UNIVERSITY OF OSLO
 Faculty of Mathematics and Natural Sciences

Examination in: MAT-INF3600 - Mathematical logic.
Day of examination: Tuesday, December 1, 2020.
Examination hours: 15:00-19:00.
This problem set consists of 6 pages.
Appendices: None.
Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

The weights might be adjusted.

PART I

Let P and Q be unary relation symbols. Let a, b and c be constant symbols. Let f and g be unary function symbols. Furthermore, x and y denote variables.

Problem 1 (weight 10%)

Let $\Sigma=\{\forall x[P x]\}$. Give a full Σ-deduction of $\forall x[Q c \rightarrow P x]$. Name all the logical axioms and inference rules involved in the deduction.

Solution:

1. $\forall x[P x] \rightarrow P x$
2. $\forall x[P x]$
Σ
3. $P x$
$1,2,(\mathrm{PC})$
4. $Q c \rightarrow P x$
3, (PC)
5. $\quad \top \rightarrow(Q c \rightarrow P x)$
4, (PC)
6. $\quad \top \rightarrow \forall x[Q c \rightarrow P x]$
5, (QR)
7. $\forall x[Q c \rightarrow P x]$
$6,(\mathrm{PC})$

Problem 2 (weight 10%)

Let \mathcal{L} be the language $\{P, Q, c\}$ Give an \mathcal{L} structure \mathfrak{A} such that $\mathfrak{A}=\forall x[Q c \rightarrow P x]$ and $\mathfrak{A} \not \vDash \forall x[P x]$. Explain briefly why we have $\{\forall x[Q c \rightarrow P x]\} \nvdash \forall x[P x]$.

> ___ Solution:

Let the universe A be any nonempty set, e.g., let $A=\mathbb{N}$. Let $Q^{\mathfrak{A}}=\emptyset$ and $P^{\mathfrak{A}}=\emptyset$. Let $c^{\alpha}=0$.
We have a structure \mathfrak{A} such that $\mathfrak{A} \vDash \forall x[Q c \rightarrow P x]$ and $\mathfrak{A} \not \vDash \forall x[P x]$. Thus, $\{\forall x[Q c \rightarrow P x]\} \nvdash \forall x[P x]$ follows by the Soundness Theorem.

Problem 3 (weight 10%)

Ten Questions: Answer each question with a YES or a NO (and nothing else). If you do not answer a question, your answer to that question will be considered as wrong.

1. Is the set $\{a \neq b, f(a)=f(b)]\}$ consistent? YES
2. Is the set $\{a=b, f(a) \neq f(b)]\}$ consistent? NO
3. Is the set $\{f(a)=g(b), g(b)=f(c), g(f(a)) \neq g(f(c))]\}$ consistent? NO
4. Is the set $\{\forall x y[f(x) \neq f(y)], \exists x y[f(x) \neq f(y)]\}$ consistent? NO
5. Is the set $\{\forall x y[f(x)=f(y)], \exists x y[f(x)=f(y)]\}$ consistent? YES
6. Does $\forall x[f(x)=x]$ follow logically from $\{\forall x[f(f(x))=f(x)], \forall x[g(f(x))=x]\}$? YES
7. Does $\forall x y[x \neq y \rightarrow f(x) \neq f(y)]$ follow logically from $\{\forall x[g(f(x))=x]\}$? YES
8. Does $\forall x \exists y[f(y)=x]$ follow logically from $\{\forall x[g(f(x))=x]\}$? NO
9. Does $\forall x[f(g(x))=x]$ follow logically from $\{\forall x[g(f(x))=x]\}$? NO
10. Does $\exists x[g(x)=c]$ follow logically from $\{\forall x[g(f(x))=x]\}$? YES

PART II

Let e be a constant symbol, let S_{0} and S_{1} be unary function symbols, let o be a binary function symbol and, furthermore, let \mathcal{L} be the first-order language $\left\{e, S_{0}, S_{1}, \circ\right\}$ and T be the \mathcal{L}-theory consisting of the non-logical axioms
$\left(T_{1}\right) \forall x y\left[S_{0}(x) \neq e \wedge S_{1}(x) \neq e\right]$
$\left(T_{2}\right) \forall x y\left[x \neq y \rightarrow\left(S_{0}(x) \neq S_{0}(y) \wedge S_{1}(x) \neq S_{1}(y)\right)\right]$
$\left(T_{3}\right) \forall x y\left[S_{0}(x) \neq S_{1}(y)\right]$
(T_{4}) $\forall x[e \circ x=x]$
(T_{5}) $\forall x y\left[S_{0}(y) \circ x=S_{0}(y \circ x)\right]$
$\left(T_{6}\right) \forall x y\left[S_{1}(y) \circ x=S_{1}(y \circ x)\right]$.
We have $T \vdash S_{0}(e) \circ S_{0}(e) \neq S_{1}(e)$ and $T \vdash S_{0}\left(S_{0}(e)\right) \neq S_{0}(e)$.

Problem 4 (weight 5%)

Name the non-logical axioms of T we need to deduce $S_{0}(e) \circ S_{0}(e) \neq S_{1}(e)$. Give a brief answer.

Solution:

We need T_{3} and T_{5}.

Problem 5 (weight 5%)

Name the non-logical axioms of T we need to deduce $S_{0}\left(S_{0}(e)\right) \neq S_{0}(e)$. Give a brief answer.
\qquad
We need T_{1} and T_{2}.

Problem 6 (weight 10%)

Show that $\left\{T_{1}, T_{2}, T_{4}, T_{5}, T_{6}\right\} \nvdash T_{3}$.
—— Solution:

Let \mathfrak{A} be a structure where the universe is the set of natural numbers \mathbb{N}. Furthermore, let $e^{\mathfrak{A}}=0$, let $S_{0}^{\mathfrak{A}}(x)=S_{1}^{\mathfrak{A}}(x)=x+1$, and let $x^{\circ} y=x+y$ (standard addition). Then we have $\mathfrak{A} \vDash\left\{T_{1}, T_{2}, T_{4}, T_{5}, T_{6}\right\}$ and $\mathfrak{A} \notin T_{3}$. By the Soundness Theorem, we have $\left\{T_{1}, T_{2}, T_{4}, T_{5}, T_{6}\right\} \nvdash T_{3}$.

Problem 7 (weight 10%)

Show that $\left\{T_{1}, T_{2}, T_{4}, T_{5}, T_{6}\right\} \nvdash \neg T_{3}$.
Solution:
Let \mathfrak{B} be a structure where the universe is the set $\{0,1\}^{*}$ of all bit strings over the alphabet $\{0,1\}$ (the set includes the empty string ε). Let $e^{\mathfrak{B}}=\varepsilon$. For any $b \in\{0,1\}^{*}$, let $S_{0}^{\mathfrak{B}}(b)=0 b$ and $S_{1}^{\mathfrak{B}}(b)=1 b$. Then we have $\mathfrak{B} \vDash\left\{T_{1}, T_{2}, T_{4}, T_{5}, T_{6}\right\}$ and $\mathfrak{B} \not \vDash \neg T_{3}$. By the Soundness Theorem, we have $\left\{T_{1}, T_{2}, T_{4}, T_{5}, T_{6}\right\} \nvdash \neg T_{3}$.

We define the canonical \mathcal{L}-terms inductively: e is a canonical term; $S_{0}(s)$ is a canonical term if s is a canonical term; $S_{1}(s)$ is a canonical term if s is a canonical term. (So a canonical term is a variable-free term with no occurrences of o.)

Theorem I. For every variable-free \mathcal{L}-term t, there exists a canonical term s such that $T \vdash t=s$.

Problem 8 (weight 10%)

Prove Theorem I.
(Claim). For any canonical \mathcal{L}-terms t and s, there exists a canonical term u such that $T \vdash t \circ s=u$.

We prove the claim by induction on the structure of the canonical term t. The proof splits into the cases (i) $t: \equiv e$, (ii) $t: \equiv S_{0}\left(t^{\prime}\right)$ and (iii) $t: \equiv S_{1}\left(t^{\prime}\right)$.
(i) $t: \equiv e$. Let s be any canonical term. By T_{1} we have $T \vdash e \circ s=s$. Thus the claim holds in case (i).
(ii) $t: \equiv S_{0} t^{\prime}$. Let s be any canonical term. By the ind. hyp. we have a canonical term u^{\prime} such that

$$
\begin{equation*}
T \vdash t^{\prime} \circ s=u^{\prime} . \tag{A}
\end{equation*}
$$

By (E2) and other logical axioms we have

$$
\begin{equation*}
T \vdash t^{\prime} \circ s=u^{\prime} \rightarrow S_{0}\left(t^{\prime} \circ s\right)=S_{0}\left(u^{\prime}\right) . \tag{B}
\end{equation*}
$$

By (A), (B) and (PC), we have

$$
\begin{equation*}
T \vdash S_{0}\left(t^{\prime} \circ s\right)=S_{0}\left(u^{\prime}\right) \tag{C}
\end{equation*}
$$

By T_{5}, we have

$$
\begin{equation*}
T \vdash S_{0}\left(t^{\prime}\right) \circ s=S_{0}\left(t^{\prime} \circ x\right) \tag{D}
\end{equation*}
$$

By (C), (D) and logical axioms, we have $T \vdash S_{0}\left(t^{\prime}\right) \circ s=S_{0} u^{\prime}$. Thus, the claim holds as $S_{0} u^{\prime}$ is a canonical term. This completes the proof of case (ii).

Case (iii) is symmetric to case (ii). Use the axiom T_{6} in place of T_{5}.
We turn to the roof of Theorem I. We prove the theorem by induction on the structure of t. We have the cases

- $t: \equiv e$
- $t: \equiv S_{0}\left(t^{\prime}\right)$
- $t: \equiv S_{1}\left(t^{\prime}\right)$
- $t: \equiv t^{\prime} \circ t^{\prime \prime}$.

Case $t: \equiv e$. By (E1) and other logical axioms, we have $T \vdash e=e$. We observe that e is a canonical term. Thus the theorem holds when $t: \equiv e$.

Case $t: \equiv S_{0}\left(t^{\prime}\right)$. By the ind. hyp. we have a canonical term s^{\prime} such that $T \vdash t^{\prime}=s^{\prime}$. By (E2) and other logical axioms, we have $T \vdash t^{\prime}=s^{\prime} \rightarrow S_{0}\left(t^{\prime}\right)=S_{0}\left(s^{\prime}\right)$. By (PC), we have $T \vdash S_{0}\left(t^{\prime}\right)=S_{0}\left(s^{\prime}\right)$. Now, $S_{0}\left(s^{\prime}\right)$ is a canonical term. This completes the proof of the case $t: \equiv S_{0}\left(t^{\prime}\right)$.

Case $t: \equiv S_{1}\left(t^{\prime}\right) . \quad$ This case is symmetric to the preceding case.

Case $t: \equiv t^{\prime} \circ t^{\prime \prime}$. The ind. hyp. yields canonical terms s^{\prime} and $s^{\prime \prime}$ such that $T \vdash t^{\prime}=s^{\prime}$ and $T \vdash t^{\prime \prime}=s^{\prime \prime}$. By (E2) and other logical axioms, we have

$$
t^{\prime}=s^{\prime} \wedge t^{\prime \prime}=s^{\prime \prime} \rightarrow t^{\prime} \circ t^{\prime \prime}=s^{\prime} \circ s^{\prime \prime} .
$$

Thus, by (PC), we have

$$
\begin{equation*}
T \vdash t^{\prime} \circ t^{\prime \prime}=s^{\prime} \circ s^{\prime \prime} . \tag{E}
\end{equation*}
$$

By (Claim), we have a canonical term s such that

$$
\begin{equation*}
T \vdash s^{\prime} \circ s^{\prime \prime}=s . \tag{F}
\end{equation*}
$$

By (E), (F) and logical axioms, we have $T \vdash t^{\prime} \circ t^{\prime \prime}=s$ This proves that the theorem holds when $t: \equiv t^{\prime} \circ t^{\prime \prime}$.

PART III

The next theorem is also known as the Compactness Theorem for first-order logic.
Theorem II. Let \mathcal{L} be a first-order language, and let Σ be a set of \mathcal{L}-formulas. If every finite subset of Σ has a model, then Σ has a model.

Problem 9 (weight 10%)

Prove Theorem II. The proof should refer to the Completeness Theorem for first-order logic (do not prove the Completeness Theorem).

Let $\mathcal{L}_{N T}$ be the language of number theory, that is, the language $\{0, S,+, \cdot, E,<\}$. Let \mathfrak{N} be the standard $\mathcal{L}_{N T}$-structure, and let $T h(\mathfrak{N})$ denote the theory of \mathfrak{N}, that is,

$$
T h(\mathfrak{N})=\left\{\phi \mid \phi \text { is an } \mathcal{L}_{N T} \text {-formula and } \mathfrak{N} \models \phi\right\} .
$$

Let \mathbb{Q} denote the set of rational numbers. For each $i \in \mathbb{Q}$ we introduce a unique constant symbol c_{i}. Let \mathcal{L}_{*} be $\mathcal{L}_{N T}$ extended by $\left\{c_{i} \mid i \in \mathbb{Q}\right\}$. Let

$$
\Sigma=\operatorname{Th}(\mathfrak{N}) \cup\left\{c_{i}<c_{j} \mid i, j \in \mathbb{Q} \text { and } i<j\right\} \cup\left\{\exists x\left[S S S 0+x=c_{i}\right] \mid i \in \mathbb{Q}\right\}
$$

and

$$
\Gamma=\operatorname{Th}(\mathfrak{N}) \cup\left\{c_{i}<c_{j} \mid i, j \in \mathbb{Q} \text { and } i<j\right\} \cup\left\{\exists x\left[c_{i}+x=S S S 0\right] \mid i \in \mathbb{Q}\right\}
$$

Obviously, Σ and Γ are sets of \mathcal{L}_{*}-formulas.

Problem 10 (weight 10%)

Prove that one of the two sets Σ and Γ has a model. Prove that the other set does not have have model.

Solution:

Proof (sketch). Argue that any finite subset of Σ has model. Use Theorem II (the Compactness Theorem) to conclude Σ has a model.

The set Γ does not have a model.

Proof . We observe that $T h(\mathfrak{N})$, and thus Γ, contains the formula

$$
\forall y x[y+x=S S S 0 \rightarrow(y=0 \vee y=S 0 \vee y=S S 0 \vee y=S S S 0) .
$$

Thus, as Γ contains the formula $\exists x\left[c_{i}+x=S S S 0\right]$ (for any $i \in \mathbb{Q}$), we have

$$
\Gamma \models c_{i}=0 \vee c_{i}=S 0 \vee c_{i}=S S 0 \vee c_{i}=S S S 0
$$

(for any $i \in \mathbb{Q}$). But we also have $\Gamma \models c_{i}<c_{j}$ for any rationals i, j where $i<j$. This makes it easy to see that Γ cannot have a model. (Recall that the set $T h(\mathfrak{N})$ also contains formulas like

$$
\forall x y z[x<y \rightarrow \neg x=y] \text { and } \forall x y z[x<y \wedge y<z \rightarrow \neg x<z] .
$$

If we work a little bit, we can find a Γ-deduction of \perp, and then, by Soundness Theorem, we can conclude that Γ does not have a model.)

Let \mathfrak{A} be an $\mathcal{L}_{N T}$ structure. An infinite sequence $a_{0}, a_{1}, a_{2}, \ldots$ is an \mathfrak{A}-predecessor chain if $S^{\mathfrak{A}}\left(a_{i+1}\right)=a_{i}$ (for all $i \in \mathbb{N}$). An \mathfrak{A}-predecessor chain $a_{0}, a_{1}, a_{2}, \ldots$ lies below an \mathfrak{A}-predecessor chain $b_{0}, b_{1}, b_{2}, \ldots$ if $a_{0}<^{\mathfrak{A}} b_{i}\left(\right.$ for all $i \in \mathbb{N}$). If $a_{0}, a_{1}, a_{2}, \ldots$ lies below $b_{0}, b_{1}, b_{2}, \ldots$, then $b_{0}, b_{1}, b_{2}, \ldots$ lies above $a_{0}, a_{1}, a_{2}, \ldots$.

Problem 11 (weight 10%)

Prove that $T h(\mathfrak{N})$ has a model \mathfrak{A} such that

- there are infinitely many \mathfrak{A}-predecessor chains
- if one \mathfrak{A}-predecessor lies below another \mathfrak{A}-predecessor chain, then there is an \mathfrak{A} predecessor chain in between, that is, a chain that lies above one of the chains and below the other.

