Part I

Theorem. Let Σ be a set of \mathcal{L}-formulas, and let ϕ be an \mathcal{L}-sentence. Then,
(i) $\Sigma \vdash \phi$ if, and only if, $\Sigma \models \phi$
(ii) Σ has a model if, and only if, Σ is consistent
(iii) if every finite subset of Σ has a model, then Σ has a model.

Problem 1

Explain briefly what it means that a set of formulas is consistent.

Problem 2

Prove that (i) and (ii) are equivalent.
Problem 3
Prove that (i) implies (iii).

Part II

Lemma (A). Let \mathcal{L} be a first-order language. For any \mathcal{L}-theory T, any \mathcal{L}-terms s, t, u, we have
(i) $T \vdash s=s$
(ii) $T \vdash s=t \wedge t=u \rightarrow s=u$
(iii) $T \vdash s=t \rightarrow t=s$.

Problem 1

Prove Clause (i) of Lemma (A) by giving a T-derivation where s is an arbitrary \mathcal{L}-term.
\longrightarrow Solution:
Let $\top \equiv \forall y[y=y] \vee \neg \forall y[y=y]$.
The following derivation proves $T \vdash s=s$.

1. $x=x$
E1
2. $\top \rightarrow x=x$
1,PC
3. $\top \rightarrow \forall x[x=x]$
2, QR
4. $\forall x[x=x] \quad 3, \mathrm{PC}$
5. $\forall x[x=x] \rightarrow s=s \quad \mathrm{Q} 1$
6. $s=s \quad 5,6, \mathrm{PC}$

Let \mathcal{L} be the first-order language $\{\leq\}$ where \leq is a binary relation symbol, and let T be the \mathcal{L}-theory consisting of the non-logical axioms
(A_{1}) $\forall x[x \leq x]$
$\left(A_{2}\right) \forall x y z[x \leq y \wedge y \leq z \rightarrow x \leq z]$
$\left(A_{3}\right) \forall x y[x \leq y \wedge y \leq x \rightarrow x=y]$.
Lemma (B). $T \vdash \forall x y[x \leq y \wedge y \leq x \leftrightarrow x=y]$.

Problem 2

Prove Lemma (B) by giving a T-derivation. [Hint: use Lemma (A).]

- Solution:

We will use the Lemma 2.7.2 from Leary's book:

$$
\begin{equation*}
\Sigma \vdash \theta \text { if and only if } \Sigma \vdash \forall x \theta \tag{*}
\end{equation*}
$$

1.	$x=x \wedge x=y \rightarrow(x \leq x \rightarrow x \leq y)$	E3
2.	$x=x$	(A)
3.	$x \leq x$	$A_{1},\left({ }^{*}\right)$
4.	$x=y \rightarrow x \leq y$	$1,2,3, \mathrm{PC}$
5.	$x=y \wedge x=x \rightarrow(x \leq x \rightarrow y \leq x)$	E3
6.	$x=y \rightarrow y \leq x$	$2,3,5, \mathrm{PC}$
7.	$x=y \rightarrow(x \leq y \wedge y \leq x)$	$4,6, \mathrm{PC}$
8.	$(x \leq y \wedge y \leq x) \rightarrow x=y$	$A_{3},\left({ }^{*}\right)$
9.	$x=y \leftrightarrow(x \leq y \wedge y \leq x)$	$7,8, \mathrm{PC}$
10.	$\forall x y[x \leq y \wedge y \leq x \leftrightarrow x=y]$	$9,\left({ }^{*}\right)$

For any terms s and t, let $s<t \equiv s \leq t \wedge s \neq t$, that is, $s<t$ is shorthand for $s \leq t \wedge s \neq t$.

Lemma (C). $T \vdash \forall x y[x<y \rightarrow \neg y \leq x]$ and $T \vdash \forall x y[\neg x \leq y \rightarrow y \neq x]$.

Problem 3

Prove Lemma (C) by giving T-derivations. [Hint: use Lemma (B).]
\longrightarrow Solution:
The derivation below shows that the lemma holds.

1. $\forall x y[x \leq y \wedge y \leq x \leftrightarrow x=y]$
2. $x \leq y \wedge y \leq x \leftrightarrow x=y$
3. $x \leq y \wedge x \neq y \rightarrow \neg y \leq x$ 2,PC
4. $x<y \rightarrow \neg y \leq x$ $3, \equiv$
5. $\forall x y[x<y \rightarrow \neg y \leq x]$
6. $\neg x \leq y \rightarrow x \neq y$ 2,PC
7. $y=x \rightarrow x=y$
8. $\neg x \leq y \rightarrow y \neq x$
9. $\forall x y[\neg x \leq y \rightarrow y \neq x]$ $6,7, \mathrm{PC}$

8, (*)

We extend the language \mathcal{L} with a unary function symbol f, and we extend the theory T by the axioms
$\left(A_{4}\right) \forall x[x<f(x)]$
$\left(A_{5}\right) \forall x y[x<y \rightarrow f(x)<f(y)]$.

Problem 4

Prove that the axiom A_{5} is independent of the other axioms; that is, prove $A_{1}, A_{2}, A_{3}, A_{4} \nvdash$ A_{5} and $A_{1}, A_{2}, A_{3}, A_{4} \nvdash \neg A_{5}$.

- Solution:

Let \mathfrak{A} be the following \mathcal{L}-structure: The universe A is the set \mathbb{Q}^{+}of all rational numbers. Let $\leq^{\mathfrak{A}}$ be the standard ordering of \mathbb{Q}^{+}. For any $q \in A$, and let

$$
f^{\mathfrak{A}}(q)= \begin{cases}q+1 & \text { if } x \in \mathbb{N} \\ q+\frac{1}{q} & \text { otherwise }\end{cases}
$$

Now, $\mathfrak{A} \models\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ and $\mathfrak{A} \notin A_{5}$. By the Soundness Theorem for first-order logic, we have $A_{1}, A_{2}, A_{3}, A_{4} \nvdash A_{5}$.
Let \mathfrak{B} be the following \mathcal{L}-structure: The universe B is \mathbb{N}. Let $\leq{ }^{\mathfrak{B}}$ be the standard ordering of \mathbb{N}. For any $n \in A$, and let $f^{\mathfrak{B}}(n)=n+1$. Now, $\mathfrak{B} \models\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ and $\mathfrak{B} \notin \neg A_{5}$. By the Soundness Theorem for first-order logic, we have $A_{1}, A_{2}, A_{3}, A_{4} \nvdash \neg A_{5}$.

Let $f^{0}(t) \equiv t$ and $f^{n+1}(t) \equiv f\left(f^{n}(t)\right)$.

Problem 5

Prove that we have $T \vdash t<f^{\ell}(t)$ for any \mathcal{L}-term t and any $\ell>0$. [Hints: use induction on ℓ; use Lemma (C).]

Solution:
Assume $\ell=1$ (induction start). This case is trivial as T contains the axiom A_{4}.

We turn to the induction step. Our induction hypothesis is $T \vdash t<f^{\ell}(t)$. (We will prove $T \vdash t<f^{\ell+1}(t)$.) Now, since $t<f^{\ell}(t) \equiv t \leq f^{\ell}(t) \wedge t \neq f^{\ell}(t)$, we have
(i) $T \vdash t \leq f^{\ell}(t)$
(ii) $T \vdash t \neq f^{\ell}(t)$
(We will prove $T \vdash t \leq f^{\ell+1}(t)$ and $T \vdash t \neq f^{\ell+1}(t)$. Then, $T \vdash t<f^{\ell+1}(t)$ because of the rule $P C$)
We have the following T-derivation:

1. $f^{\ell}(t)<f^{\ell+1}(t) \quad$ inst. of A_{4}
2. $f^{\ell}(t) \leq f^{\ell+1}(t) \quad 1, \mathrm{PC}$
3. $t \leq f^{\ell}(t)$
4. $t \leq f^{\ell}(t) \wedge f^{\ell}(t) \leq f^{\ell+1}(t) \rightarrow t \leq f^{\ell+1}(t) \quad$ inst. of A_{2}
5. $t \leq f^{\ell+1}(t)$

This proves $T \vdash t \leq f^{\ell+1}(t)$. The next derivation proves that $T \vdash t \neq f^{\ell+1}(t)$ holds.

1. $\quad f^{\ell+1}(t) \leq t \wedge t \leq f^{\ell}(t) \rightarrow f^{\ell+1}(t) \leq f^{\ell}(t) \quad$ inst. of A_{2}
2. $f^{\ell}<f^{\ell+1}(t) \quad$ inst. of A_{4}
3. $f^{\ell}<f^{\ell+1}(t) \rightarrow \neg f^{\ell+1}(t) \leq f^{\ell} \quad$ by (C)
4. $\neg f^{\ell+1}(t) \leq f^{\ell} \quad 2,3, \mathrm{PC}$
5. $\neg f^{\ell+1}(t) \leq t \vee \neg t \leq f^{\ell}(t) \quad 1,4, \mathrm{PC}$
6. $\quad t \leq f^{\ell}(t)$
7. $\neg f^{\ell+1}(t) \leq t$ 5,6,PC
8. $\neg f^{\ell+1}(t) \leq t \rightarrow f^{\ell+1}(t) \neq t \quad$ by (C)
9. $\quad f^{\ell+1}(t) \neq t$ by $7,8, \mathrm{PC}$
10. $t=f^{\ell+1}(t) \rightarrow f^{\ell+1}(t)=t$
11. $t \neq f^{\ell+1}(t)$

9,10,PC

Problem 6

Let \mathfrak{A} be any model for T. Prove that there exists an \mathcal{L}-structure \mathfrak{B} such that (i) \mathfrak{A} and \mathfrak{B} are elementary equivalent, and (ii) there exists $b_{0}, b_{1}, b_{2}, \ldots$ in the universe of \mathfrak{B} such that

$$
f^{\mathfrak{B}}\left(b_{i+1}\right) \ll^{\mathfrak{B}} \quad f^{\mathfrak{B}}\left(b_{i}\right)
$$

for any $i \in \mathbb{N}$.

Solution:

Let \mathfrak{A} be a model for T. We know that $T \vdash t<f^{\ell+1}(t)$ holds for any $\ell>0$. Hence, by the Soundness Theorem, we know that \mathfrak{A} contains an infinite chain

$$
a_{0}<^{\mathfrak{A}} a_{1}<^{\mathfrak{A}} a_{2}<^{\mathfrak{A}} a_{3}<^{\mathfrak{A}} \ldots
$$

Let \mathcal{L}^{\prime} be \mathcal{L} extended by the constants $c_{0}, c_{1}, c_{2}, \ldots$ Let T^{\prime} be the \mathcal{L}^{\prime}-theory with get when T is extended by $\left\{c_{i+1}<c_{i} \mid i \in \mathbb{N}\right\}$. Any finite subset of T^{\prime} has a model since \mathfrak{A} contains an infinite chain. By the Compactness Theorem, T^{\prime} has a model \mathfrak{B}^{\prime}. The \mathcal{L}^{\prime}-structure \mathfrak{B}^{\prime} can easily be turned into \mathcal{L}-structure \mathfrak{B} that is elementary equivalent to \mathfrak{A}. Moreover, the exists elements $b_{0}, b_{1}, b_{2}, \ldots$ in the universe of \mathfrak{B} such that

$$
\ldots b_{i+1}<^{\mathfrak{B}} b_{i}<^{\mathfrak{B}} \ldots<^{\mathfrak{B}} b_{2}<^{\mathfrak{B}} b_{1}<^{\mathfrak{B}} b_{0} .
$$

Now, as \mathfrak{A} and \mathfrak{B} are elementary equivalent, the axiom A_{5} holds in \mathfrak{B}, that is,

$$
\mathfrak{B} \models \forall x y[x<y \rightarrow f(x)<f(y)] .
$$

Hence, we have

$$
\ldots f^{\mathfrak{B}}\left(b_{i+1}\right) \ll^{\mathfrak{B}} f^{\mathfrak{B}}\left(b_{i}\right)<{ }^{\mathfrak{B}} \ldots<^{\mathfrak{B}} f^{\mathfrak{B}}\left(b_{2}\right)<{ }^{\mathfrak{B}} f^{\mathfrak{B}}\left(b_{1}\right) \ll^{\mathfrak{B}} f^{\mathfrak{B}}\left(b_{0}\right) .
$$

