UNIVERSITY OF OSLO
 Faculty of Mathematics and Natural Sciences

Examination in: MAT-INF3600 - Mathematical logic.
Day of examination: Friday, December 15, 2017.
Examination hours: 9:00-13:00.
This problem set consists of 6 pages.
$\begin{array}{ll}\text { Appendices: } & \text { None. } \\ \text { Permitted aids: } & \text { None. }\end{array}$

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Part I

Let R and S be a unary relation symbols, and let a be a constant symbol. Let \mathcal{L} be the language $\{a, R, S\}$.

Problem 1

State the Soundness Theorem for first-order logic. State the Completeness Theorem for first-order logic.

Problem 2

Let ϕ be an \mathcal{L}-formula such that $\forall \phi$. Explain why there exists an \mathcal{L}-structure \mathfrak{A} such that $\mathfrak{A} \not \vDash \phi$. Give a brief answer.

Problem 3

Below you will find six \mathcal{L}-formulas $\left(\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}, \phi_{5}, \phi_{6}\right)$. For each formula ϕ_{i}, we either have $\vdash \phi_{i}$ or $\vdash \phi_{i}$. If $\vdash \phi_{i}$, you should give a detailed deduction of ϕ_{i} (name all the axioms and inference rules involved in the deduction). If $\vdash \phi_{i}$, you should give an \mathcal{L}-structure \mathfrak{A} such that $\mathfrak{A} \notin \phi_{i}$.

- $\phi_{1}: \equiv R a \rightarrow(S a \rightarrow R a)$
- $\phi_{2}: \equiv \exists x[R x] \rightarrow \exists x[S x \rightarrow R x]$
- $\phi_{3}: \equiv \forall x[R x] \rightarrow \forall x[S x \rightarrow R x]$
- $\phi_{4}: \equiv \exists x[S x \rightarrow R x] \rightarrow \exists x[R x]$
- $\phi_{5}: \equiv \forall x[S x \rightarrow R x] \rightarrow \forall x[R x]$
- $\phi_{6}: \equiv(\forall x[R x] \rightarrow R a) \vee(\forall x[S x \rightarrow R x] \rightarrow \forall x[R x])$

SOLUTION

PROBLEM 3
We have $\vdash \phi_{1}$. Deduction:

$$
\text { 1. } R a \rightarrow(S a \rightarrow R a) \quad \text { (PC) }
$$

Yes, that is it. One formula.
We have $\vdash \phi_{2}$. Deduction:

1. $R x \rightarrow(S x \rightarrow R x)$
2. $(S x \rightarrow R x) \rightarrow \exists x[S x \rightarrow R x]$
3. $R x \rightarrow \exists x[S x \rightarrow R x]$
(PC), 1, 2
4. $\exists x[R x] \rightarrow \exists x[S x \rightarrow R x]$
(QR), 3
We have $\vdash \phi_{3}$. Deduction:
5. $\forall x[R x] \rightarrow R x$
6. $R x \rightarrow(S x \rightarrow R x)$
7. $\forall x[R x] \rightarrow(S x \rightarrow R x)$
(PC), 1, 2
8. $\forall x[R x] \rightarrow \forall x[S x \rightarrow R x]$
(QR), 3
We have $\nvdash \phi_{4}$. We give an \mathcal{L}-structure \mathfrak{A} such that $\mathfrak{A} \not \vDash \phi_{4}$: The universe is $\{\bullet\}$ (any nonempty set will work). Let $R^{\mathfrak{A}}=S^{\mathfrak{A}}=\emptyset$. Explanation: We have $\mathfrak{A} \not \vDash \exists x[S x]$. Thus, $\mathfrak{A} \equiv \exists x[S x \rightarrow R x]$. Furthermore, we have $\mathfrak{A} \not \vDash \exists x[R x]$. Thus, $\mathfrak{A} \not \vDash \exists x[S x \rightarrow R x] \rightarrow \exists x[R x]$. (We are not asked to justify our answer. The explanation is superfluous.)
We have $\forall \phi_{5}$. We give an \mathcal{L}-structure \mathfrak{A} such that $\mathfrak{A} \not \vDash \phi_{5}$: The universe is $\{0,1,2\}$. Let $S^{\mathfrak{A}}=\{0\}$. Let $R^{\mathfrak{A}}=\{0,1\}$.
We have $\vdash \phi_{6}$. Deduction:

$$
\begin{align*}
& \text { 1. } \forall x[R x] \rightarrow R a \tag{Q1}\\
& \text { 2. }(\forall x[R x] \rightarrow R a) \vee(\forall x[S x \rightarrow R x] \rightarrow \forall x[R x]) \tag{PC}
\end{align*}
$$

END OF SOLUTION

Part II

Let $<$ be a binary relation symbol, let S be unary function symbols, and let 0 be a constant symbol. Let \mathcal{L} be the language $\{0, S,<\}$. Let T be the \mathcal{L}-theory where we have the following non-logical axioms:
$\left(T_{1}\right) \forall x[\neg S x=0]$
$\left(T_{2}\right) \forall x y[S x=S y \rightarrow x=y]$
$\left(T_{3}\right) \forall x[\neg S x=x]$
$\left(T_{4}\right) \forall x[\neg x<0]$
$\left(T_{5}\right) \forall x y[x<S y \leftrightarrow(x<y \vee x=y)]$

Problem 4

Prove that the axiom T_{3} is independent of the other axioms of T, that is, prove that

$$
\left\{T_{1}, T_{2}, T_{4}, T_{5}\right\} \nvdash T_{3} \quad \text { and } \quad\left\{T_{1}, T_{2}, T_{4}, T_{5}\right\} \nvdash \neg T_{3} .
$$

SOLUTION
 PROBLEM 4

We give an \mathcal{L}-structure \mathfrak{N} such that $\mathfrak{N} \models\left\{T_{1}, T_{2}, T_{4}, T_{5}\right\}$ and $\mathfrak{N} \not \models \neg T_{3}$: The universe is \mathbb{N} (the set of natural numbers). Let $<^{\mathfrak{N}}$ be the standard strict ordering of the natural numbers, i.e.

$$
<^{\mathfrak{N}}=\{(a, b) \mid a, b \in \mathbb{N} \text { and } a<b\} .
$$

Let $S^{\mathfrak{N}}$ be the successor function, i.e. $S^{\mathfrak{N}}(x)=x+1$, and let $0^{\mathfrak{N}}=0$. It is easy to see that we have $\mathfrak{N} \vDash\left\{T_{1}, T_{2}, T_{4}, T_{5}\right\}$ and $\mathfrak{N} \not \vDash \neg T_{3}$. By the Soundness Theorem for first-order logic, we have $\left\{T_{1}, T_{2}, T_{4}, T_{5}\right\} \nvdash \neg T_{3}$.
We give an \mathcal{L}-structure \mathfrak{A} such that $\mathfrak{A} \models\left\{T_{1}, T_{2}, T_{4}, T_{5}\right\}$ and $\mathfrak{A} \not \vDash T_{3}$: The universe is $\mathbb{N} \cup\{\omega\}$ (where ω of course if something else than a natural number). Let

$$
<^{\mathfrak{A}}=\{(a, b) \mid a, b \in \mathbb{N} \text { and } a<b\} \cup\{(\omega, \omega)\} .
$$

Let

$$
S^{\mathfrak{2}}(a)= \begin{cases}a+1 & \text { if } a \in \mathbb{N} \\ a & \text { if } a=\omega\end{cases}
$$

and let $0^{\mathfrak{N}}=0$. It is not hard to check that we have $\mathfrak{A} \models\left\{T_{1}, T_{2}, T_{4}, T_{5}\right\}$ and $\mathfrak{A} \not \vDash T_{3}$. By the Soundness Theorem for first-order logic, we have $\left\{T_{1}, T_{2}, T_{4}, T_{5}\right\} \nvdash T_{3}$.

END OF SOLUTION

Let $\phi(x)$ be any \mathcal{L}-formula (as usual $\phi(t)$ denotes $\phi(x)$ where every free occurrence of the variable x is replaced by the term t). We will consider three axiom schemes.

The scheme of Zero Intolerance. This is the scheme

$$
\begin{equation*}
\forall x[\phi(S x)] \rightarrow \forall x[\phi(x)] \tag{Z}
\end{equation*}
$$

The theory T_{Z} is the theory T extended by this axiom scheme.

The scheme of Pseudo Induction. This is the scheme

$$
\begin{equation*}
(\phi(0) \wedge \forall x[\phi(S x)]) \rightarrow \forall x[\phi(x)] \tag{P}
\end{equation*}
$$

The theory T_{P} is the theory T extended by this axiom scheme.

The scheme of Induction. This is the scheme

$$
\begin{equation*}
(\phi(0) \wedge \forall x[\phi(x) \rightarrow \phi(S x)]) \rightarrow \forall x[\phi(x)] \tag{I}
\end{equation*}
$$

The theory T_{I} is the theory T extended by this axiom scheme.

Problem 5

Give a T_{Z}-deduction of $\neg 0=0$. Give a full deduction. Name all the axioms and inference rules involved in the deduction.

SOLUTION
PROBLEM 5

1. $\forall x[\neg S x=0] \rightarrow \forall x[\neg x=0]$
2. $\forall x[\neg S x=0]$
3. $\forall x[\neg x=0]$
1, 2, (PC)
4. $\forall x[\neg x=0] \rightarrow \neg 0=0$
5. $\neg 0=0$
$3,4,(P C)$

END OF SOLUTION

Problem 6

Explain why we have $T_{Z} \vdash \theta$ for every \mathcal{L}-formula θ.
SOLUTION
We have $T_{Z} \vdash \neg 0=0$ and $T_{Z} \vdash 0=0$. For any θ, we have $T_{Z} \vdash \theta$ as θ follows tautologically from $\neg 0=0$ and $0=0$ (the theory T_{Z} is inconsistent).

END OF SOLUTION

Problem 7

Prove that

$$
T_{P} \vdash \forall x[x=0 \vee \exists y[S y=x]]
$$

Sketch a T_{P}-deduction of the formula. Name all the non-logical axioms involved in the deduction.

SOLUTION

PROBLEM 7
We will use the scheme of Pseudo Induction with $\phi(x): \equiv x=0 \vee \exists y[S y=x]$.
By (E1) and other logical axioms, we have $T_{P} \vdash 0=0$. Thus, by $(P C)$

$$
T_{P} \vdash 0=0 \vee \exists y[S y=0]
$$

This shows that $T_{P} \vdash \phi(0)$.
By logical axioms, we have $\exists y[S y=S x]$. Thus, by (PC)

$$
T_{P} \vdash S x=0 \vee \exists y[S y=S x]
$$

This shows that $T_{P} \vdash \phi(S x)$. Furthermore, by $(Q 1)$ and other logical axioms, we have $T_{P} \vdash \forall x[\phi(S x)]$.
Thus, we have $T_{P} \vdash \phi(0)$ and $T_{P} \vdash \forall x[\phi(S x)]$. By $(P C)$ and (P), we have $T_{P} \vdash \forall x[\phi(x)]$, that is

$$
T_{P} \vdash \forall x[x=0 \vee \exists y[S y=x]]
$$

Problem 8

Prove that

$$
T \nvdash \forall x[x=0 \vee \exists y[S y=x]] .
$$

SOLUTION
We will give an \mathcal{L}-structure \mathfrak{A} such that $\mathfrak{A} \vDash T$ and

$$
\mathfrak{A} \not \models \forall x[x=0 \vee \exists y[S y=x]] .
$$

First we give the universe A. Let B be an countably infinite set containing the elements $\beta_{0}, \beta_{1}, \beta_{2} \ldots$ (for each i, we have $\beta_{i} \notin \mathbb{N}$). Let $A=\mathbb{N} \cup B$.
Let $0^{\mathfrak{2 t}}=0$, let

$$
S^{\mathfrak{Q}}(a)= \begin{cases}a+1 & \text { if } a \in \mathbb{N} \\ \beta_{i+1} & \text { if } a=\beta_{i}\end{cases}
$$

and let

$$
<^{\mathfrak{A}}=\{(a, b) \mid a, b \in \mathbb{N} \text { and } a<b\} \cup\left\{\left(\beta_{i}, \beta_{j}\right) \mid i<j\right\} .
$$

It is obvious that $\mathfrak{A} \models\left\{T_{1}, T_{2}, T_{3}, T_{4}\right\}$. We argue that $\mathfrak{A} \models T_{5}$: We have

$$
\begin{equation*}
a<^{\mathfrak{A}} S^{\mathfrak{A}}(b) \leftrightarrow\left(a<^{\mathfrak{A}} b \vee a=b\right) \tag{}
\end{equation*}
$$

when $a, b \in \mathbb{N}$ (as $<^{\mathfrak{A} t}$ restricted to \mathbb{N} is the standard strict ordering of \mathbb{N}). Furthermore, $\left(^{*}\right.$) holds when $a, b \in B$. If $a \in \mathbb{N}$ and $b \in B,\left(^{*}\right)$ holds since both sides of the bi-implication is false. If $b \in \mathbb{N}$ and $a \in B,\left({ }^{*}\right)$ holds since both sides of the bi-implication is false. Thus, we conclude that $\mathfrak{A} \models T$.
We have

$$
\mathfrak{A} \not \vDash \forall x[x=0 \vee \exists y[S y=x]]
$$

since $\beta_{0} \neq 0^{\mathfrak{2}}$ and there is no y in the universe such that $S^{\mathfrak{2}}(y)=\beta_{0}$.
END OF SOLUTION

Problem 9

Let θ be any \mathcal{L}-formula. Prove that $T_{P} \vdash \theta$ implies $T_{I} \vdash \theta$.

SOLUTION

Let $\phi(x)$ be an arbitrary \mathcal{L}-formula. We have (see Problem 3)

$$
\vdash \forall x[\phi(S x)] \rightarrow \forall x[\phi(x) \rightarrow \phi(S x)] .
$$

Thus, we also have

$$
\begin{equation*}
T_{I} \vdash \forall x[\phi(S x)] \rightarrow \forall x[\phi(x) \rightarrow \phi(S x)] . \tag{*}
\end{equation*}
$$

It is trivial that

$$
\begin{equation*}
T_{I} \vdash(\phi(0) \wedge \forall x[\phi(x) \rightarrow \phi(S x)]) \rightarrow \forall x[\phi(x)] . \tag{**}
\end{equation*}
$$

By $\left({ }^{*}\right),\left({ }^{* *}\right)$ and (PC), we have

$$
T_{I} \vdash(\phi(0) \wedge \forall x[\phi(S x)]) \rightarrow \forall x[\phi(x)] .
$$

This shows that the scheme of Pseudo Induction (P) is available in the theory T_{I}. Hence, any formula deducible from the axioms of T_{P} will also be deducible from the axioms of T_{I}.

Problem 10

Does it exist an \mathcal{L}-formula η such that $T_{I} \vdash \eta$ and $T_{P} \nvdash \eta$? Justify your answer. If you can, prove that your answer is correct.
SOLUTION —— PROBLEM 10
We have $T_{I} \vdash \forall x[\neg S S x=x]$ and $T_{P} \nvdash \forall x[\neg S S x=x]$.
First we argue that $T_{I} \vdash \forall x[\neg S S x=x]$. We have

$$
\begin{equation*}
T_{I} \vdash[\neg S S 0=0] \tag{*}
\end{equation*}
$$

by $\left(T_{1}\right)$. We have

$$
\begin{equation*}
T_{I} \vdash \forall x[\neg S S x=x \quad \rightarrow \quad \neg S S S x=S x] \tag{**}
\end{equation*}
$$

by $\left(T_{2}\right)$. By $\left({ }^{*}\right),\left({ }^{* *}\right),(I)$ and $(P C)$, we have $T_{I} \vdash \forall x[\neg S S x=x]$ (we use the scheme of Induction with $\phi(x): \equiv \neg S S x=x)$.
We give an \mathcal{L}-structure \mathfrak{A} such that $\mathfrak{A} \models T_{P}$ and $\mathfrak{A} \not \vDash \forall x[\neg S S x=x]$. The universe of \mathfrak{A} is $\mathbb{N} \cup\{\alpha, \beta\}($ where $\alpha, \beta \notin \mathbb{N})$. Let $0^{\mathfrak{A}}=0$, let $S^{\mathfrak{A}}(a)=a+1$ when $a \in \mathbb{N}$, let $S^{\mathfrak{A}}(\alpha)=\beta$, let $S^{\mathfrak{A}}(\beta)=\alpha$. Let

$$
<^{\mathfrak{A}}=\{(a, b) \mid a, b \in \mathbb{N} \text { and } a<b\} \cup\{(\alpha, \alpha),(\alpha, \beta),(\beta, \alpha),(\beta, \beta)\}
$$

We have $S^{\mathfrak{A}} S^{\mathfrak{A}}(\alpha)=\alpha$. Thus $\mathfrak{A} \not \vDash \forall x[\neg S S x=x]$. It is possible to check that $\mathfrak{A} \vDash T_{P}$ (It is obvious that $\mathfrak{A} \vDash\left\{T_{1}, T_{2}, T_{4}\right\}$. Some work is required to check that $\mathfrak{A} \vDash T_{5}$. Since any element in the universe either equals $0^{\mathfrak{A}}$ or is the the successor of something, \mathfrak{A} satisfies the scheme of Pseudo Induction.)

