UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in:MAT-INF3600 — Mathematical logic.Day of examination:Friday, December 15, 2017.Examination hours:9:00-13:00.This problem set consists of 6 pages.Appendices:None.Permitted aids:None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Part I

Let R and S be a unary relation symbols, and let a be a constant symbol. Let \mathcal{L} be the language $\{a, R, S\}$.

Problem 1

State the Soundness Theorem for first-order logic. State the Completeness Theorem for first-order logic.

Problem 2

Let ϕ be an \mathcal{L} -formula such that $\not\vdash \phi$. Explain why there exists an \mathcal{L} -structure \mathfrak{A} such that $\mathfrak{A} \not\models \phi$. Give a brief answer.

Problem 3

Below you will find six \mathcal{L} -formulas $(\phi_1, \phi_2, \phi_3, \phi_4, \phi_5, \phi_6)$. For each formula ϕ_i , we either have $\vdash \phi_i$ or $\nvDash \phi_i$. If $\vdash \phi_i$, you should give a detailed deduction of ϕ_i (name all the axioms and inference rules involved in the deduction). If $\nvDash \phi_i$, you should give an \mathcal{L} -structure \mathfrak{A} such that $\mathfrak{A} \not\models \phi_i$.

- $\phi_1 :\equiv Ra \to (Sa \to Ra)$
- $\phi_2 :\equiv \exists x[Rx] \to \exists x[Sx \to Rx]$
- $\phi_3 := \forall x[Rx] \to \forall x[Sx \to Rx]$
- $\phi_4 :\equiv \exists x[Sx \to Rx] \to \exists x[Rx]$
- $\phi_5 := \forall x[Sx \to Rx] \to \forall x[Rx]$

(Continued on page 2.)

Examination in MAT-INF3600, Friday, December 15, 2017.

•
$$\phi_6 := (\forall x[Rx] \to Ra) \lor (\forall x[Sx \to Rx] \to \forall x[Rx])$$

SOLUTION — PROBLEM 3

We have $\vdash \phi_1$. Deduction:

1.
$$Ra \to (Sa \to Ra)$$
 (PC)

Yes, that is it. One formula.

We have $\vdash \phi_2$. Deduction:

1.
$$Rx \to (Sx \to Rx)$$
 (PC)

2.
$$(Sx \to Rx) \to \exists x [Sx \to Rx]$$
 (Q2)

3.
$$Rx \rightarrow \exists x[Sx \rightarrow Rx]$$
 (PC), 1, 2

4.
$$\exists x[Rx] \rightarrow \exists x[Sx \rightarrow Rx]$$
 (QR), 3

We have $\vdash \phi_3$. Deduction:

1.
$$\forall x[Rx] \to Rx$$
 (Q1)

2.
$$Rx \to (Sx \to Rx)$$
 (PC)

3.
$$\forall x[Rx] \rightarrow (Sx \rightarrow Rx)$$
 (PC), 1, 2
4. $\forall x[Rx] \rightarrow \forall x[Sx \rightarrow Rx]$ (QR), 3

We have $\not\vDash \phi_4$. We give an \mathcal{L} -structure \mathfrak{A} such that $\mathfrak{A} \not\models \phi_4$: The universe is $\{\bullet\}$ (any nonempty set will work). Let $R^{\mathfrak{A}} = S^{\mathfrak{A}} = \emptyset$. Explanation: We have $\mathfrak{A} \not\models \exists x[Sx]$. Thus, $\mathfrak{A} \models \exists x[Sx \to Rx]$. Furthermore, we have $\mathfrak{A} \not\models \exists x[Rx]$. Thus, $\mathfrak{A} \not\models \exists x[Sx \to Rx] \to \exists x[Rx]$. (We are not asked to justify our answer. The explanation is superfluous.)

We have $\not\vdash \phi_5$. We give an \mathcal{L} -structure \mathfrak{A} such that $\mathfrak{A} \not\models \phi_5$: The universe is $\{0, 1, 2\}$. Let $S^{\mathfrak{A}} = \{0\}$. Let $R^{\mathfrak{A}} = \{0, 1\}$.

We have $\vdash \phi_6$. Deduction:

1.
$$\forall x[Rx] \to Ra$$
 (Q1)
2. $(\forall x[Rx] \to Ra) \lor (\forall x[Sx \to Rx] \to \forall x[Rx])$ (PC), 1
______ END OF SOLUTION

Part II

Let < be a binary relation symbol, let S be unary function symbols, and let 0 be a constant symbol. Let \mathcal{L} be the language $\{0, S, <\}$. Let T be the \mathcal{L} -theory where we have the following non-logical axioms:

- $(T_1) \ \forall x[\neg Sx = 0]$
- $(T_2) \quad \forall xy[Sx = Sy \rightarrow x = y]$
- $(T_3) \quad \forall x[\neg Sx = x]$
- $(T_4) \ \forall x [\neg x < 0]$
- $(T_5) \ \forall xy[x < Sy \ \leftrightarrow \ (x < y \lor x = y)]$

(Continued on page 3.)

Prove that the axiom T_3 is independent of the other axioms of T, that is, prove that

$$\{T_1, T_2, T_4, T_5\} \not\vdash T_3$$
 and $\{T_1, T_2, T_4, T_5\} \not\vdash \neg T_3$.

SOLUTION -

PROBLEM 4

We give an \mathcal{L} -structure \mathfrak{N} such that $\mathfrak{N} \models \{T_1, T_2, T_4, T_5\}$ and $\mathfrak{N} \not\models \neg T_3$: The universe is \mathbb{N} (the set of natural numbers). Let $<^{\mathfrak{N}}$ be the standard strict ordering of the natural numbers, i.e.

$$<^{\mathfrak{N}} = \{ (a, b) \mid a, b \in \mathbb{N} \text{ and } a < b \}$$

Let $S^{\mathfrak{N}}$ be the successor function, i.e. $S^{\mathfrak{N}}(x) = x + 1$, and let $0^{\mathfrak{N}} = 0$. It is easy to see that we have $\mathfrak{N} \models \{T_1, T_2, T_4, T_5\}$ and $\mathfrak{N} \not\models \neg T_3$. By the Soundness Theorem for first-order logic, we have $\{T_1, T_2, T_4, T_5\} \not\vdash \neg T_3$.

We give an \mathcal{L} -structure \mathfrak{A} such that $\mathfrak{A} \models \{T_1, T_2, T_4, T_5\}$ and $\mathfrak{A} \not\models T_3$: The universe is $\mathbb{N} \cup \{\omega\}$ (where ω of course if something else than a natural number). Let

$$<^{\mathfrak{A}} = \{ (a,b) \mid a, b \in \mathbb{N} \text{ and } a < b \} \cup \{ (\omega,\omega) \}.$$

Let

$$S^{\mathfrak{A}}(a) = \begin{cases} a+1 & \text{if } a \in \mathbb{N} \\ a & \text{if } a = \omega \end{cases}$$

and let $0^{\mathfrak{N}} = 0$. It is not hard to check that we have $\mathfrak{A} \models \{T_1, T_2, T_4, T_5\}$ and $\mathfrak{A} \not\models T_3$. By the Soundness Theorem for first-order logic, we have $\{T_1, T_2, T_4, T_5\} \not\vdash T_3$.

- END OF SOLUTION

Let $\phi(x)$ be any \mathcal{L} -formula (as usual $\phi(t)$ denotes $\phi(x)$ where every free occurrence of the variable x is replaced by the term t). We will consider three axiom schemes.

The scheme of Zero Intolerance. This is the scheme

$$\forall x[\phi(Sx)] \to \forall x[\phi(x)] \tag{2}$$

The theory ${\cal T}_Z$ is the theory ${\cal T}$ extended by this axiom scheme.

The scheme of Pseudo Induction. This is the scheme

$$(\phi(0) \land \forall x[\phi(Sx)]) \to \forall x[\phi(x)]$$
(P)

The theory T_P is the theory T extended by this axiom scheme.

The scheme of Induction. This is the scheme

$$(\phi(0) \land \forall x[\phi(x) \to \phi(Sx)]) \to \forall x[\phi(x)]$$
 (I)

The theory T_I is the theory T extended by this axiom scheme.

(Continued on page 4.)

Give a T_Z -deduction of $\neg 0 = 0$. Give a full deduction. Name all the axioms and inference rules involved in the deduction.

SOLUTION — PROBLEM 5 1. $\forall x [\neg Sx = 0] \rightarrow \forall x [\neg x = 0]$ (Z) 2. $\forall x [\neg Sx = 0]$ (T₁) 3. $\forall x [\neg x = 0]$ 1, 2, (PC) 4. $\forall x [\neg x = 0] \rightarrow \neg 0 = 0$ (Q1) 5. $\neg 0 = 0$ 3, 4, (PC) — END OF SOLUTION

Problem 6

Explain why we have $T_Z \vdash \theta$ for every \mathcal{L} -formula θ . SOLUTION — — PROBLEM 6 We have $T_Z \vdash \neg 0 = 0$ and $T_Z \vdash 0 = 0$. For any θ , we have $T_Z \vdash \theta$ as θ follows tautologically from $\neg 0 = 0$ and 0 = 0 (the theory T_Z is inconsistent).

— END OF SOLUTION

Problem 7

Prove that

 $T_P \vdash \forall x [x = 0 \lor \exists y [Sy = x]].$

Sketch a T_P -deduction of the formula. Name all the non-logical axioms involved in the deduction.

SOLUTION — PROBLEM 7

We will use the scheme of Pseudo Induction with $\phi(x) :\equiv x = 0 \lor \exists y [Sy = x]$.

By (E1) and other logical axioms, we have $T_P \vdash 0 = 0$. Thus, by (PC)

$$T_P \vdash 0 = 0 \lor \exists y [Sy = 0]$$
.

This shows that $T_P \vdash \phi(0)$.

By logical axioms, we have $\exists y[Sy = Sx]$. Thus, by (PC)

$$T_P \vdash Sx = 0 \lor \exists y[Sy = Sx]$$
.

This shows that $T_P \vdash \phi(Sx)$. Furthermore, by (Q1) and other logical axioms, we have $T_P \vdash \forall x[\phi(Sx)]$.

Thus, we have $T_P \vdash \phi(0)$ and $T_P \vdash \forall x[\phi(Sx)]$. By (PC) and (P), we have $T_P \vdash \forall x[\phi(x)]$, that is

$$T_P \vdash \forall x [x = 0 \lor \exists y [Sy = x]].$$

```
- END OF SOLUTION
```

(Continued on page 5.)

Prove that

$$T \not\vdash \forall x [x = 0 \lor \exists y [Sy = x]].$$

SOLUTION -

— PROBLEM 8

We will give an \mathcal{L} -structure \mathfrak{A} such that $\mathfrak{A} \models T$ and

$$\mathfrak{A} \not\models \forall x [x = 0 \lor \exists y [Sy = x]].$$

First we give the universe A. Let B be an countably infinite set containing the elements $\beta_0, \beta_1, \beta_2 \dots$ (for each i, we have $\beta_i \notin \mathbb{N}$). Let $A = \mathbb{N} \cup B$. Let $0^{\mathfrak{A}} = 0$, let

$$S^{\mathfrak{A}}(a) = \begin{cases} a+1 & \text{if } a \in \mathbb{N} \\ \beta_{i+1} & \text{if } a = \beta_i \end{cases}$$

and let

$$<^{\mathfrak{A}} = \{ (a,b) \mid a, b \in \mathbb{N} \text{ and } a < b \} \cup \{ (\beta_i, \beta_j) \mid i < j \}$$

It is obvious that $\mathfrak{A} \models \{T_1, T_2, T_3, T_4\}$. We argue that $\mathfrak{A} \models T_5$: We have

$$a <^{\mathfrak{A}} S^{\mathfrak{A}}(b) \leftrightarrow (a <^{\mathfrak{A}} b \lor a = b) \tag{(*)}$$

when $a, b \in \mathbb{N}$ (as $<^{\mathfrak{A}}$ restricted to \mathbb{N} is the standard strict ordering of \mathbb{N}). Furthermore, (*) holds when $a, b \in B$. If $a \in \mathbb{N}$ and $b \in B$, (*) holds since both sides of the bi-implication is false. If $b \in \mathbb{N}$ and $a \in B$, (*) holds since both sides of the bi-implication is false. Thus, we conclude that $\mathfrak{A} \models T$.

We have

$$\mathfrak{A} \not\models \forall x [x = 0 \lor \exists y [Sy = x]]$$

d there is no y in the universe such that $S^{\mathfrak{A}}(y) = \beta_0$

Problem 9

since $\beta_0 \neq 0^{\mathfrak{A}}$ an

Let θ be any \mathcal{L} -formula. Prove that $T_P \vdash \theta$ implies $T_I \vdash \theta$. SOLUTION — PROBLEM 9 Let $\phi(x)$ be an arbitrary \mathcal{L} -formula. We have (see Problem 3) $\vdash \forall x [\phi(Sx)] \rightarrow \forall x [\phi(x) \rightarrow \phi(Sx)]$.

Thus, we also have

$$T_I \vdash \forall x[\phi(Sx)] \rightarrow \forall x[\phi(x) \rightarrow \phi(Sx)].$$
 ((*))

It is trivial that

$$T_I \vdash (\phi(0) \land \forall x[\phi(x) \to \phi(Sx)]) \to \forall x[\phi(x)].$$
(**)

By (*), (**) and (PC), we have

$$T_I \vdash (\phi(0) \land \forall x[\phi(Sx)]) \rightarrow \forall x[\phi(x)].$$

This shows that the scheme of Pseudo Induction (P) is available in the theory T_I . Hence, any formula deducible from the axioms of T_P will also be deducible from the axioms of T_I .

END OF SOLUTION

(Continued on page 6.)

Does it exist an \mathcal{L} -formula η such that $T_I \vdash \eta$ and $T_P \not\vdash \eta$? Justify your answer. If you can, prove that your answer is correct.

SOLUTION — PROBLEM 10 We have $T_I \vdash \forall x [\neg SSx = x]$ and $T_P \not\vdash \forall x [\neg SSx = x]$.

First we argue that $T_I \vdash \forall x [\neg SSx = x]$. We have

$$T_I \vdash [\neg SS0 = 0] \tag{(*)}$$

by (T_1) . We have

$$T_I \vdash \forall x [\neg SSx = x \quad \to \quad \neg SSSx = Sx] \tag{(**)}$$

by (T_2) . By (*), (**), (I) and (PC), we have $T_I \vdash \forall x [\neg SSx = x]$ (we use the scheme of Induction with $\phi(x) :\equiv \neg SSx = x$).

We give an \mathcal{L} -structure \mathfrak{A} such that $\mathfrak{A} \models T_P$ and $\mathfrak{A} \not\models \forall x [\neg SSx = x]$. The universe of \mathfrak{A} is $\mathbb{N} \cup \{\alpha, \beta\}$ (where $\alpha, \beta \notin \mathbb{N}$). Let $0^{\mathfrak{A}} = 0$, let $S^{\mathfrak{A}}(a) = a + 1$ when $a \in \mathbb{N}$, let $S^{\mathfrak{A}}(\alpha) = \beta$, let $S^{\mathfrak{A}}(\beta) = \alpha$. Let

$$<^{\mathfrak{A}} = \{ (a,b) \mid a, b \in \mathbb{N} \text{ and } a < b \} \cup \{ (\alpha, \alpha), (\alpha, \beta), (\beta, \alpha), (\beta, \beta) \}.$$

We have $S^{\mathfrak{A}}S^{\mathfrak{A}}(\alpha) = \alpha$. Thus $\mathfrak{A} \not\models \forall x [\neg SSx = x]$. It is possible to check that $\mathfrak{A} \models T_P$ (It is obvious that $\mathfrak{A} \models \{T_1, T_2, T_4\}$. Some work is required to check that $\mathfrak{A} \models T_5$. Since any element in the universe either equals $0^{\mathfrak{A}}$ or is the the successor of something, \mathfrak{A} satisfies the scheme of Pseudo Induction.)

- END OF SOLUTION

END