Problem 1

Theorem (A). Let \mathcal{L} be a first-order language and let ϕ be an \mathcal{L} -formula such that the term t is substitutable for the variable x in ϕ . We have

$$T \vdash \phi \Rightarrow T \vdash \phi_t^x$$

for any \mathcal{L} -theory T.

Problem a

Prove Theorem (A) by constructing a derivation of ϕ_t^x from a derivation of ϕ . Name the (logical) axioms and the inference rules involved in the derivation.

Assume $T \vdash \phi$, and let y be a variable not occurring in ϕ . We have the following T-derivation.

1.	ϕ	
2.	$y=y\to\phi$	1,PC
3.	$y = y \to \forall x \phi$	QR, no free x in $y = y$
4.	y = y	E1
5.	$\forall x\phi$	4,3,PC
6.	$\forall x\phi \rightarrow \phi^x_t$	Q1
7.	ϕ^x_t	5,6,PC

Thus, $T \vdash \phi_t^x$.

The derivation above makes it easy to see that the following theorem also holds.

Theorem (A0). Let \mathcal{L} be a first-order language and let ϕ be an \mathcal{L} -formula such that the term t is substitutable for the variable x in ϕ . We have

 $T \vdash \phi \quad \Leftrightarrow \quad T \vdash \forall x \phi \; .$

for any \mathcal{L} -theory T.

Let \circ be a binary function symbol, and let a, b and e be constant symbols. Let \mathcal{L}_{BS} be the first-order language $\{a, b, e, \circ\}$, and let B be the \mathcal{L}_{BS} -theory consisting of the following non-logical axioms:

B1 $\forall x [x = e \circ x]$

- B2 $\forall x [x = x \circ e]$
- B3 $\forall xyz [x \circ (y \circ z) = (x \circ y) \circ z]$

B4 $\forall x [e \neq a \circ x \land e \neq b \circ x]$

B5 $\forall xy [x \neq y \rightarrow (a \circ x \neq a \circ y \land b \circ x \neq b \circ y)]$

Theorem (B). $B \vdash \forall x[e \circ x = x \circ e].$

Problem b

Prove Theorem (B) by giving a *B*-derivation of $\forall x [e \circ x = x \circ e]$. Name the logical and the non-logical axioms involved in the derivation. You may refer to Theorem (A). Hint: You will need the logical axiom

$$x_1 = y_1 \land x_2 = y_2 \to (x_1 = x_2 \to y_1 = y_2)$$
 (E3)

We have the following B-derivation.

1. $x = e \circ x$	B1, A0
2. $x = x \circ e$	B2, A0
3. $x_1 = y_1 \land x_2 = y_2 \to (x_1 = x_2 \to y_1 = y_2)$	E3
4. $x = e \circ x \land x = x \circ e \rightarrow (x = x \rightarrow e \circ x = x \circ e)$	3, A
5. $x = x$	E1
$6. e \circ x = x \circ e$	1,2,4,5,PC
7. $\forall x[e \circ x = x \circ e]$	5, A0

$\mathbf{Problem}\ \mathbf{c}$

Prove that

$$B \vdash \forall xy_1 \dots y_n \left[\left(y_n \circ (y_{n-1} \circ \dots (y_1 \circ e) \dots) \right) \circ x = \left(y_n \circ (y_{n-1} \circ \dots (y_1 \circ (x \circ e)) \dots) \right) \right]$$

Assume by induction hypothesis that

$$B \vdash \forall xy_1 \dots y_{n-1} \left[\left(y_{n-1} \circ \dots \left(y_1 \circ e \right) \dots \right) \circ x = \left(y_{n-1} \circ \dots \left(y_1 \circ \left(x \circ e \right) \right) \dots \right) \right]$$

Let $\sigma \equiv (y_{n-1} \circ \ldots (y_1 \circ e) \ldots)$ and $\tau \equiv (y_{n-1} \circ \ldots (y_1 \circ (x \circ e)) \ldots)$. Thus, we have

$$\forall xy_1 \dots y_{n-1} \left[\left(y_{n-1} \circ \dots \left(y_1 \circ e \right) \dots \right) \circ x = \left(y_{n-1} \circ \dots \left(y_1 \circ \left(x \circ e \right) \right) \dots \right) \right] = \\ \forall xy_1 \dots y_{n-1} \left[\sigma \circ x = \tau \right].$$

In the next derivation, we will use

(*) For any *B*-terms s, t, u, we have $B \vdash s = t \rightarrow t = s$ and

$$B \vdash s = t \land t = u \to s = u \; .$$

It is not necessary to prove (*).

We have

1.	$\sigma \circ x = \tau$	ind.hyp, A0
2.	$x \circ (y \circ z) = (x \circ y) \circ z$	B3, A0
3.	$y_n \circ (y \circ z) = (y_n \circ y) \circ z$	2, A
4.	$y_n \circ (\sigma \circ z) = (y_n \circ \sigma) \circ z$	3, A
5.	$y_n \circ (\sigma \circ x) = (y_n \circ \sigma) \circ x$	4, A
6.	$y_n = y_n$	E0
7.	$y_n = y_n \land (\sigma \circ x) = \tau \rightarrow y_n \circ (\sigma \circ x) = (y_n \circ \tau)$	E2
8.	$y_n \circ (\sigma \circ x) = (y_n \circ \tau)$	1, 6, 7, PC
9.	$(y_n \circ \sigma) \circ x = (y_n \circ \tau)$	5, 8, (*), PC
10.	$\forall x y_1 \dots y_{n-1} \left[\left(y_n \circ \sigma \right) \circ x = \left(y_n \circ \tau \right) \right]$	A0

Hence, the theorem holds as

$$\begin{aligned} \forall x y_1 \dots y_{n-1} \left[\left(y_n \circ \sigma \right) \circ x = \left(y_n \circ \tau \right) \right] &\equiv \\ \forall x y_1 \dots y_n \left[\left(y_n \circ \left(y_{n-1} \circ \dots \left(y_1 \circ e \right) \dots \right) \right) \circ x = \left(y_n \circ \left(y_{n-1} \circ \dots \left(y_1 \circ \left(x \circ e \right) \right) \dots \right) \right) \right]. \end{aligned}$$

We define the *prime terms* of the language \mathcal{L}_{BS} by

- e is a prime term
- $(a \circ t)$ is a prime term if t is a prime term
- $(b \circ t)$ is a prime term if t is a prime term.

Hence, e.g., $(a \circ (b \circ (b \circ e)))$ is a prime term whereas $((a \circ b) \circ (e \circ b))$ is not.

Theorem (C). For any variable-free \mathcal{L}_{BS} -term t there exists a prime term p such that $B \vdash t = p$.

Problem d

Prove Theorem (C).

—–- Solution:

We prove the theorem by induction over the structure of t. We have the following base cases

- $t \equiv e$
- $t \equiv a$
- $t \equiv b$

and the induction step $t \equiv t_1 \circ t_2$.

Case $t \equiv e$: We have $B \vdash e = e$ by (E1,A), and e is a prime term. Case $t \equiv a$: We have $B \vdash a = (a \circ e)$ by (B2,A,A0), and $(a \circ e)$ is a prime term.

Case $t \equiv b$: We have $B \vdash b = (b \circ e)$ by (B2,A,A0), and $(b \circ e)$ is a prime term.

 $t \equiv t_1 \circ t_2$: Strictly speaking we need the following slightly modified version of the statement in Problem **c**.

Lemma.

$$B \vdash \forall xy_1 \dots y_n \left[\left(y_n \circ (y_{n-1} \circ \dots (y_1 \circ e) \dots) \right) \circ x = \left(y_n \circ (y_{n-1} \circ \dots (y_1 \circ x) \dots) \right) \right]$$

Assume by the induction hypothesis that we have prime terms p_1, p_2 such that $B \vdash t_1 = p_1$ and $B \vdash t_2 = p_2$. Then, p_1 is of the form $p_1 \equiv (c_n \circ \dots (c_1 \circ e) \dots)$ where $c_i \in \{a, b\}$ for $i = 1, \dots n$. By Lemma, (A) and (A0), we have

$$B \vdash (c_n \circ (c_{n-1} \circ \dots (c_1 \circ e) \dots)) \circ p_2 = (c_n \circ (c_{n-1} \circ \dots (c_1 \circ p_2) \dots)).$$
^(†)

In the following derivation, we will also use

For any *B*-terms
$$s, t, u$$
, we have $B \vdash s = t \land t = u \to s = u$ (*)

Let $p \equiv (c_n \circ (c_{n-1} \circ \dots (c_1 \circ p_2) \dots))$. Then, p is a prime term, and we have

1.	$t_1 = p_1$	ind.hyp.
2.	$t_2 = p_2$	ind.hyp.
3.	$t_1 = p_1 \land t_2 = p_2 \rightarrow t_1 \circ t_2 = p_1 \circ p_2$	E2, A
4.	$t_1 \circ t_2 = p_1 \circ p_2$	1, 2, 3, PC
5.	$t_1 \circ t_2 = (c_n \circ (c_{n-1} \circ \dots (c_1 \circ e) \dots)) \circ p_2$	$p_1 \equiv \dots$
6.	$(c_n \circ (c_{n-1} \circ \dots (c_1 \circ e) \dots)) \circ p_2 = p$	(†)
7.	$t_1 \circ t_2 = p$	5, 6, (*), PC

Thus, we have $B \vdash t = p$ for some prime term p.

Problem 2

We will use some notation from Levis & Papadimitriou's textbook: Σ^* denotes the set of all sequences over the alphabet Σ , and $|\alpha|$ denotes the length of the string α . We use ϵ to denote the empty string, and $\alpha \cdot \beta$ denotes the concatenation of the strings α and β . Occasionally,

we will write $\alpha\beta$ in place of $\alpha \cdot \beta$. When convenient, we may also drop parenthesis and write e.g. $\alpha\beta\gamma$ in place of $(\alpha\beta)\gamma$.

We will now define the \mathcal{L}_{BS} -structure \mathfrak{B} . The universe of \mathfrak{B} is the set $\{0,1\}^*$, that is, the set of all bit sequences: $\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots$ Furthermore,

- $e^{\mathfrak{B}} = \epsilon$ (the empty string)
- $a^{\mathfrak{B}} = 0$ (the string where the one and only bit is 0)
- $b^{\mathfrak{B}} = 1$ (the string where the one and only bit is 1)

and $\circ^{\mathfrak{B}} = \cdot$ (the concatenation operator). Hence, we have e.g. that $\epsilon \circ^{\mathfrak{B}} 100 = 100 \circ^{\mathfrak{B}} \epsilon = 100$ and $101 \circ 1001 = 1011001$. It is obvious that \mathfrak{B} is a model for the theory *B*, that is, $\mathfrak{B} \models B$.

Problem a

Is B a consistent theory? Give a short answer, and justify the answer by referring to a theorem in Leary's textbook.

—- Solution:

We have $\mathfrak{B} \models B$. Thus, B has a model, and then by the Soundness Theorem for first-order logic, B is consistent.

Problem b

Do we have $B \vdash a \neq b$? Do we have $B \vdash a = b$? Justify your answers.

——–- Solution:

We have $\mathfrak{B} \models B$ and $\mathfrak{B} \not\models a = b$, and thus, $B \not\models a = b$ by the Soundness Theorem for first-order logic.

We will now define the \mathcal{L}_{BS} -structure \mathfrak{A} . The universe of \mathfrak{A} is the set $\{0\}^*$, that is, the set containing the following sequences: $\epsilon, 0, 00, 000, 0000, \ldots$. Furthermore,

- $e^{\mathfrak{A}} = \epsilon$
- $a^{\mathfrak{A}} = 0$
- $b^{\mathfrak{A}} = 0$

and $\circ^{\mathfrak{A}} = \cdot$ (the concatenation operator).

Now, we have $\mathfrak{A} \models B$ and $\mathfrak{A} \not\models a \neq b$, and thus, $B \not\models a \neq b$ by the Soundness Theorem for first-order logic.

We say that α is a sub string of β iff there exists γ_1 and γ_2 such that $\gamma_1 \alpha \gamma_2 = \beta$.

$\mathbf{Problem}\ \mathbf{c}$

Give an \mathcal{L}_{BS} -formula θ such that

 $\mathfrak{B} \models \theta[s[y|\alpha][x|\beta]] \Leftrightarrow \alpha \text{ is a sub string of } \beta$.

Give an \mathcal{L}_{BS} -formula η such that

$$\mathfrak{B} \models \eta[s[x|\alpha]] \quad \Leftrightarrow \quad \alpha \in \{0\}^*$$

——- Solution:

$$\theta(y,x) \equiv \exists uv[(u \circ y) \circ v = x] \text{ and } \eta(x) \equiv \neg \theta(b,x).$$

Problem d

Give an \mathcal{L}_{BS} -formula Add such that $\mathfrak{B} \models Add[s[x|\alpha]]$ holds if and only if

- α is of the form $\alpha \equiv 1\gamma_1 1\gamma_2 1\gamma_3 1$ where $\gamma_1, \gamma_2, \gamma_3 \in \{0\}^*$, and
- $|\gamma_1| + |\gamma_2| = |\gamma_3|.$

(Hint: Use the formulas from Problem **b**.)

-- Solution:

 $Add(x) \equiv \exists uvw [\eta(u) \land \eta(v) \land \eta(w) \land x = b \circ u \circ b \circ v \circ b \circ w \circ b \land u \circ v = w]$

Theorem (D). There exist \mathcal{L}_{BS} -formulas Mul and Exp such that

- $\mathfrak{B} \models Mul[s[x|\alpha]]$ if and only if - α is of the form $\alpha \equiv 1\gamma_1 1\gamma_2 1\gamma_3 1$ where $\gamma_1, \gamma_2, \gamma_3 \in \{0\}^*$, and - $|\gamma_1| \times |\gamma_2| = |\gamma_3|$
- $\mathfrak{B} \models Exp[s[x|\alpha]]$ if and only if $-\alpha$ is of the form $\alpha \equiv 1\gamma_1 1\gamma_2 1\gamma_3 1$ where $\gamma_1, \gamma_2, \gamma_3 \in \{0\}^*$, and $-|\gamma_1|^{|\gamma_2|} = |\gamma_3|.$

The proof of Theorem (**D**) is involved, and you are *not* asked to prove this theorem.

Let \mathcal{L}_{NT} be the first-order language of number theory, that is, $\mathcal{L}_{NT} = \{0, S, +, \times, E, <\}$, and let \mathfrak{N} be the standard \mathcal{L}_{NT} -structure. Both \mathcal{L}_{NT} and \mathfrak{N} are known from Leary's textbook. Furthermore, let Σ be an alphabet containing all the symbols of the first-order languages \mathcal{L}_{NT} and \mathcal{L}_{BS} .

Problem e

Argue that there exists a recursive (Turing computable) function $f: \Sigma^* \to \Sigma^*$ such that for any \mathcal{L}_{NT} -sentence ϕ

 $\mathfrak{N} \models \phi \quad \Leftrightarrow \quad \mathfrak{B} \models f(\phi) \; .$

You may refer to Theorem (D).

——–- Solution:

We say that a \mathcal{L}_{NT} -formula ϕ is *pure* if any atomic sub formula of ϕ is in one of the forms

- 0 = x
- x = y
- x < y
- S(x) = y
- x + y = z
- $x \times y = z$
- x E y = z.

For any \mathcal{L}_{NT} -formula ϕ , there exists a pure formula ϕ_0 such that $\mathfrak{N} \models \phi \leftrightarrow \phi_0$ (we even have $\models \phi \leftrightarrow \phi_0$). Moreover, such a pure formula ϕ_0 can be constructed from ϕ by an algorithm, and thus, we have a recursive function *pure* such that $pure(\phi) = \phi_0$.

[*Example:* Let $\phi \equiv s(s(0)) < x + y$, and let

$$\phi \equiv \exists z_0, z_1, z_2, z_3 \left[0 = z_0 \land S(z_0) = z_1 \land S(z_1) = z_2 \land x + y = z_3 \land z_2 < z_3 \right].$$

Then, ϕ_0 is a pure formula such that $\mathfrak{N} \models \phi \leftrightarrow \phi_0$. End of example.] Next, we define a function f' recursively over the structure of a pure formula:

- $f'((\alpha \lor \beta)) = (f'(\alpha) \lor f'(\beta))$
- $f'((\neg \alpha)) = (\neg f'(\alpha))$
- $f'((\forall x)(\alpha)) = (\forall x)((\eta(x) \to f'(\alpha)) \land (\neg \eta(x) \to f'(\alpha_e^x)))$ where η is the formula from Problem **c**, and α_e^x is α where all free occurrences of x is replaced by the term e. (This definition reflects that the sequence 0^n represents the natural number n, and any sequence containing the bit 1 represents the natural number 0.)

For the atoms we define f' as follows:

- f'(0 = x) = e = x
- f'(x=y) = x = y
- $f'(x < y) = \exists z [z \neq e \land x \circ z = y]$
- $f'(S(x) = y) = x \circ a = y$
- $f'(x + y = z) = Add(b \circ x \circ b \circ y \circ b \circ z \circ b)$ where Add is the formula from Problem **d**
- $f'(x \times y = z) = Mul(b \circ x \circ b \circ y \circ b \circ z \circ b)$ where Mul is the formula in Theorem (D)
- $f'(x E y = z) = Exp(b \circ x \circ b \circ y \circ b \circ z \circ b)$ where Exp is the formula in Theorem (D).

The function f' is computable, and for any pure formula ϕ , we have

$$\mathfrak{N} \models \phi \iff \mathfrak{B} \models f'(\phi)$$
.

Finally, let $f(\phi) = f'(pure(\phi))$. Then, f is a recursive function such that

$$\mathfrak{N} \models \phi \; \Leftrightarrow \; \mathfrak{B} \models f(\phi) \; .$$

Let

 $Th(\mathfrak{B}) = \{ \phi \mid \phi \text{ is an } \mathcal{L}_{BS} \text{-sentence and } \mathfrak{B} \models \phi \}$

and

 $Pr(B) = \{ \phi \mid \phi \text{ is an } \mathcal{L}_{BS} \text{-sentence and } B \vdash \phi \}.$

Problem f

Is the set $Th(\mathfrak{B})$ recursive (decidable)? Is the set $Th(\mathfrak{B})$ recursively enumerable (semi-decidable)? Is the set Pr(B) recursively enumerable (semi-decidable)? Justify your answers.

-- Solution:

The set $Th(\mathfrak{B})$ recursive is not recursive. Justification: Assume $Th(\mathfrak{B})$ is recursive. Let f be the computable function from Problem **e**. We can decide if $\mathfrak{N} \models \phi$ for an arbitrary sentence ϕ by the following algorithm: Compute $f(\phi)$ and check if $f(\phi) \in Th(\mathfrak{B})$. If $f(\phi) \in Th(\mathfrak{B})$, we have $\mathfrak{N} \models \phi$; and if $f(\phi) \notin Th(\mathfrak{B})$, we have $\mathfrak{N} \nvDash \phi$. Thus, we have a recursive set of axioms T such that $T \vdash \phi$ iff $\mathfrak{N} \models \phi$. (Simply let T be set of all sentences true in \mathfrak{N} .) This contradicts Gödel's (first) Incompleteness Theorem.

The set $Th(\mathfrak{B})$ is not recursively enumerable. Justification: Assume $Th(\mathfrak{B})$ is recursively enumerable. Then we can decide if $\psi \in Th(\mathfrak{B})$ (for an arbitrary sentence ψ) by enumerating all the the sentences $Th(\mathfrak{B})$. Either ψ or $\neg \psi$ will show in the enumeration. If ψ shows up, then $\psi \in Th(\mathfrak{B})$; and if $\neg \psi$ shows up, then $\psi \notin Th(\mathfrak{B})$. This contradicts that $Th(\mathfrak{B})$ is not recursive. (Indeed, for any language \mathcal{L} and any \mathcal{L} -structure \mathfrak{A} , the set $Th(\mathfrak{A})$ is recursively enumerable if and only if it is recursive.)

The set Pr(B) is recursively enumerable since the set B (the axioms) is recursively enumerable.

Problem g

Is the theory $B \cup \{a \neq b\}$ complete or incomplete? Justify your answer.

-- Solution:

The theory is incomplete. Justification: We have $\mathfrak{B} \models B \cup \{a \neq b\}$. If the theory were complete, the set $Th(\mathfrak{B})$ would be recursive.