
Problem 1

Theorem (A). Let L be a first-order language and let φ be an L-formula such
that the term t is substitutable for the variable x in φ. We have

T ⊢ φ ⇒ T ⊢ φx
t

for any L-theory T .

Problem a

Prove Theorem (A) by constructing a derivation of φx
t from a derivation of φ. Name the

(logical) axioms and the inference rules involved in the derivation.

—————————- Solution:

Assume T ⊢ φ, and let y be a variable not occurring in φ. We have the following T -
derivation.

1. φ

2. y = y → φ 1,PC

3. y = y → ∀xφ QR, no free x in y = y

4. y = y E1

5. ∀xφ 4,3,PC

6. ∀xφ→ φx
t Q1

7. φx
t 5,6,PC

Thus, T ⊢ φx
t .

The derivation above makes it easy to see that the following theorem also holds.

Theorem (A0). Let L be a first-order language and let φ be an L-formula
such that the term t is substitutable for the variable x in φ. We have

T ⊢ φ ⇔ T ⊢ ∀xφ .

for any L-theory T .

————————————-

Let ◦ be a binary function symbol, and let a, b and e be constant symbols. Let LBS be
the first-order language {a, b, e, ◦}, and let B be the LBS-theory consisting of the following
non-logical axioms:

B1 ∀x [x = e ◦ x ]

B2 ∀x [x = x ◦ e ]

B3 ∀xyz [x ◦ (y ◦ z) = (x ◦ y) ◦ z ]
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B4 ∀x [ e 6= a ◦ x ∧ e 6= b ◦ x ]

B5 ∀xy [x 6= y → (a ◦ x 6= a ◦ y ∧ b ◦ x 6= b ◦ y) ]

Theorem (B). B ⊢ ∀x[e ◦ x = x ◦ e].

Problem b

Prove Theorem (B) by giving a B-derivation of ∀x[e ◦ x = x ◦ e]. Name the logical and the
non-logical axioms involved in the derivation. You may refer to Theorem (A). Hint: You
will need the logical axiom

x1 = y1 ∧ x2 = y2 → (x1 = x2 → y1 = y2) (E3)

—————————- Solution:

We have the following B-derivation.

1. x = e ◦ x B1, A0

2. x = x ◦ e B2, A0

3. x1 = y1 ∧ x2 = y2 → (x1 = x2 → y1 = y2) E3

4. x = e ◦ x ∧ x = x ◦ e → (x = x → e ◦ x = x ◦ e) 3, A

5. x = x E1

6. e ◦ x = x ◦ e 1,2,4,5,PC

7. ∀x[e ◦ x = x ◦ e] 5,A0

—————————-

Problem c

Prove that

B ⊢ ∀xy1 . . . yn [ (yn ◦ (yn−1 ◦ . . . (y1 ◦ e) . . .)) ◦ x = (yn ◦ (yn−1 ◦ . . . (y1 ◦ (x ◦ e)) . . .)) ]

for any n ≥ 0. Hints: Use induction on n. The case n = 0 follows from Theorem (B).

—————————- Solution:

Assume by induction hypothesis that

B ⊢ ∀xy1 . . . yn−1 [ (yn−1 ◦ . . . (y1 ◦ e) . . .) ◦ x = (yn−1 ◦ . . . (y1 ◦ (x ◦ e)) . . .) ]

Let σ ≡ (yn−1 ◦ . . . (y1 ◦ e) . . .) and τ ≡ (yn−1 ◦ . . . (y1 ◦ (x ◦ e)) . . .). Thus, we have

∀xy1 . . . yn−1 [ (yn−1 ◦ . . . (y1 ◦ e) . . .) ◦ x = (yn−1 ◦ . . . (y1 ◦ (x ◦ e)) . . .) ] ≡

∀xy1 . . . yn−1 [σ ◦ x = τ ] .

In the next derivation, we will use
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(*) For any B-terms s, t, u, we have B ⊢ s = t→ t = s and

B ⊢ s = t ∧ t = u→ s = u .

It is not necessary to prove (*).

We have

1. σ ◦ x = τ ind.hyp, A0

2. x ◦ (y ◦ z) = (x ◦ y) ◦ z B3, A0

3. yn ◦ (y ◦ z) = (yn ◦ y) ◦ z 2, A

4. yn ◦ (σ ◦ z) = (yn ◦ σ) ◦ z 3, A

5. yn ◦ (σ ◦ x) = (yn ◦ σ) ◦ x 4, A

6. yn = yn E0

7. yn = yn ∧ (σ ◦ x) = τ → yn ◦ (σ ◦ x) = (yn ◦ τ) E2

8. yn ◦ (σ ◦ x) = (yn ◦ τ) 1, 6, 7, PC

9. (yn ◦ σ) ◦ x = (yn ◦ τ) 5, 8, (*), PC

10. ∀xy1 . . . yn−1 [ (yn ◦ σ) ◦ x = (yn ◦ τ) ] A0

Hence, the theorem holds as

∀xy1 . . . yn−1 [ (yn ◦ σ) ◦ x = (yn ◦ τ) ] ≡

∀xy1 . . . yn [ (yn ◦ (yn−1 ◦ . . . (y1 ◦ e) . . .)) ◦ x = (yn ◦ (yn−1 ◦ . . . (y1 ◦ (x ◦ e)) . . .)) ] .

We define the prime terms of the language LBS by

• e is a prime term

• (a ◦ t) is a prime term if t is a prime term

• (b ◦ t) is a prime term if t is a prime term.

Hence, e.g., (a ◦ (b ◦ (b ◦ e))) is a prime term whereas ((a ◦ b) ◦ (e ◦ b)) is not.

Theorem (C). For any variable-free LBS-term t there exists a prime term p

such that B ⊢ t = p.

Problem d

Prove Theorem (C).

—————————- Solution:

We prove the theorem by induction over the structure of t. We have the following base
cases
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• t ≡ e

• t ≡ a

• t ≡ b

and the induction step t ≡ t1 ◦ t2.

Case t ≡ e: We have B ⊢ e = e by (E1,A), and e is a prime term.

Case t ≡ a: We have B ⊢ a = (a ◦ e) by (B2,A,A0), and (a ◦ e) is a prime term.

Case t ≡ b: We have B ⊢ b = (b ◦ e) by (B2,A,A0), and (b ◦ e) is a prime term.

t ≡ t1◦t2: Strictly speaking we need the following slightly modified version of the statement
in Problem c.

Lemma.

B ⊢ ∀xy1 . . . yn [ (yn ◦ (yn−1 ◦ . . . (y1 ◦e) . . .))◦x = (yn ◦ (yn−1 ◦ . . . (y1 ◦x) . . .)) ]

Assume by the induction hypothesis that we have prime terms p1, p2 such that B ⊢ t1 = p1

and B ⊢ t2 = p2. Then, p1 is of the form p1 ≡ (cn ◦ . . . (c1 ◦ e) . . .) where ci ∈ {a, b} for
i = 1, . . . n. By Lemma, (A) and (A0), we have

B ⊢ (cn ◦ (cn−1 ◦ . . . (c1 ◦ e) . . .)) ◦ p2 = (cn ◦ (cn−1 ◦ . . . (c1 ◦ p2) . . .)) . (†)

In the following derivation, we will also use

For any B-terms s, t, u, we have B ⊢ s = t ∧ t = u→ s = u (*)

Let p ≡ (cn ◦ (cn−1 ◦ . . . (c1 ◦ p2) . . .)). Then, p is a prime term, and we have

1. t1 = p1 ind.hyp.

2. t2 = p2 ind.hyp.

3. t1 = p1 ∧ t2 = p2 → t1 ◦ t2 = p1 ◦ p2 E2, A

4. t1 ◦ t2 = p1 ◦ p2 1, 2, 3, PC

5. t1 ◦ t2 = (cn ◦ (cn−1 ◦ . . . (c1 ◦ e) . . .)) ◦ p2 p1 ≡ . . .

6. (cn ◦ (cn−1 ◦ . . . (c1 ◦ e) . . .)) ◦ p2 = p (†)

7. t1 ◦ t2 = p 5, 6, (*), PC

Thus, we have B ⊢ t = p for some prime term p.

Problem 2

We will use some notation from Levis & Papadimitriou’s textbook: Σ∗ denotes the set of all
sequences over the alphabet Σ, and |α| denotes the length of the string α. We use ǫ to denote
the empty string, and α · β denotes the concatenation of the strings α and β. Occasionally,
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we will write αβ in place of α ·β. When convenient, we may also drop parenthesis and write
e.g. αβγ in place of (αβ)γ.

We will now define the LBS-structure B. The universe of B is the set {0, 1}∗, that is, the
set of all bit sequences: ǫ, 0, 1, 00, 01, 10, 11, 000, 001, . . .. Furthermore,

• eB = ǫ (the empty string)

• aB = 0 (the string where the one and only bit is 0)

• bB = 1 (the string where the one and only bit is 1)

and ◦B = · (the concatenation operator). Hence, we have e.g. that ǫ◦B100 = 100◦Bǫ = 100
and 101◦1001 = 1011001. It is obvious that B is a model for the theory B, that is, B |= B.

Problem a

Is B a consistent theory? Give a short answer, and justify the answer by referring to a
theorem in Leary’s textbook.

—————————- Solution:

We have B |= B. Thus, B has a model, and then by the Soundness Theorem for first-order
logic, B is consistent.

—————————

Problem b

Do we have B ⊢ a 6= b? Do we have B ⊢ a = b? Justify your answers.

—————————- Solution:

We have B |= B and B 6|= a = b, and thus, B 6⊢ a = b by the Soundness Theorem for
first-order logic.

We will now define the LBS-structure A. The universe of A is the set {0}∗, that is, the set
containing the following sequences: ǫ, 0, 00, 000, 0000, . . .. Furthermore,

• eA = ǫ

• aA = 0

• bA = 0

and ◦A = · (the concatenation operator).

Now, we have A |= B and A 6|= a 6= b, and thus, B 6⊢ a 6= b by the Soundness Theorem for
first-order logic.

—————————-

We say that α is a sub string of β iff there exists γ1 and γ2 such that γ1αγ2 = β.

Problem c

Give an LBS-formula θ such that

B |= θ[s[y|α][x|β]] ⇔ α is a sub string of β .
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Give an LBS-formula η such that

B |= η[s[x|α]] ⇔ α ∈ {0}∗ .

—————————- Solution:

θ(y, x) ≡ ∃uv[(u ◦ y) ◦ v = x] and η(x) ≡ ¬θ(b, x) .

—————————-

Problem d

Give an LBS-formula Add such that B |= Add[s[x|α]] holds if and only if

• α is of the form α ≡ 1γ11γ21γ31 where γ1, γ2, γ3 ∈ {0}∗, and

• |γ1| + |γ2| = |γ3|.

(Hint: Use the formulas from Problem b.)

—————————- Solution:

Add(x) ≡ ∃uvw [ η(u) ∧ η(v) ∧ η(w) ∧ x = b ◦ u ◦ b ◦ v ◦ b ◦ w ◦ b ∧ u ◦ v = w ]

—————————

Theorem (D). There exist LBS-formulas Mul and Exp such that

• B |= Mul[s[x|α]] if and only if

– α is of the form α ≡ 1γ11γ21γ31 where γ1, γ2, γ3 ∈ {0}∗, and

– |γ1| × |γ2| = |γ3|

• B |= Exp[s[x|α]] if and only if

– α is of the form α ≡ 1γ11γ21γ31 where γ1, γ2, γ3 ∈ {0}∗, and

– |γ1|
|γ2| = |γ3|.

The proof of Theorem (D) is involved, and you are not asked to prove this theorem.

Let LNT be the first-order language of number theory, that is, LNT = {0, S,+,×, E,<}, and
let N be the standard LNT -structure. Both LNT and N are known from Leary’s textbook.
Furthermore, let Σ be an alphabet containing all the symbols of the first-order languages
LNT and LBS .

Problem e

Argue that there exists a recursive (Turing computable) function f : Σ∗ → Σ∗ such that for
any LNT -sentence φ

N |= φ ⇔ B |= f(φ) .

You may refer to Theorem (D).

—————————- Solution:

We say that a LNT -formula φ is pure if any atomic sub formula of φ is in one of the forms
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• 0 = x

• x = y

• x < y

• S(x) = y

• x+ y = z

• x× y = z

• xE y = z.

For any LNT -formula φ, there exists a pure formula φ0 such that N |= φ↔ φ0 (we even have
|= φ↔ φ0). Moreover, such a pure formula φ0 can be constructed from φ by an algorithm,
and thus, we have a recursive function pure such that pure(φ) = φ0.

[Example: Let φ ≡ s(s(0)) < x+ y, and let

φ ≡ ∃z0, z1, z2, z3 [ 0 = z0 ∧ S(z0) = z1 ∧ S(z1) = z2 ∧ x+ y = z3 ∧ z2 < z3 ] .

Then, φ0 is a pure formula such that N |= φ↔ φ0. End of example.]

Next, we define a function f ′ recursively over the structure of a pure formula:

• f ′((α ∨ β)) = (f ′(α) ∨ f ′(β))

• f ′((¬α)) = (¬f ′(α))

• f ′((∀x)(α)) = (∀x)((η(x) → f ′(α)) ∧ (¬η(x) → f ′(αx
e ))) where η is the formula from

Problem c, and αx
e is α where all free occurrences of x is replaced by the term e.

(This definition reflects that the sequence 0n represents the natural number n, and
any sequence containing the bit 1 represents the natural number 0.)

For the atoms we define f ′ as follows:

• f ′(0 = x) = e = x

• f ′(x = y) = x = y

• f ′(x < y) = ∃z[z 6= e ∧ x ◦ z = y]

• f ′(S(x) = y) = x ◦ a = y

• f ′(x+ y = z) = Add(b ◦ x ◦ b ◦ y ◦ b ◦ z ◦ b) where Add is the formula from Problem d

• f ′(x× y = z) = Mul(b ◦ x ◦ b ◦ y ◦ b ◦ z ◦ b) where Mul is the formula in Theorem (D)

• f ′(xE y = z) = Exp(b ◦ x ◦ b ◦ y ◦ b ◦ z ◦ b) where Exp is the formula in Theorem (D).
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The function f ′ is computable, and for any pure formula φ, we have

N |= φ ⇔ B |= f ′(φ) .

Finally, let f(φ) = f ′(pure(φ)). Then, f is a recursive function such that

N |= φ ⇔ B |= f(φ) .

—————————-

Let
Th(B) = {φ | φ is an LBS-sentence and B |= φ }

and
Pr(B) = {φ | φ is an LBS-sentence and B ⊢ φ } .

Problem f

Is the set Th(B) recursive (decidable)? Is the set Th(B) recursively enumerable (semi-
decidable)? Is the set Pr(B) recursively enumerable (semi-decidable)? Justify your answers.

—————————- Solution:

The set Th(B) recursive is not recursive. Justification: Assume Th(B) is recursive. Let
f be the computable function from Problem e. We can decide if N |= φ for an arbitrary
sentence φ by the following algorithm: Compute f(φ) and check if f(φ) ∈ Th(B). If
f(φ) ∈ Th(B), we have N |= φ; and if f(φ) 6∈ Th(B), we have N 6|= φ. Thus, we have a
recursive set of axioms T such that T ⊢ φ iff N |= φ. (Simply let T be set of all sentences
true in N.) This contradicts Gödel’s (first) Incompleteness Theorem.

The set Th(B) is not recursively enumerable. Justification: Assume Th(B) is recursively
enumerable. Then we can decide if ψ ∈ Th(B) (for an arbitrary sentence ψ) by enumerating
all the the sentences Th(B). Either ψ or ¬ψ will show in the enumeration. If ψ shows up,
then ψ ∈ Th(B); and if ¬ψ shows up, then ψ 6∈ Th(B). This contradicts that Th(B) is not
recursive. (Indeed, for any language L and any L-structure A, the set Th(A) is recursively
enumerable if and only if it is recursive.)

The set Pr(B) is recursively enumerable since the set B (the axioms) is recursively enu-
merable.

—————————-

Problem g

Is the theory B ∪ {a 6= b} complete or incomplete? Justify your answer.

—————————- Solution:

The theory is incomplete. Justification: We have B |= B ∪ {a 6= b}. If the theory were
complete, the set Th(B) would be recursive.

—————————-
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