Problem 1

Theorem (A). Let £ be a first-order language and let ¢ be an L£-formula such
that the term ¢ is substitutable for the variable z in ¢. We have

TH¢ = TF¢f
for any L-theory T.

Problem a

Prove Theorem (A) by constructing a derivation of ¢7 from a derivation of ¢. Name the
(logical) axioms and the inference rules involved in the derivation.

- Solution:

Assume T + ¢, and let y be a variable not occurring in ¢. We have the following T-
derivation.

L ¢

2. y=y— ¢ 1,PC

3. y=y— Vxo QR, no free z iny =y
4. y=y E1l

5. Vxo 4,3,PC

6. Voo — of Q1

7. ¢f 5,6,PC

Thus, T F ¢7.

The derivation above makes it easy to see that the following theorem also holds.

Theorem (AO0). Let £ be a first-order language and let ¢ be an L-formula
such that the term ¢ is substitutable for the variable x in ¢. We have

TH¢ & TFVré.

for any L-theory T

Let o be a binary function symbol, and let a, b and e be constant symbols. Let Lpg be
the first-order language {a,b, e, 0}, and let B be the Lpg-theory consisting of the following
non-logical axioms:

Bl Vz [z =eox]
B2 Vz[z=zoe€]

B3 Vzyz[zo(yoz)=(roy)oz]



B4 Vz[e#aox N e#boux]

B5 Veylx#y — (aox#aoy ANbox #boy)]
Theorem (B). BFVzjeox=zoel.

Problem b

Prove Theorem (B) by giving a B-derivation of Vz[e oz = x oe|. Name the logical and the
non-logical axioms involved in the derivation. You may refer to Theorem (A). Hint: You

will need the logical axiom

r1=y1 N xa=y2s — (r1=x2 — Y1 =1y2)

- Solution:

We have the following B-derivation.

1. z=eo0x

r=uzxoe

T1=y1 NTa=y2 — (T1=22 — y1=12)
r=eox Nx=x0e — (x=x — eox=uxoe)
r=ux

EoOxr =x0e

NS o e L

Va[eox =z o¢]

Problem c

Prove that

(E3)

B1, A0
B2, A0
E3

3, A

El
1,2,4,5,PC
5,A0

BEYzyr...yn[(yno (Yn—10...(y10€)...))ox = (yno (Yyn—10...(y10(x0oe))...))]

for any n > 0. Hints: Use induction on n. The case n = 0 follows from Theorem (B).

- Solution:

Assume by induction hypothesis that

BEYzyr...yn—1][(Wn-10...(y10€)...) oz = (yp—10...(y10(xoe))...)]

Let 0 = (yp—10...(y10€e)...)and 7 = (yp—10...(y1 0 (xoe))...). Thus, we have

Voyr .o yYn-1|(Wn-10...(y10€)...) ox = (yp_10...(y10(zoe))...)] =
nyl...yn_l[aox:T].

In the next derivation, we will use



(*) For any B-terms s,t,u, we have BFs=1t—t=s and

BFEs=tANt=u—s=u.

It is not necessary to prove (*).

We have

1. ocox=r71 ind.hyp, A0
2. zo(yoz)=(roy)oz B3, A0

3. yno(yoz)=(ypnoy)oz 2, A

4. ypo(coz)=(ypo00)oz 3, A

5. ypo(ocox)=(ypoo)ox 4, A

6. Yn=19Yn EO

7. Yn=yn A (cox)=7 — yyo(ocox)=(y,o7) E2

8 ypo(oox)=(y,oT) 1,6, 7, PC
9. (ypoo)ox = (ypoT) 5,8, (¥), PC
10. Vzyi...yn—1[(ynoo)ox = (ypoT)] A0

Hence, the theorem holds as

Veyr...yn—1[(ynoo)ox = (ypo7)] =
Vayr .. yn [(yn o (Yn—10...(y10€)...))ox = (yno(yn—10... (1o (zoe))...))].

We define the prime terms of the language Lpg by

e ¢ is a prime term
e (aot)is a prime term if ¢ is a prime term

e (bot) is a prime term if ¢ is a prime term.
Hence, e.g., (ao (bo (boe))) is a prime term whereas ((a o b) o (e 0 b)) is not.

Theorem (C). For any variable-free Lpg-term t there exists a prime term p
such that B+t =p.

Problem d
Prove Theorem (C).

- Solution:

We prove the theorem by induction over the structure of t. We have the following base
cases



and the induction step t = ¢ o to.

Case t = e: We have B+ e =¢e by (E1,A), and e is a prime term.

Case t = a: We have B+ a = (aoe) by (B2,A,A0), and (aoe) is a prime term.
Case t = b: We have B+ b= (boe) by (B2,A,A0), and (boe) is a prime term.

t = t1oty: Strictly speaking we need the following slightly modified version of the statement
in Problem c.

Lemma.

BEVYzyr...yn[(Yno(yn—10...(y10€)...))ox = (yno(yn—10...(y10x)...))]
Assume by the induction hypothesis that we have prime terms p1, po such that B F t; = py
and B I ta = py. Then, p; is of the form p; = (¢, 0...(c1 0€)...) where ¢; € {a,b} for
i=1,...n. By Lemma, (A) and (A0), we have

BlF(cho(ep_10...(c1oe)...))ops = (cpo(cp_10...(c1ops)...)). (1)
In the following derivation, we will also use

For any B-terms s,t,u, we have BFs=tAt=u—s=u *)

Let p=(cho(cp_10...(c1opz)...)). Then, p is a prime term, and we have

1. t1=pm ind.hyp.

2. toa=po ind.hyp.

3. ti=p1 Nta=p2 — tliolg=piops E2, A

4. tyoty =piopo 1,2, 3, PC
5. t1ota=(cpo(cp_10...(c1oe)...))ops PL=...

6. (cho(ep—10...(c1oe)...))opy = p (1)

7. tiota=p 5, 6, (*), PC

Thus, we have B+t = p for some prime term p.

Problem 2

We will use some notation from Levis & Papadimitriou’s textbook: ¥* denotes the set of all
sequences over the alphabet ¥, and |«| denotes the length of the string oe. We use € to denote
the empty string, and « - § denotes the concatenation of the strings a and 3. Occasionally,



we will write o in place of - 3. When convenient, we may also drop parenthesis and write
e.g. afy in place of (af)y.

We will now define the £pg-structure B. The universe of B is the set {0, 1}*, that is, the
set of all bit sequences: ¢,0,1,00,01,10,11,000,001,.... Furthermore,

o ¢® = ¢ (the empty string)
e a® = 0 (the string where the one and only bit is 0)

e b2 =1 (the string where the one and only bit is 1)

and o® = - (the concatenation operator). Hence, we have e.g. that 0100 = 1000 ¢ = 100
and 10101001 = 1011001. It is obvious that 9B is a model for the theory B, that is, B = B.

Problem a

Is B a consistent theory? Give a short answer, and justify the answer by referring to a
theorem in Leary’s textbook.

- Solution:

We have B |= B. Thus, B has a model, and then by the Soundness Theorem for first-order
logic, B is consistent.

Problem b
Do we have B - a # b7 Do we have B I a = b7 Justify your answers.

- Solution:
We have B = B and B [~ a = b, and thus, B I/ a = b by the Soundness Theorem for
first-order logic.

We will now define the £pg-structure 2. The universe of 2 is the set {0}*, that is, the set
containing the following sequences: ¢, 0, 00,000, 0000, .. .. Furthermore,

o P =c¢
e a?=0
° b*=0
and o® = . (the concatenation operator).

Now, we have A = B and 2 [~ a # b, and thus, B I/ a # b by the Soundness Theorem for
first-order logic.

We say that « is a sub string of 3 iff there exists 1 and 5 such that yyavy = 3.
Problem c

Give an Lpgg-formula 6 such that

B = 0[s[y|a][z|F]] < « is a sub string of .



Give an Lpg-formula 1 such that

B = lslzle]] & ac{0}".

- Solution:

O(y,z) = Juwv[(uoy)ov==x] and n(z) = —0(b,x) .

Problem d
Give an Lpg-formula Add such that B = Add[s[x|a]] holds if and only if

e « is of the form o = 1911721731 where 1,792,753 € {0}*, and
o ml+ el =l

(Hint: Use the formulas from Problem b.)

- Solution:

Add(z) = Juovw[n(u) A nv) A n(w) AN z=bouobovobowob AN uov=uw]

Theorem (D). There exist £pg-formulas Mul and Ezp such that

e B = Muls[z|a]] if and only if
— « is of the form a = 1791 1v217v31 where 71, v2,v3 € {0}*, and
= |l X |v2| = sl

e B = Exp[s[z|a]] if and only if
— « is of the form a = 17911721731 where 71, v2,v3 € {0}*, and
= |2l = |yal.

The proof of Theorem (D) is involved, and you are not asked to prove this theorem.

Let L7 be the first-order language of number theory, that is, Ly = {0, S, +, X, E, <}, and
let 91 be the standard Lyp-structure. Both £y and 91 are known from Leary’s textbook.
Furthermore, let ¥ be an alphabet containing all the symbols of the first-order languages
Lyt and Lpg.

Problem e

Argue that there exists a recursive (Turing computable) function f : ¥* — ¥* such that for
any Lyp-sentence ¢

NEo = BE[f(9).
You may refer to Theorem (D).

- Solution:

We say that a £Lyp-formula ¢ is pure if any atomic sub formula of ¢ is in one of the forms



o=y
o r <y
o S(x)=y
e rt+y==z

e TXY=2

e v Fy==z.

For any £ yp-formula ¢, there exists a pure formula ¢ such that 9 = ¢ < ¢g (we even have
E ¢ < ¢0). Moreover, such a pure formula ¢ can be constructed from ¢ by an algorithm,
and thus, we have a recursive function pure such that pure(¢) = ¢o.

[Example: Let ¢ = s(s(0)) < x +y, and let
¢ =320,21,22,23[0=20 N S(z0) =21 N S(z1) =22 Nz +y=23 N 22 <2z3].
Then, ¢g is a pure formula such that M = ¢ «— ¢g. End of example.]
Next, we define a function f’ recursively over the structure of a pure formula:
o [((aVvpP)=(f(a)V[(B)
o [((ma)) = (=f"(a))
e f(Vz)(a)) = (Va)((n(x) — f'(a)) A (—m(x) — f'(a?))) where 7 is the formula from

Problem c, and af is o where all free occurrences of x is replaced by the term e.
(This definition reflects that the sequence 0" represents the natural number n, and
any sequence containing the bit 1 represents the natural number 0.)

For the atoms we define f’ as follows:

o fllxt+y=2)=Addlboxroboyobozob) where Add is the formula from Problem d
xxy=z)=Mulboxroboyobozob) where Mulis the formula in Theorem (D)

o f(xEy=2)=Exp(boxoboyobozob) where Ezp is the formula in Theorem (D).



The function f’ is computable, and for any pure formula ¢, we have
NEG & BE[f(9).
Finally, let f(¢) = f'(pure(¢)). Then, f is a recursive function such that

NEP & BEf(9).

Let

Th(B) = {¢ | ¢is an Lpg-sentence and B = ¢ }
and

Pr(B) = {¢ | ¢is an Lpg-sentence and B+ ¢ } .
Problem f

Is the set Th(B) recursive (decidable)? Is the set Th(*B) recursively enumerable (semi-
decidable)? Is the set Pr(B) recursively enumerable (semi-decidable)? Justify your answers.

- Solution:

The set Th(B) recursive is not recursive. Justification: Assume Th(B) is recursive. Let
f be the computable function from Problem e. We can decide if 9 = ¢ for an arbitrary
sentence ¢ by the following algorithm: Compute f(¢) and check if f(¢) € Th(B). If
f(@) € Th(®B), we have M |= ¢; and if f(¢) & Th(B), we have N & ¢. Thus, we have a
recursive set of axioms T such that T F ¢ iff M = ¢. (Simply let T be set of all sentences
true in M.) This contradicts Godel’s (first) Incompleteness Theorem.

The set Th(®B) is not recursively enumerable. Justification: Assume Th(*B) is recursively
enumerable. Then we can decide if ¢ € Th(B) (for an arbitrary sentence ) by enumerating
all the the sentences Th(8). Either ¢) or =) will show in the enumeration. If 1) shows up,
then ¢ € Th(®B); and if —1) shows up, then ¢ & Th(B). This contradicts that Th(*B) is not
recursive. (Indeed, for any language £ and any L-structure 2, the set Th(2l) is recursively
enumerable if and only if it is recursive.)

The set Pr(B) is recursively enumerable since the set B (the axioms) is recursively enu-
merable.

Problem g
Is the theory B U {a # b} complete or incomplete? Justify your answer.
- Solution:

The theory is incomplete. Justification: We have B = B U {a # b}. If the theory were
complete, the set Th(B) would be recursive.




