any closed terms t1 and t2, we have Σ2 ⊢ t1 = t2 or Σ2 ⊢ t1 6= t2

Claim 3 follows from Claim 2 and the following facts

• ⊢ x = x

• ⊢ x = y ∧ y = z → x = z

• ⊢ x = y → y = x

• Σ2 ⊢ m 6= n if m 6= n

• Σ2 ⊢ a 6= n for any n (Problem d)

Claim 4. For any closed quantifier-free formula φ, we have Σ2 ⊢ φ or Σ2 ⊢ ¬φ.

Prove Claim 4 by induction on the structure of φ. When φ is an atomic formula, the claim
holds by Claim 3. The cases when φ ≡ ¬ψ and φ ≡ ψ ∨ ξ are straightforward.

The set Γ is r.e., that is, a Turing machine can enumerate the strings in Γ. Let γ0, γ1, γ2, . . .

be such an enumeration. By Claim 4, we know that for any closed quantifier-free formula
φ there exists i ∈ N such that γi ≡ φ or γi ≡ ¬φ.

Hence, a Turing machine M can decide the language Γ. The Turing machine M works as
follows: First the Turing machine decides if its input w is a (syntactically correct) closed
quantifier-free formula; if not M rejects w. If w is a closed quantifier-free formula, then M
proceeds by generating the strings in the list γ0, γ1, γ2, . . . one by one. If w shows up, then
M accepts w; if ¬w shows up, then M rejects w. The Turing machine will either accepts
or reject w as either w or ¬w will show up. Thus, Γ is a recursive language.
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