Problem 1

Theorem (A). Let \mathcal{L} be a first-order language and let ϕ be an \mathcal{L}-formula such that the term t is substitutable for the variable x in ϕ. We have

$$
T \vdash \phi \quad \Rightarrow \quad T \vdash \phi_{t}^{x}
$$

for any \mathcal{L}-theory T.

Problem a

Prove Theorem (A) by constructing a derivation of ϕ_{t}^{x} from a derivation of ϕ. Name the (logical) axioms and the inference rules involved in the derivation.
\longrightarrow Solution:
Assume $T \vdash \phi$, and let y be a variable not occurring in ϕ. We have the following T derivation.

1. ϕ
2. $y=y \rightarrow \phi \quad 1, \mathrm{PC}$
3. $y=y \rightarrow \forall x \phi \quad$ QR, no free x in $y=y$
4. $y=y \quad$ E1
5. $\forall x \phi \quad 4,3, \mathrm{PC}$
6. $\forall x \phi \rightarrow \phi_{t}^{x} \quad$ Q1
7. $\phi_{t}^{x} \quad 5,6, \mathrm{PC}$

Thus, $T \vdash \phi_{t}^{x}$.
The derivation above makes it easy to see that the following theorem also holds.

Theorem (A0). Let \mathcal{L} be a first-order language and let ϕ be an \mathcal{L}-formula such that the term t is substitutable for the variable x in ϕ. We have

$$
T \vdash \phi \quad \Leftrightarrow \quad T \vdash \forall x \phi .
$$

for any \mathcal{L}-theory T.

Let \circ be a binary function symbol, and let a, b and e be constant symbols. Let $\mathcal{L}_{B S}$ be the first-order language $\{a, b, e, \circ\}$, and let B be the $\mathcal{L}_{B S}$-theory consisting of the following non-logical axioms:

B1 $\forall x[x=e \circ x]$
B2 $\forall x[x=x \circ e]$
B3 $\forall x y z[x \circ(y \circ z)=(x \circ y) \circ z]$

$$
\begin{aligned}
& \mathrm{B} 4 \forall x[e \neq a \circ x \wedge e \neq b \circ x] \\
& \mathrm{B} 5 \forall x y[x \neq y \rightarrow(a \circ x \neq a \circ y \wedge b \circ x \neq b \circ y)]
\end{aligned}
$$

Theorem (B). $\quad B \vdash \forall x[e \circ x=x \circ e]$.

Problem b

Prove Theorem (B) by giving a B-derivation of $\forall x[e \circ x=x \circ e]$. Name the logical and the non-logical axioms involved in the derivation. You may refer to Theorem (A). Hint: You will need the logical axiom

$$
\begin{equation*}
x_{1}=y_{1} \wedge x_{2}=y_{2} \quad \rightarrow \quad\left(x_{1}=x_{2} \quad \rightarrow y_{1}=y_{2}\right) \tag{E3}
\end{equation*}
$$

\longrightarrow - Solution:
We have the following B-derivation.

1. $x=e \circ x$	$\mathrm{~B} 1, \mathrm{~A} 0$
2. $x=x \circ e$	$\mathrm{~B} 2, \mathrm{~A} 0$
3. $x_{1}=y_{1} \wedge x_{2}=y_{2} \rightarrow\left(x_{1}=x_{2} \rightarrow y_{1}=y_{2}\right)$	E 3
4. $x=e \circ x \wedge x=x \circ e \rightarrow(x=x \rightarrow e \circ x=x \circ e)$	$3, \mathrm{~A}$
5.	$x=x$
6. $e \circ x=x \circ e$	E 1
7. $\forall x[e \circ x=x \circ e]$	$1,2,4,5, \mathrm{PC}$
	$5, \mathrm{~A} 0$

Problem c

Prove that

$$
B \vdash \forall x y_{1} \ldots y_{n}\left[\left(y_{n} \circ\left(y_{n-1} \circ \ldots\left(y_{1} \circ e\right) \ldots\right)\right) \circ x=\left(y_{n} \circ\left(y_{n-1} \circ \ldots\left(y_{1} \circ(x \circ e)\right) \ldots\right)\right)\right]
$$

for any $n \geq 0$. Hints: Use induction on n. The case $n=0$ follows from Theorem (B).

- Solution:

Assume by induction hypothesis that

$$
B \vdash \forall x y_{1} \ldots y_{n-1}\left[\left(y_{n-1} \circ \ldots\left(y_{1} \circ e\right) \ldots\right) \circ x=\left(y_{n-1} \circ \ldots\left(y_{1} \circ(x \circ e)\right) \ldots\right)\right]
$$

Let $\sigma \equiv\left(y_{n-1} \circ \ldots\left(y_{1} \circ e\right) \ldots\right)$ and $\tau \equiv\left(y_{n-1} \circ \ldots\left(y_{1} \circ(x \circ e)\right) \ldots\right)$. Thus, we have

$$
\begin{aligned}
\forall x y_{1} \ldots y_{n-1}\left[\left(y_{n-1} \circ \ldots\left(y_{1} \circ e\right) \ldots\right) \circ x=\left(y_{n-1} \circ \ldots\left(y_{1} \circ(x \circ e)\right) \ldots\right)\right] \equiv \\
\forall x y_{1} \ldots y_{n-1}[\sigma \circ x=\tau] .
\end{aligned}
$$

In the next derivation, we will use
(*) For any B-terms s, t, u, we have $B \vdash s=t \rightarrow t=s$ and

$$
B \vdash s=t \wedge t=u \rightarrow s=u
$$

It is not necessary to prove $\left(^{*}\right)$.
We have

1. $\sigma \circ x=\tau$
2. $x \circ(y \circ z)=(x \circ y) \circ z \quad \mathrm{~B} 3, \mathrm{~A} 0$
3. $y_{n} \circ(y \circ z)=\left(y_{n} \circ y\right) \circ z \quad 2, \mathrm{~A}$
4. $y_{n} \circ(\sigma \circ z)=\left(y_{n} \circ \sigma\right) \circ z \quad 3, \mathrm{~A}$
5. $y_{n} \circ(\sigma \circ x)=\left(y_{n} \circ \sigma\right) \circ x \quad 4, \mathrm{~A}$
6. $y_{n}=y_{n} \quad$ E0
7. $y_{n}=y_{n} \wedge(\sigma \circ x)=\tau \quad \rightarrow \quad y_{n} \circ(\sigma \circ x)=\left(y_{n} \circ \tau\right) \quad \mathrm{E} 2$
8. $y_{n} \circ(\sigma \circ x)=\left(y_{n} \circ \tau\right) \quad 1,6,7, \mathrm{PC}$
9. $\left(y_{n} \circ \sigma\right) \circ x=\left(y_{n} \circ \tau\right) \quad 5,8,\left(^{*}\right), \mathrm{PC}$
10. $\forall x y_{1} \ldots y_{n-1}\left[\left(y_{n} \circ \sigma\right) \circ x=\left(y_{n} \circ \tau\right)\right] \quad$ A0

Hence, the theorem holds as

$$
\begin{aligned}
& \forall x y_{1} \ldots y_{n-1}\left[\left(y_{n} \circ \sigma\right) \circ x=\left(y_{n} \circ \tau\right)\right] \equiv \\
& \quad \forall x y_{1} \ldots y_{n}\left[\left(y_{n} \circ\left(y_{n-1} \circ \ldots\left(y_{1} \circ e\right) \ldots\right)\right) \circ x=\left(y_{n} \circ\left(y_{n-1} \circ \ldots\left(y_{1} \circ(x \circ e)\right) \ldots\right)\right)\right]
\end{aligned}
$$

We define the prime terms of the language $\mathcal{L}_{B S}$ by

- e is a prime term
- $(a \circ t)$ is a prime term if t is a prime term
- ($b \circ t$) is a prime term if t is a prime term.

Hence, e.g., $(a \circ(b \circ(b \circ e)))$ is a prime term whereas $((a \circ b) \circ(e \circ b))$ is not.

Theorem (C). For any variable-free $\mathcal{L}_{B S}$-term t there exists a prime term p such that $B \vdash t=p$.

Problem d

Prove Theorem (C).
Solution:
We prove the theorem by induction over the structure of t. We have the following base cases

- $t \equiv e$
- $t \equiv a$
- $t \equiv b$
and the induction step $t \equiv t_{1} \circ t_{2}$.
Case $t \equiv e$: We have $B \vdash e=e$ by ($\mathrm{E} 1, \mathrm{~A}$), and e is a prime term.
Case $t \equiv a$: We have $B \vdash a=(a \circ e)$ by ($\mathrm{B} 2, \mathrm{~A}, \mathrm{~A} 0)$, and $(a \circ e)$ is a prime term.
Case $t \equiv b$: We have $B \vdash b=(b \circ e)$ by ($\mathrm{B} 2, \mathrm{~A}, \mathrm{~A} 0)$, and $(b \circ e)$ is a prime term.
$t \equiv t_{1} \circ t_{2}$: Strictly speaking we need the following slightly modified version of the statement in Problem c.

Lemma.

$$
B \vdash \forall x y_{1} \ldots y_{n}\left[\left(y_{n} \circ\left(y_{n-1} \circ \ldots\left(y_{1} \circ e\right) \ldots\right)\right) \circ x=\left(y_{n} \circ\left(y_{n-1} \circ \ldots\left(y_{1} \circ x\right) \ldots\right)\right)\right]
$$

Assume by the induction hypothesis that we have prime terms p_{1}, p_{2} such that $B \vdash t_{1}=p_{1}$ and $B \vdash t_{2}=p_{2}$. Then, p_{1} is of the form $p_{1} \equiv\left(c_{n} \circ \ldots\left(c_{1} \circ e\right) \ldots\right)$ where $c_{i} \in\{a, b\}$ for $i=1, \ldots n$. By Lemma, (A) and (A0), we have

$$
\begin{equation*}
B \vdash\left(c_{n} \circ\left(c_{n-1} \circ \ldots\left(c_{1} \circ e\right) \ldots\right)\right) \circ p_{2}=\left(c_{n} \circ\left(c_{n-1} \circ \ldots\left(c_{1} \circ p_{2}\right) \ldots\right)\right) . \tag{†}
\end{equation*}
$$

In the following derivation, we will also use

$$
\begin{equation*}
\text { For any } B \text {-terms } s, t, u \text {, we have } B \vdash s=t \wedge t=u \rightarrow s=u \tag{}
\end{equation*}
$$

Let $p \equiv\left(c_{n} \circ\left(c_{n-1} \circ \ldots\left(c_{1} \circ p_{2}\right) \ldots\right)\right)$. Then, p is a prime term, and we have

1. $t_{1}=p_{1}$ ind.hyp.
2. $t_{2}=p_{2}$
3. $t_{1}=p_{1} \wedge t_{2}=p_{2} \rightarrow t_{1} \circ t_{2}=p_{1} \circ p_{2}$ E2, A
4. $t_{1} \circ t_{2}=p_{1} \circ p_{2}$ $1,2,3, \mathrm{PC}$
5. $t_{1} \circ t_{2}=\left(c_{n} \circ\left(c_{n-1} \circ \ldots\left(c_{1} \circ e\right) \ldots\right)\right) \circ p_{2}$ $p_{1} \equiv \ldots$
6. $\left(c_{n} \circ\left(c_{n-1} \circ \ldots\left(c_{1} \circ e\right) \ldots\right)\right) \circ p_{2}=p$
7. $t_{1} \circ t_{2}=p$
$5,6,\left({ }^{*}\right), \mathrm{PC}$

Thus, we have $B \vdash t=p$ for some prime term p.

Problem 2

We will use some notation from Levis \& Papadimitriou's textbook: Σ^{*} denotes the set of all sequences over the alphabet Σ, and $|\alpha|$ denotes the length of the string α. We use ϵ to denote the empty string, and $\alpha \cdot \beta$ denotes the concatenation of the strings α and β. Occasionally,
we will write $\alpha \beta$ in place of $\alpha \cdot \beta$. When convenient, we may also drop parenthesis and write e.g. $\alpha \beta \gamma$ in place of $(\alpha \beta) \gamma$.

We will now define the $\mathcal{L}_{B S}$-structure \mathfrak{B}. The universe of \mathfrak{B} is the set $\{0,1\}^{*}$, that is, the set of all bit sequences: $\epsilon, 0,1,00,01,10,11,000,001, \ldots$. Furthermore,

- $e^{\mathfrak{B}}=\epsilon$ (the empty string)
- $a^{\mathfrak{B}}=0$ (the string where the one and only bit is 0)
- $b^{\mathfrak{B}}=1$ (the string where the one and only bit is 1)
and $\circ^{\mathfrak{B}}=\cdot$ (the concatenation operator). Hence, we have e.g. that $\epsilon \circ^{\mathfrak{B}} 100=100 \circ^{\mathfrak{B}} \epsilon=100$ and $101 \circ 1001=1011001$. It is obvious that \mathfrak{B} is a model for the theory B, that is, $\mathfrak{B} \models B$.

Problem a

Is B a consistent theory? Give a short answer, and justify the answer by referring to a theorem in Leary's textbook.

Solution:

We have $\mathfrak{B} \models B$. Thus, B has a model, and then by the Soundness Theorem for first-order logic, B is consistent.

Problem b

Do we have $B \vdash a \neq b$? Do we have $B \vdash a=b$? Justify your answers.
\qquad
We have $\mathfrak{B} \models B$ and $\mathfrak{B} \not \models a=b$, and thus, $B \nvdash a=b$ by the Soundness Theorem for first-order logic.
We will now define the $\mathcal{L}_{B S}$-structure \mathfrak{A}. The universe of \mathfrak{A} is the set $\{0\}^{*}$, that is, the set containing the following sequences: $\epsilon, 0,00,000,0000, \ldots$. Furthermore,

- $e^{\mathfrak{A}}=\epsilon$
- $a^{\mathfrak{A}}=0$
- $b^{\mathfrak{a}}=0$
and $\circ^{\mathfrak{A}}=\cdot$ (the concatenation operator).
Now, we have $\mathfrak{A} \models B$ and $\mathfrak{A} \not \vDash a \neq b$, and thus, $B \nvdash a \neq b$ by the Soundness Theorem for first-order logic.

We say that α is a sub string of β iff there exists γ_{1} and γ_{2} such that $\gamma_{1} \alpha \gamma_{2}=\beta$.
Problem c
Give an $\mathcal{L}_{B S}$-formula θ such that

$$
\mathfrak{B} \models \theta[s[y \mid \alpha][x \mid \beta]] \Leftrightarrow \alpha \text { is a sub string of } \beta .
$$

Give an $\mathcal{L}_{B S}$-formula η such that

$$
\mathfrak{B} \models \eta[s[x \mid \alpha]] \Leftrightarrow \alpha \in\{0\}^{*} .
$$

Solution:

$$
\theta(y, x) \equiv \exists u v[(u \circ y) \circ v=x] \quad \text { and } \quad \eta(x) \equiv \neg \theta(b, x) .
$$

Problem d

Give an $\mathcal{L}_{B S}$-formula $A d d$ such that $\mathfrak{B} \models A d d[s[x \mid \alpha]]$ holds if and only if

- α is of the form $\alpha \equiv 1 \gamma_{1} 1 \gamma_{2} 1 \gamma_{3} 1$ where $\gamma_{1}, \gamma_{2}, \gamma_{3} \in\{0\}^{*}$, and
- $\left|\gamma_{1}\right|+\left|\gamma_{2}\right|=\left|\gamma_{3}\right|$.
(Hint: Use the formulas from Problem b.)
\qquad

$$
A d d(x) \equiv \exists u v w[\eta(u) \wedge \eta(v) \wedge \eta(w) \wedge x=b \circ u \circ b \circ v \circ b \circ w \circ b \wedge u \circ v=w]
$$

Theorem (D). There exist $\mathcal{L}_{B S}$-formulas $M u l$ and Exp such that

- $\mathfrak{B} \models M u l[s[x \mid \alpha]]$ if and only if
$-\alpha$ is of the form $\alpha \equiv 1 \gamma_{1} 1 \gamma_{2} 1 \gamma_{3} 1$ where $\gamma_{1}, \gamma_{2}, \gamma_{3} \in\{0\}^{*}$, and
$-\left|\gamma_{1}\right| \times\left|\gamma_{2}\right|=\left|\gamma_{3}\right|$
- $\mathfrak{B} \models \operatorname{Exp}[s[x \mid \alpha]]$ if and only if
$-\alpha$ is of the form $\alpha \equiv 1 \gamma_{1} 1 \gamma_{2} 1 \gamma_{3} 1$ where $\gamma_{1}, \gamma_{2}, \gamma_{3} \in\{0\}^{*}$, and
$-\left|\gamma_{1}\right|^{\left|\gamma_{2}\right|}=\left|\gamma_{3}\right|$.
The proof of Theorem (D) is involved, and you are not asked to prove this theorem.
Let $\mathcal{L}_{N T}$ be the first-order language of number theory, that is, $\mathcal{L}_{N T}=\{0, S,+, \times, E,<\}$, and let \mathfrak{N} be the standard $\mathcal{L}_{N T}$-structure. Both $\mathcal{L}_{N T}$ and \mathfrak{N} are known from Leary's textbook. Furthermore, let Σ be an alphabet containing all the symbols of the first-order languages $\mathcal{L}_{N T}$ and $\mathcal{L}_{B S}$.

Problem e

Argue that there exists a recursive (Turing computable) function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ such that for any $\mathcal{L}_{N T}$-sentence ϕ

$$
\mathfrak{N} \models \phi \Leftrightarrow \mathfrak{B} \models f(\phi) .
$$

You may refer to Theorem (D).
\longrightarrow Solution:
We say that a $\mathcal{L}_{N T}$-formula ϕ is pure if any atomic sub formula of ϕ is in one of the forms

- $0=x$
- $x=y$
- $x<y$
- $S(x)=y$
- $x+y=z$
- $x \times y=z$
- $x E y=z$.

For any $\mathcal{L}_{N T^{-}}$-formula ϕ, there exists a pure formula ϕ_{0} such that $\mathfrak{N} \models \phi \leftrightarrow \phi_{0}$ (we even have $\models \phi \leftrightarrow \phi_{0}$). Moreover, such a pure formula ϕ_{0} can be constructed from ϕ by an algorithm, and thus, we have a recursive function pure such that pure $(\phi)=\phi_{0}$.
[Example: Let $\phi \equiv s(s(0))<x+y$, and let

$$
\phi \equiv \exists z_{0}, z_{1}, z_{2}, z_{3}\left[0=z_{0} \wedge S\left(z_{0}\right)=z_{1} \wedge S\left(z_{1}\right)=z_{2} \wedge x+y=z_{3} \wedge z_{2}<z_{3}\right]
$$

Then, ϕ_{0} is a pure formula such that $\mathfrak{N} \models \phi \leftrightarrow \phi_{0}$. End of example.]
Next, we define a function f^{\prime} recursively over the structure of a pure formula:

- $f^{\prime}((\alpha \vee \beta))=\left(f^{\prime}(\alpha) \vee f^{\prime}(\beta)\right)$
- $f^{\prime}((\neg \alpha))=\left(\neg f^{\prime}(\alpha)\right)$
- $f^{\prime}((\forall x)(\alpha))=(\forall x)\left(\left(\eta(x) \rightarrow f^{\prime}(\alpha)\right) \wedge\left(\neg \eta(x) \rightarrow f^{\prime}\left(\alpha_{e}^{x}\right)\right)\right)$ where η is the formula from Problem \mathbf{c}, and α_{e}^{x} is α where all free occurrences of x is replaced by the term e. (This definition reflects that the sequence 0^{n} represents the natural number n, and any sequence containing the bit 1 represents the natural number 0.)

For the atoms we define f^{\prime} as follows:

- $f^{\prime}(0=x)=e=x$
- $f^{\prime}(x=y)=x=y$
- $f^{\prime}(x<y)=\exists z[z \neq e \wedge x \circ z=y]$
- $f^{\prime}(S(x)=y)=x \circ a=y$
- $f^{\prime}(x+y=z)=A d d(b \circ x \circ b \circ y \circ b \circ z \circ b)$ where $A d d$ is the formula from Problem \mathbf{d}
- $f^{\prime}(x \times y=z)=M u l(b \circ x \circ b \circ y \circ b \circ z \circ b)$ where $M u l$ is the formula in Theorem (D)
- $f^{\prime}(x E y=z)=\operatorname{Exp}(b \circ x \circ b \circ y \circ b \circ z \circ b)$ where Exp is the formula in Theorem (D).

The function f^{\prime} is computable, and for any pure formula ϕ, we have

$$
\mathfrak{N} \models \phi \Leftrightarrow \mathfrak{B} \models f^{\prime}(\phi)
$$

Finally, let $f(\phi)=f^{\prime}($ pure $(\phi))$. Then, f is a recursive function such that

$$
\mathfrak{N} \models \phi \Leftrightarrow \mathfrak{B} \models f(\phi) .
$$

Let

$$
\operatorname{Th}(\mathfrak{B})=\left\{\phi \mid \phi \text { is an } \mathcal{L}_{B S} \text {-sentence and } \mathfrak{B} \models \phi\right\}
$$

and

$$
\operatorname{Pr}(B)=\left\{\phi \mid \phi \text { is an } \mathcal{L}_{B S} \text {-sentence and } B \vdash \phi\right\} .
$$

Problem f

Is the set $\operatorname{Th}(\mathfrak{B})$ recursive (decidable)? Is the set $\operatorname{Th}(\mathfrak{B})$ recursively enumerable (semidecidable)? Is the set $\operatorname{Pr}(B)$ recursively enumerable (semi-decidable)? Justify your answers.

- Solution:

The set $T h(\mathfrak{B})$ recursive is not recursive. Justification: Assume $T h(\mathfrak{B})$ is recursive. Let f be the computable function from Problem e. We can decide if $\mathfrak{N} \models \phi$ for an arbitrary sentence ϕ by the following algorithm: Compute $f(\phi)$ and check if $f(\phi) \in T h(\mathfrak{B})$. If $f(\phi) \in T h(\mathfrak{B})$, we have $\mathfrak{N} \vDash \phi$; and if $f(\phi) \notin T h(\mathfrak{B})$, we have $\mathfrak{N} \not \vDash \phi$. Thus, we have a recursive set of axioms T such that $T \vdash \phi$ iff $\mathfrak{N} \models \phi$. (Simply let T be set of all sentences true in \mathfrak{N}.) This contradicts Gödel's (first) Incompleteness Theorem.
The set $T h(\mathfrak{B})$ is not recursively enumerable. Justification: Assume $\operatorname{Th}(\mathfrak{B})$ is recursively enumerable. Then we can decide if $\psi \in T h(\mathfrak{B})$ (for an arbitrary sentence ψ) by enumerating all the the sentences $T h(\mathfrak{B})$. Either ψ or $\neg \psi$ will show in the enumeration. If ψ shows up, then $\psi \in T h(\mathfrak{B})$; and if $\neg \psi$ shows up, then $\psi \notin T h(\mathfrak{B})$. This contradicts that $T h(\mathfrak{B})$ is not recursive. (Indeed, for any language \mathcal{L} and any \mathcal{L}-structure \mathfrak{A}, the set $\operatorname{Th}(\mathfrak{A})$ is recursively enumerable if and only if it is recursive.)
The set $\operatorname{Pr}(B)$ is recursively enumerable since the set B (the axioms) is recursively enumerable.

Problem g

Is the theory $B \cup\{a \neq b\}$ complete or incomplete? Justify your answer.
\longrightarrow - Solution:
The theory is incomplete. Justification: We have $\mathfrak{B} \models B \cup\{a \neq b\}$. If the theory were complete, the set $\operatorname{Th}(\mathfrak{B})$ would be recursive.

