UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in:	MAT-INF3600 — Mathematical logic.		
Day of examination:	Tuesday, December 1, 2020.		
Examination hours:	15:00-19:00.		
This problem set consists of 6 pages.			
Appendices:	None.		
Permitted aids:	None.		

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

The weights might be adjusted.

PART I

Let P and Q be unary relation symbols. Let a, b and c be constant symbols. Let f and g be unary function symbols. Furthermore, x and y denote variables.

Problem 1 (weight 10 %)

Let $\Sigma = \{ \forall x [Px] \}$. Give a full Σ -deduction of $\forall x [Qc \rightarrow Px]$. Name all the logical axioms and inference rules involved in the deduction.

------ Solution:

1.	$\forall x[Px] \to Px$	(Q1)
2.	$\forall x[Px]$	Σ
3.	Px	1, 2, (PC)
4.	$Qc \rightarrow Px$	3, (PC)
5.	$\top \to (Qc \to Px)$	4, (PC)
6.	$\top \to \forall x [Qc \to Px]$	5, (QR)
7.	$\forall x [Qc \to Px]$	6, (PC)

Problem 2 (weight 10 %)

Let \mathcal{L} be the language $\{P, Q, c\}$ Give an \mathcal{L} structure \mathfrak{A} such that $\mathfrak{A} \models \forall x[Qc \rightarrow Px]$ and $\mathfrak{A} \not\models \forall x[Px]$. Explain briefly why we have $\{\forall x[Qc \rightarrow Px]\} \not\models \forall x[Px]$.

(Continued on page 2.)

Let the universe A be any nonempty set, e.g., let $A = \mathbb{N}$. Let $Q^{\mathfrak{A}} = \emptyset$ and $P^{\mathfrak{A}} = \emptyset$. Let $c^{\alpha} = 0$.

We have a structure \mathfrak{A} such that $\mathfrak{A} \models \forall x[Qc \rightarrow Px]$ and $\mathfrak{A} \not\models \forall x[Px]$. Thus, $\{\forall x[Qc \rightarrow Px]\} \not\models \forall x[Px]$ follows by the Soundness Theorem.

Problem 3 (weight 10 %)

Ten Questions: Answer each question with a YES or a NO (and nothing else). If you do not answer a question, your answer to that question will be considered as wrong.

- 1. Is the set $\{a \neq b, f(a) = f(b)\}$ consistent? **YES**
- 2. Is the set $\{a = b, f(a) \neq f(b)\}$ consistent? **NO**
- 3. Is the set $\{f(a) = g(b), g(b) = f(c), g(f(a)) \neq g(f(c))\}$ consistent? NO
- 4. Is the set $\{ \forall xy [f(x) \neq f(y)], \exists xy [f(x) \neq f(y)] \}$ consistent? **NO**
- 5. Is the set $\{ \forall xy [f(x) = f(y)], \exists xy [f(x) = f(y)] \}$ consistent? **YES**
- 6. Does $\forall x[f(x) = x]$ follow logically from $\{\forall x[f(f(x)) = f(x)], \forall x[g(f(x)) = x]\}$? **YES**
- 7. Does $\forall xy \mid x \neq y \rightarrow f(x) \neq f(y) \mid$ follow logically from $\{ \forall x \mid g(f(x)) = x \mid \}$? **YES**
- 8. Does $\forall x \exists y [f(y) = x]$ follow logically from $\{ \forall x [g(f(x)) = x] \}$? **NO**
- 9. Does $\forall x [f(g(x)) = x]$ follow logically from $\{ \forall x [g(f(x)) = x] \}$? NO
- 10. Does $\exists x [g(x) = c]$ follow logically from $\{ \forall x [g(f(x)) = x] \}$? **YES**

PART II

Let e be a constant symbol, let S_0 and S_1 be unary function symbols, let \circ be a binary function symbol and, furthermore, let \mathcal{L} be the first-order language $\{e, S_0, S_1, \circ\}$ and T be the \mathcal{L} -theory consisting of the non-logical axioms

 $\begin{array}{ll} (T_1) \ \forall xy[\ S_0(x) \neq e \ \land S_1(x) \neq e \] \\ (T_2) \ \forall xy[\ x \neq y \ \rightarrow \ (S_0(x) \neq S_0(y) \ \land \ S_1(x) \neq S_1(y)) \] \\ (T_3) \ \forall xy[\ S_0(x) \neq S_1(y) \] \\ (T_4) \ \forall x[\ e \circ x = x \] \\ (T_5) \ \forall xy[\ S_0(y) \circ x = S_0(y \circ x) \] \\ (T_6) \ \forall xy[\ S_1(y) \circ x = S_1(y \circ x) \]. \end{array}$

We have $T \vdash S_0(e) \circ S_0(e) \neq S_1(e)$ and $T \vdash S_0(S_0(e)) \neq S_0(e)$.

(Continued on page 3.)

Problem 4 (weight 5 %)

Name the non-logical axioms of T we need to deduce $S_0(e) \circ S_0(e) \neq S_1(e)$. Give a brief answer.

------ Solution:

We need T_3 and T_5 .

Problem 5 (weight 5 %)

Name the non-logical axioms of T we need to deduce $S_0(S_0(e)) \neq S_0(e)$. Give a brief answer.

------ Solution:

We need T_1 and T_2 .

Problem 6 (weight 10 %)

Show that $\{T_1, T_2, T_4, T_5, T_6\} \not\vdash T_3$.

Let \mathfrak{A} be a structure where the universe is the set of natural numbers \mathbb{N} . Furthermore, let $e^{\mathfrak{A}} = 0$, let $S_0^{\mathfrak{A}}(x) = S_1^{\mathfrak{A}}(x) = x + 1$, and let $x^\circ y = x + y$ (standard addition). Then we have $\mathfrak{A} \models \{T_1, T_2, T_4, T_5, T_6\}$ and $\mathfrak{A} \not\models T_3$. By the Soundness Theorem, we have $\{T_1, T_2, T_4, T_5, T_6\} \not\vdash T_3$.

Problem 7 (weight 10 %)

Show that $\{T_1, T_2, T_4, T_5, T_6\} \not\vdash \neg T_3$.

------ Solution:

Let \mathfrak{B} be a structure where the universe is the set $\{0,1\}^*$ of all bit strings over the alphabet $\{0,1\}$ (the set includes the empty string ε). Let $e^{\mathfrak{B}} = \varepsilon$. For any $b \in \{0,1\}^*$, let $S_0^{\mathfrak{B}}(b) = 0b$ and $S_1^{\mathfrak{B}}(b) = 1b$. Then we have $\mathfrak{B} \models \{T_1, T_2, T_4, T_5, T_6\}$ and $\mathfrak{B} \not\models \neg T_3$. By the Soundness Theorem, we have $\{T_1, T_2, T_4, T_5, T_6\} \not\vdash \neg T_3$.

We define the *canonical* \mathcal{L} -terms inductively: e is a canonical term; $S_0(s)$ is a canonical term if s is a canonical term; $S_1(s)$ is a canonical term if s is a canonical term. (So a canonical term is a variable-free term with no occurrences of \circ .)

Theorem I. For every variable-free \mathcal{L} -term t, there exists a canonical term s such that $T \vdash t = s$.

Problem 8 (weight 10 %)

Prove Theorem I.

(Continued on page 4.)

(Claim). For any canonical \mathcal{L} -terms t and s, there exists a canonical term u such that $T \vdash t \circ s = u$.

We prove the claim by induction on the structure of the canonical term t. The proof splits into the cases (i) $t :\equiv e$, (ii) $t :\equiv S_0(t')$ and (iii) $t :\equiv S_1(t')$.

(i) $t :\equiv e$. Let s be any canonical term. By T_1 we have $T \vdash e \circ s = s$. Thus the claim holds in case (i).

(ii) $t :\equiv S_0 t'$. Let s be any canonical term. By the ind. hyp. we have a canonical term u' such that

$$T \vdash t' \circ s = u' . \tag{A}$$

By (E2) and other logical axioms we have

$$T \vdash t' \circ s = u' \to S_0(t' \circ s) = S_0(u') . \tag{B}$$

By (A), (B) and (PC), we have

$$T \vdash S_0(t' \circ s) = S_0(u') . \tag{C}$$

By T_5 , we have

$$T \vdash S_0(t') \circ s = S_0(t' \circ x) . \tag{D}$$

By (C), (D) and logical axioms, we have $T \vdash S_0(t') \circ s = S_0 u'$. Thus, the claim holds as $S_0 u'$ is a canonical term. This completes the proof of case (ii).

Case (iii) is symmetric to case (ii). Use the axiom T_6 in place of T_5 .

We turn to the roof of Theorem I. We prove the theorem by induction on the structure of t. We have the cases

- $t :\equiv e$
- $t :\equiv S_0(t')$
- $t :\equiv S_1(t')$
- $t :\equiv t' \circ t''$.

Case $t :\equiv e$. By (E1) and other logical axioms, we have $T \vdash e = e$. We observe that e is a canonical term. Thus the theorem holds when $t :\equiv e$.

Case $t :\equiv S_0(t')$. By the ind. hyp. we have a canonical term s' such that $T \vdash t' = s'$. By (E2) and other logical axioms, we have $T \vdash t' = s' \to S_0(t') = S_0(s')$. By (PC), we have $T \vdash S_0(t') = S_0(s')$. Now, $S_0(s')$ is a canonical term. This completes the proof of the case $t :\equiv S_0(t')$.

Case $t :\equiv S_1(t')$. This case is symmetric to the preceding case.

(Continued on page 5.)

Case $t := t' \circ t''$. The ind. hyp. yields canonical terms s' and s'' such that $T \vdash t' = s'$ and $T \vdash t'' = s''$. By (E2) and other logical axioms, we have

$$t' = s' \wedge t'' = s'' \quad \rightarrow t' \circ t'' = s' \circ s'' \; .$$

Thus, by (PC), we have

$$T \vdash t' \circ t'' = s' \circ s'' . \tag{E}$$

By (Claim), we have a canonical term s such that

$$T \vdash s' \circ s'' = s . \tag{F}$$

By (E), (F) and logical axioms, we have $T \vdash t' \circ t'' = s$ This proves that the theorem holds when $t :\equiv t' \circ t''$.

PART III

The next theorem is also known as the Compactness Theorem for first-order logic.

Theorem II. Let \mathcal{L} be a first-order language, and let Σ be a set of \mathcal{L} -formulas. If every finite subset of Σ has a model, then Σ has a model.

Problem 9 (weight 10 %)

Prove Theorem II. The proof should refer to the Completeness Theorem for first-order logic (do not prove the Completeness Theorem).

Let \mathcal{L}_{NT} be the language of number theory, that is, the language $\{0, S, +, \cdot, E, <\}$. Let \mathfrak{N} be the standard \mathcal{L}_{NT} -structure, and let $Th(\mathfrak{N})$ denote the theory of \mathfrak{N} , that is,

 $Th(\mathfrak{N}) = \{ \phi \mid \phi \text{ is an } \mathcal{L}_{NT} \text{-formula and } \mathfrak{N} \models \phi \}.$

Let \mathbb{Q} denote the set of rational numbers. For each $i \in \mathbb{Q}$ we introduce a unique constant symbol c_i . Let \mathcal{L}_* be \mathcal{L}_{NT} extended by $\{c_i \mid i \in \mathbb{Q}\}$. Let

$$\Sigma = Th(\mathfrak{N}) \cup \{ c_i < c_j \mid i, j \in \mathbb{Q} \text{ and } i < j \} \cup \{ \exists x[SSS0 + x = c_i] \mid i \in \mathbb{Q} \}$$

and

$$\Gamma = Th(\mathfrak{N}) \cup \{ c_i < c_j \mid i, j \in \mathbb{Q} \text{ and } i < j \} \cup \{ \exists x [c_i + x = SSS0] \mid i \in \mathbb{Q} \}$$

Obviously, Σ and Γ are sets of \mathcal{L}_* -formulas.

Problem 10 (weight 10 %)

Prove that one of the two sets Σ and Γ has a model. Prove that the other set does not have have model.

-- Solution:

The set Σ has a model.

(Continued on page 6.)

Proof (sketch). Argue that any finite subset of Σ has model. Use Theorem II (the Compactness Theorem) to conclude Σ has a model.

The set Γ does not have a model.

Proof. We observe that $Th(\mathfrak{N})$, and thus Γ , contains the formula

$$\forall yx[y + x = SSS0 \rightarrow (y = 0 \lor y = S0 \lor y = SS0 \lor y = SSS0).$$

Thus, as Γ contains the formula $\exists x[c_i + x = SSS0]$ (for any $i \in \mathbb{Q}$), we have

$$\Gamma \models c_i = 0 \lor c_i = S0 \lor c_i = SS0 \lor c_i = SSS0$$

(for any $i \in \mathbb{Q}$). But we also have $\Gamma \models c_i < c_j$ for any rationals i, j where i < j. This makes it easy to see that Γ cannot have a model. (Recall that the set $Th(\mathfrak{N})$ also contains formulas like

$$\forall xyz[x < y \to \neg x = y] \quad \text{and} \quad \forall xyz[x < y \land y < z \to \neg x < z].$$

If we work a little bit, we can find a Γ -deduction of \perp , and then, by Soundness Theorem, we can conclude that Γ does not have a model.)

Let \mathfrak{A} be an \mathcal{L}_{NT} structure. An infinite sequence a_0, a_1, a_2, \ldots is an \mathfrak{A} -predecessor chain if $S^{\mathfrak{A}}(a_{i+1}) = a_i$ (for all $i \in \mathbb{N}$). An \mathfrak{A} -predecessor chain a_0 a_1 a_2 . Lies below an

if $S^{\mathfrak{A}}(a_{i+1}) = a_i$ (for all $i \in \mathbb{N}$). An \mathfrak{A} -predecessor chain a_0, a_1, a_2, \ldots lies below an \mathfrak{A} -predecessor chain b_0, b_1, b_2, \ldots if $a_0 <^{\mathfrak{A}} b_i$ (for all $i \in \mathbb{N}$). If a_0, a_1, a_2, \ldots lies below b_0, b_1, b_2, \ldots , then b_0, b_1, b_2, \ldots lies above a_0, a_1, a_2, \ldots

Problem 11 (weight 10 %)

Prove that $Th(\mathfrak{N})$ has a model \mathfrak{A} such that

- there are infinitely many \mathfrak{A} -predecessor chains
- if one \mathfrak{A} -predecessor lies below another \mathfrak{A} -predecessor chain, then there is an \mathfrak{A} -predecessor chain in between, that is, a chain that lies above one of the chains and below the other.

END