Part I

Theorem. Let Σ be a set of \mathcal{L} -formulas, and let ϕ be an \mathcal{L} -sentence. Then,

- (i) $\Sigma \vdash \phi$ if, and only if, $\Sigma \models \phi$
- (ii) Σ has a model if, and only if, Σ is consistent
- (iii) if every finite subset of Σ has a model, then Σ has a model.

Problem 1

Explain briefly what it means that a set of formulas is consistent.

Problem 2

Prove that (i) and (ii) are equivalent.

Problem 3

Prove that (i) implies (iii).

Part II

Lemma (A). Let \mathcal{L} be a first-order language. For any \mathcal{L} -theory T, any \mathcal{L} -terms s, t, u, we have

(i) $T \vdash s = s$ (ii) $T \vdash s = t \land t = u \rightarrow s = u$ (iii) $T \vdash s = t \rightarrow t = s$.

Problem 1

Prove Clause (i) of Lemma (A) by giving a T-derivation where s is an arbitrary \mathcal{L} -term.

Let $\top \equiv \forall y[y=y] \lor \neg \forall y[y=y].$

The following derivation proves $T \vdash s = s$.

1.	x = x	E1
2.	$\top \rightarrow x = x$	1, PC
3.	$\top \ \rightarrow \ \forall x[x=x]$	2,QR
4.	$\forall x[x=x]$	$_{3,\mathrm{PC}}$
5.	$\forall x[x=x] \ \rightarrow \ s=s$	Q1
6.	s = s	$5,\!6,\!\mathrm{PC}$

Let \mathcal{L} be the first-order language $\{\leq\}$ where \leq is a binary relation symbol, and let T be the \mathcal{L} -theory consisting of the non-logical axioms

 $(A_1) \quad \forall x[x \le x]$ $(A_2) \quad \forall xyz[x \le y \land y \le z \rightarrow x \le z]$ $(A_3) \quad \forall xy[x \le y \land y \le x \rightarrow x = y].$

Lemma (B). $T \vdash \forall xy[x \leq y \land y \leq x \leftrightarrow x = y].$

Problem 2

Prove Lemma (B) by giving a *T*-derivation. [Hint: use Lemma (A).]

We will use the Lemma 2.7.2 from Leary's book:

$$\Sigma \vdash \theta \text{ if and only if } \Sigma \vdash \forall x \theta. \tag{(*)}$$

1.	$x = x \land x = y \ \rightarrow \ (x \le x \ \rightarrow \ x \le y)$	E3
2.	x = x	(A)
3.	$x \leq x$	$A_1,(^*)$
4.	$x = y \rightarrow x \leq y$	$1,\!2,\!3,\!{ m PC}$
5.	$x = y \land x = x \ \rightarrow \ (x \leq x \ \rightarrow \ y \leq x)$	E3
6.	$x = y \rightarrow y \leq x$	$_{2,3,5,PC}$
7.	$x = y \ \rightarrow \ (x \leq y \land y \leq x)$	$4,\!6,\!\mathrm{PC}$
8.	$(x \leq y \wedge y \leq x) \ \rightarrow \ x = y$	$A_{3},(*)$
9.	$x = y \ \leftrightarrow \ (x \leq y \land y \leq x)$	$^{7,8,\mathrm{PC}}$
10.	$\forall xy[x \leq y \ \land \ y \leq x \ \leftrightarrow \ x = y]$	9,(*)

For any terms s and t, let $s < t \equiv s \leq t \land s \neq t$, that is, s < t is shorthand for $s \leq t \land s \neq t$.

Lemma (C). $T \vdash \forall xy[x < y \rightarrow \neg y \leq x]$ and $T \vdash \forall xy[\neg x \leq y \rightarrow y \neq x]$.

Problem 3

Prove Lemma (C) by giving T-derivations. [Hint: use Lemma (B).]

The derivation below shows that the lemma holds.

1.	$\forall xy[x \leq y \ \land \ y \leq x \ \leftrightarrow \ x = y]$	(B)
2.	$x \leq y \ \land \ y \leq x \ \leftrightarrow \ x = y$	(*)
3.	$x \leq y \ \land \ x \neq y \ \rightarrow \ \neg y \leq x$	$^{2,\mathrm{PC}}$
4.	$x < y \ \rightarrow \ \neg y \leq x$	$3,\equiv$
5.	$\forall xy[x < y \ \rightarrow \ \neg y \leq x]$	4,(*)
6.	$\neg x \leq y \ \rightarrow \ x \neq y$	$^{2,\mathrm{PC}}$
7.	$y = x \to x = y$	(A)
8.	$\neg x \leq y \ \rightarrow \ y \neq x$	$_{6,7,\mathrm{PC}}$
9.	$\forall xy[\neg x \leq y \ \rightarrow \ y \neq x]$	$^{8,(*)}$

We extend the language \mathcal{L} with a unary function symbol f, and we extend the theory T by the axioms

- $(A_4) \ \forall x [x < f(x)]$
- $(A_5) \quad \forall xy[x < y \rightarrow f(x) < f(y)].$

Problem 4

Prove that the axiom A_5 is independent of the other axioms; that is, prove $A_1, A_2, A_3, A_4 \not\vdash A_5$ and $A_1, A_2, A_3, A_4 \not\vdash \neg A_5$.

— Solution:

Let \mathfrak{A} be the following \mathcal{L} -structure: The universe A is the set \mathbb{Q}^+ of all rational numbers. Let $\leq^{\mathfrak{A}}$ be the standard ordering of \mathbb{Q}^+ . For any $q \in A$, and let

$$f^{\mathfrak{A}}(q) = \begin{cases} q+1 & \text{if } x \in \mathbb{N} \\ q+\frac{1}{q} & \text{otherwise.} \end{cases}$$

Now, $\mathfrak{A} \models \{A_1, A_2, A_3, A_4\}$ and $\mathfrak{A} \not\models A_5$. By the Soundness Theorem for first-order logic, we have $A_1, A_2, A_3, A_4 \not\vdash A_5$.

Let \mathfrak{B} be the following \mathcal{L} -structure: The universe B is \mathbb{N} . Let $\leq^{\mathfrak{B}}$ be the standard ordering of \mathbb{N} . For any $n \in A$, and let $f^{\mathfrak{B}}(n) = n + 1$. Now, $\mathfrak{B} \models \{A_1, A_2, A_3, A_4\}$ and $\mathfrak{B} \not\models \neg A_5$. By the Soundness Theorem for first-order logic, we have $A_1, A_2, A_3, A_4 \not\models \neg A_5$.

Let $f^0(t) \equiv t$ and $f^{n+1}(t) \equiv f(f^n(t))$.

Problem 5

Prove that we have $T \vdash t < f^{\ell}(t)$ for any \mathcal{L} -term t and any $\ell > 0$. [Hints: use induction on ℓ ; use Lemma (C).]

- Solution:

Assume $\ell = 1$ (induction start). This case is trivial as T contains the axiom A_4 .

We turn to the induction step. Our induction hypothesis is $T \vdash t < f^{\ell}(t)$. (We will prove $T \vdash t < f^{\ell+1}(t)$.) Now, since $t < f^{\ell}(t) \equiv t \leq f^{\ell}(t) \land t \neq f^{\ell}(t)$, we have

- (i) $T \vdash t \leq f^{\ell}(t)$
- (ii) $T \vdash t \neq f^{\ell}(t)$

(We will prove $T \vdash t \leq f^{\ell+1}(t)$ and $T \vdash t \neq f^{\ell+1}(t)$. Then, $T \vdash t < f^{\ell+1}(t)$ because of the rule PC)

We have the following T-derivation:

1. $f^{\ell}(t) < f^{\ell+1}(t)$ inst. of A_4 2. $f^{\ell}(t) \le f^{\ell+1}(t)$ 1,PC 3. $t \le f^{\ell}(t)$ (i) 4. $t \le f^{\ell}(t) \land f^{\ell}(t) \le f^{\ell+1}(t) \to t \le f^{\ell+1}(t)$ inst. of A_2 5. $t \le f^{\ell+1}(t)$

This proves $T \vdash t \leq f^{\ell+1}(t)$. The next derivation proves that $T \vdash t \neq f^{\ell+1}(t)$ holds.

1. $f^{\ell+1}(t) < t \land t < f^{\ell}(t) \to f^{\ell+1}(t) < f^{\ell}(t)$ inst. of A_2 2. $f^{\ell} < f^{\ell+1}(t)$ inst. of A_4 3. $f^{\ell} < f^{\ell+1}(t) \to \neg f^{\ell+1}(t) \le f^{\ell}$ by (C) $4. \quad \neg f^{\ell+1}(t) \le f^{\ell}$ 2,3,PC5. $\neg f^{\ell+1}(t) < t \lor \neg t < f^{\ell}(t)$ 1, 4, PC6. $t \leq f^{\ell}(t)$ (i) 7. $\neg f^{\ell+1}(t) \leq t$ 5, 6, PC8. $\neg f^{\ell+1}(t) < t \rightarrow f^{\ell+1}(t) \neq t$ by (C)9. $f^{\ell+1}(t) \neq t$ by 7,8,PC 10. $t = f^{\ell+1}(t) \rightarrow f^{\ell+1}(t) = t$ (\mathbf{A}) 11. $t \neq f^{\ell+1}(t)$ 9,10,PC

Problem 6

Let \mathfrak{A} be any model for T. Prove that there exists an \mathcal{L} -structure \mathfrak{B} such that (i) \mathfrak{A} and \mathfrak{B} are elementary equivalent, and (ii) there exists b_0, b_1, b_2, \ldots in the universe of \mathfrak{B} such that

$$f^{\mathfrak{B}}(b_{i+1}) < \mathfrak{B} f^{\mathfrak{B}}(b_i)$$

for any $i \in \mathbb{N}$.

- Solution:

Let \mathfrak{A} be a model for T. We know that $T \vdash t < f^{\ell+1}(t)$ holds for any $\ell > 0$. Hence, by the Soundness Theorem, we know that \mathfrak{A} contains an infinite chain

$$a_0 <^{\mathfrak{A}} a_1 <^{\mathfrak{A}} a_2 <^{\mathfrak{A}} a_3 <^{\mathfrak{A}} \ldots$$

Let \mathcal{L}' be \mathcal{L} extended by the constants c_0, c_1, c_2, \ldots Let T' be the \mathcal{L}' -theory with get when T is extended by $\{c_{i+1} < c_i \mid i \in \mathbb{N}\}$. Any finite subset of T' has a model since \mathfrak{A} contains an infinite chain. By the Compactness Theorem, T' has a model \mathfrak{B}' . The \mathcal{L}' -structure \mathfrak{B}' can easily be turned into \mathcal{L} -structure \mathfrak{B} that is elementary equivalent to \mathfrak{A} . Moreover, the exists elements b_0, b_1, b_2, \ldots in the universe of \mathfrak{B} such that

$$\dots b_{i+1} <^{\mathfrak{B}} b_i <^{\mathfrak{B}} \dots <^{\mathfrak{B}} b_2 <^{\mathfrak{B}} b_1 <^{\mathfrak{B}} b_0$$

Now, as \mathfrak{A} and \mathfrak{B} are elementary equivalent, the axiom A_5 holds in \mathfrak{B} , that is,

$$\mathfrak{B} \models \forall x y [x < y \rightarrow f(x) < f(y)] .$$

Hence, we have

$$\dots f^{\mathfrak{B}}(b_{i+1}) <^{\mathfrak{B}} f^{\mathfrak{B}}(b_i) <^{\mathfrak{B}} \dots <^{\mathfrak{B}} f^{\mathfrak{B}}(b_2) <^{\mathfrak{B}} f^{\mathfrak{B}}(b_1) <^{\mathfrak{B}} f^{\mathfrak{B}}(b_0).$$