UNIVERSITY OF OSLO
 Faculty of Mathematics and Natural Sciences

Examination in: MAT-INF3600 - Mathematical logic.
Day of examination: Wednesday, December 18, 2019.
Examination hours: 14:30-18:30.
This problem set consists of 6 pages.
Appendices: None.
Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Part I

Let P and Q be unary relation symbols. Let R be a binary relation symbol. Let c be a constant symbol. Let f be a unary function symbol. Furthermore, x and y denote variables.

Problem 1 (weight 10%)

Let $\Sigma=\{\neg Q c, \forall x[P x \rightarrow Q x]\}$. Give a full Σ-deduction of $\neg \forall x[P x]$. Name all the logical axioms and inference rules involved in the deduction.
\qquad

1. $\forall x[P x \rightarrow Q x] \quad \Sigma$
2. $\forall x[P x \rightarrow Q x] \rightarrow[P c \rightarrow Q c] \quad$ (Q1)
3. $P c \rightarrow Q c \quad 1,2,(\mathrm{PC})$
4. $\neg Q c \quad \Sigma$
5. $\neg P c \quad 3,4,(\mathrm{PC})$
6. $\forall x[P x] \rightarrow P c$
7. $\neg \forall x[P x]$
$5,6,(\mathrm{PC})$

Problem 2 (weight 10%)

Let $\Sigma^{\prime}=\{\neg Q c, \forall x[P x \rightarrow Q x], \forall x[P x]\}$. Is Σ^{\prime} consistent? Does Σ^{\prime} have a model? Give a brief justification of your answers.

Solution:

By the previous problem, we have $\Sigma^{\prime} \vdash \neg \forall x[P x]$. Thus it is easy to see that $\Sigma^{\prime} \vdash \perp$, and hence Σ^{\prime} is not consistent. By the Soundness Theorem, Σ^{\prime} does not have a model.

Problem 3 (weight 20%)

Twenty Questions: Answer each question with a YES or a NO (and nothing else). If you do not answer a question, your answer to that question will be considered as wrong.

1. Does $\forall x[Q x]$ follow tautologically from $\{\forall x[P x] \rightarrow \forall x[Q x], \forall x[P x]\}$? YES
2. Does $\forall x[Q x]$ follow logically from $\{\forall x[P x] \rightarrow \forall x[Q x], \forall x[P x]\}$? YES
3. Does $Q c$ follow tautologically from $\{\forall x[P x] \rightarrow \forall x[Q x], \forall x[P x]\}$? NO
4. Does $Q c$ follow logically from $\{\forall x[P x] \rightarrow \forall x[Q x], \forall x[P x]\}$? YES
5. Does $\forall x[P x \rightarrow Q x]$ follow logically from $\{\forall x[P x] \rightarrow \forall x[Q x], \forall x[P x]\}$? YES
6. Does $\forall x[P x] \rightarrow \forall x[Q x]$ follow logically from $\{\forall x[P x \rightarrow Q x], \forall x[P x]\}$? YES
7. Does $\forall x[P x \rightarrow Q x]$ follow logically from $\{\forall x[P x] \rightarrow \forall x[Q x]\}$? NO
8. Does $\forall x[P x] \rightarrow \forall x[Q x]$ follow logically from $\{\forall x[P x \rightarrow Q x]\}$? YES
9. Does $\exists y \forall x[R x y]$ follow logically from $\{\forall x[R x f x]\}$? NO
10. Does $\forall x \exists y[R x y]$ follow logically from $\{\forall x[R x f x]\}$? YES
11. Does $\exists y \forall x[R x y]$ follow logically from $\{\forall x[R x c]\}$? YES
12. Does $\forall x \exists y[R x y]$ follow logically from $\{\forall x[R x c]\}$? YES
13. Does $Q f(c)$ follow tautologically from $\{\forall x[P x \rightarrow Q x], \forall x[P x] \rightarrow \forall x[Q x]\}$? NO
14. Does $Q f(c)$ follow logically from $\{\forall x[P x \rightarrow Q x], \forall x[P x] \rightarrow \forall x[Q x]\}$? NO
15. Does $P c \rightarrow \forall x[Q x]$ follow logically from $\{P c \rightarrow Q x\}$? YES
16. Does $P x \rightarrow \forall x[Q x]$ follow logically from $\{P x \rightarrow Q x\}$? NO
17. Does $\exists x[P x] \rightarrow \forall x[Q x]$ follow logically from $\{P x \rightarrow \forall x[Q x]\}$? YES
18. Does $x=x$ follow logically from \emptyset ? YES
19. Does $x=y$ follow logically from \emptyset ? NO
20. Does $\neg x=y$ follow logically from \emptyset ? NO

Part II

Let \mathcal{L} be the first-order language $\{\preceq, f, c\}$ where \preceq is a binary relation symbol, f is a binary function symbol and c is a constant symbol. Let T be the \mathcal{L}-theory consisting of the non-logical axioms
$\left(T_{1}\right) \forall x y[\neg c=f(x, y)]$
$\left(T_{2}\right) \forall x_{1} x_{2} y_{1} y_{2}\left[f\left(x_{1}, x_{2}\right)=f\left(y_{1}, y_{2}\right) \rightarrow\left(x_{1}=y_{1} \wedge x_{2}=y_{2}\right)\right]$
$\left(T_{3}\right) \forall x[x \preceq c \leftrightarrow x=c]$
$\left(T_{4}\right) \forall x y_{1} y_{2}\left[x \preceq f\left(y_{1}, y_{2}\right) \leftrightarrow\left(x=f\left(y_{1}, y_{2}\right) \vee x \preceq y_{1} \vee x \preceq y_{2}\right)\right]$.

Problem 4 (weight 10%)

Show that

$$
T \vdash \neg f(c, c)=f(f(c, c), c)
$$

Sketch a formal deduction.
——Solution:

$$
\begin{array}{ll}
\text { 1. } \forall x y[\neg c=f(x, y)] \rightarrow \forall y[\neg c=f(c, y)] \\
\text { 2. } \forall y[\neg c=f(c, y)] \rightarrow \neg c=f(c, c) & (\mathrm{Q} 1) \\
\text { 3. } \forall x y[\neg c=f(x, y)] \tag{1}\\
\text { 4. } \neg c=f(c, c) & 1,2,3 \text { and }(\mathrm{PC})
\end{array}
$$

This shows that

$$
\begin{equation*}
T \vdash \neg c=f(c, c) \tag{*}
\end{equation*}
$$

In a similar way, by using $\left(T_{2}\right)$, (Q1) and (PC), we can show that

$$
\begin{equation*}
T \vdash f(c, c)=f(f(c, c), c) \rightarrow(c=f(c, c) \wedge c=c) . \tag{**}
\end{equation*}
$$

By $\left({ }^{*}\right),\left({ }^{* *}\right)$ and (PC), we have

$$
T \vdash \neg f(c, c)=f(f(c, c), c)
$$

Problem 5 (weight 10%)

Show that

$$
T \vdash \neg s=t
$$

for any variable-free \mathcal{L}-terms s, t where $s \neq t$ (so s and t are not syntactically equal). Use induction on the structure of s.

Solution:
The proof splits into the cases: $s: \equiv c$ and $s: \equiv f\left(s_{1}, s_{2}\right)$.

Case $s: \equiv c$. Assume $s \neq t$. Then $t: \equiv f\left(t_{1}, t_{2}\right)$. By $\left(T_{1}\right)$, we have $T \vdash \neg s=t$.

Case $s: \equiv f\left(s_{1}, s_{2}\right)$. Assume $s \neq t$. The proof splits into the subcases $t: \equiv c$ and $t: \equiv f\left(t_{1}, t_{2}\right)$.
If $t:=\equiv c$, we have $T \vdash \neg s=t$ by $\left(T_{1}\right)$.
We turn to the case $t: \equiv f\left(t_{1}, t_{2}\right)$. As s and t are different terms, we can conclude that s_{1} is different from t_{1} or s_{2} is different from t_{2}. We can without loss of generality assume that s_{1} is differ net from t_{1} (so the case when s_{2} is different from t_{2} is similar). By our induction hypothesis we have

$$
\begin{equation*}
T \vdash \neg s_{1}=t_{1} \tag{i}
\end{equation*}
$$

By $\left(T_{2}\right)$, we have

$$
\begin{equation*}
T \vdash f\left(s_{1}, s_{2}\right)=f\left(t_{1}, t_{2}\right) \rightarrow\left(s_{1}=t_{1} \wedge s_{2}=t_{2}\right) \tag{ii}
\end{equation*}
$$

By (i), (ii) and (PC), we have $T \vdash \neg f\left(s_{1}, s_{2}\right)=f\left(t_{1}, t_{2}\right)$.

Lemma 1. For any variable-free \mathcal{L}-terms s and t, we have $T \vdash s \preceq t$ or $T \vdash \neg s \preceq t$.

Problem 6 (weight 10%)

Prove Lemma 1. Use induction on the structure of t.

Solution:

The proof splits into the cases $t: \equiv c$ and $t: \equiv f\left(t_{1}, t_{2}\right)$.

Case $t: \equiv c$. If $s: \equiv c$, then we have $T \vdash s \preceq t$ by $\left(T_{3}\right)$. If $s: \not \equiv c$, then we have $T \vdash \neg s \preceq t$ by $\left(T_{3}\right)$ and Problem 5.

Case $t: \equiv f\left(t_{1}, t_{2}\right)$. First we observe that we have

$$
\begin{equation*}
T \vdash s \preceq f\left(t_{1}, t_{2}\right) \leftrightarrow\left(s=f\left(t_{1}, t_{2}\right) \vee s \preceq t_{1} \vee s \preceq t_{2}\right) \tag{iii}
\end{equation*}
$$

by $\left(T_{4}\right)$. Next we observe that if s is the same term as $f\left(t_{1}, t_{2}\right)$, then we have $T \vdash s \preceq f\left(t_{1}, t_{2}\right)$ by (iii), (E1) and (PC). A short explanation: we have $\vdash t=t$, and thus also $T \vdash t=t$, for any term t.
Thus, we conclude that the theorem holds when s and $f\left(t_{1}, t_{2}\right)$ are the same term. We are left to prove that the theorem holds when s and $f\left(t_{1}, t_{2}\right)$ are different terms. So we assume that s and $f\left(t_{1}, t_{2}\right)$ are different terms. By Problem 5 we have

$$
\begin{equation*}
T \vdash \neg s=f\left(t_{1}, t_{2}\right) \tag{iv}
\end{equation*}
$$

The induction hypothesis applied to t_{1} yields

$$
T \vdash s \preceq t_{1} \quad \text { or } \quad T \vdash \neg s \preceq t_{1} .
$$

The induction hypothesis applied to t_{2} yields

$$
T \vdash s \preceq t_{2} \quad \text { or } \quad T \vdash \neg s \preceq t_{2} .
$$

The proof splits into the two cases

$$
\begin{equation*}
\text { at least one of } T \vdash s \preceq t_{1} \text { and } T \vdash s \preceq t_{2} \text { holds } \tag{A}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { neither } T \vdash s \preceq t_{1} \text { nor } T \vdash s \preceq t_{2} \text { holds. } \tag{B}
\end{equation*}
$$

In case (A), we have $T \vdash s \preceq f\left(t_{1}, t_{2}\right)$ by (iii) and (PC).
We turn to case (B). Since we neither $T \vdash s \preceq t_{1}$ nor $T \vdash s \preceq t_{2}$, it must be the case that both $T \vdash \neg s \preceq t_{1}$ and $T \vdash \neg s \preceq t_{2}$ holds. By (iii), (iv) and (PC), we have $T \vdash \neg s \preceq f\left(t_{1}, t_{2}\right)$.

Problem 7 (weight 10%)

Let ϕ be a quantifier-free and variable-free \mathcal{L}-formula. Prove that we have $T \vdash \phi$ or $T \vdash \neg \phi$. Use Lemma 1.

Solution:

Assume ϕ is an atomic formula, that is, ϕ is of the form $s=t$ or of the form $s \preceq t$. Then we have $T \vdash \phi$ or $T \vdash \neg \phi$ by Problem 5 and Problem 6. (If s and t are the same term, then we have $T \vdash s=t$ by (E1) and other logical axioms.)

Assume $\phi: \equiv \alpha \vee \beta$. By our induction hypothesis, we have

$$
T \vdash \alpha \quad \text { or } \quad T \vdash \neg \alpha
$$

and

$$
T \vdash \beta \quad \text { or } \quad T \vdash \neg \beta .
$$

If $T \vdash \alpha$, we have $T \vdash \alpha \vee \beta$ by (PC). If $T \vdash \beta$, we have $T \vdash \alpha \vee \beta$ by (PC). Otherwise, that is, if we neither have $T \vdash \alpha$ nor $T \vdash \beta$, then we have both $T \vdash \neg \alpha$ and $T \vdash \neg \beta$, and thus, by (PC), we have $\neg(\alpha \vee \beta)$.
Assume $\phi: \equiv \neg \alpha$. By our induction hypothesis, we have

$$
T \vdash \alpha \quad \text { or } \quad T \vdash \neg \alpha
$$

and thus, by (PC), we have

$$
T \vdash \neg \neg \alpha \quad \text { or } \quad T \vdash \neg \alpha .
$$

Problem 8 (weight 10%)

Do we have $T \vdash \forall x[\neg x=f(x, x)]$? Justify your answer.
We say that an \mathcal{L}-structure \mathfrak{A} is ill-founded if its universe contains elements $a_{0}, a_{1}, a_{2}, \ldots$ such that $a_{i+1} \neq a_{i}$ and $a_{i+1} \preceq^{\mathfrak{A}} a_{i}$ (for all $i \in \mathbb{N}$).

Problem 9 (weight 10%)

Explain why any consistent extension of T has an ill-founded model.

- Solution:

Let T^{\prime} be a consistent extension of T. By the Completeness Theorem, T^{\prime} has a model \mathfrak{B}. Let $t_{0}: \equiv c$ and $t_{n+1}: \equiv f\left(t_{n}, c\right)$. By the problems above, we have $T \vdash t_{i} \preceq t_{i+1}$ and $T \vdash \neg t_{i}=t_{i+1}$ (for all i), and thus, by the Soundness Theorem, we have $\mathfrak{B} \models t_{i} \preceq t_{i+1}$ and $\mathfrak{B} \models \neg t_{i}=t_{i+1}$.
Let \mathcal{L}_{*} be \mathcal{L} extended by infinitely many fresh constant symbols $c_{0}, c_{1}, c_{2}, \ldots$ Let $\Gamma_{0}=$ $T h(\mathfrak{B})$ and $\Gamma_{n+1}=\Gamma_{n} \cup\left\{c_{n+1} \preceq c_{n}\right\}$. Furthermore, let $\Gamma=\bigcup_{i} \Gamma_{i}$.
First we argue that Γ_{n} has a model \mathfrak{A}_{n}.
Let \mathfrak{A}_{n} be \mathfrak{B} extended by $c_{i}^{\mathfrak{A}_{n}}=t_{n-i}^{\mathfrak{B}}$, for $i=0, \ldots, n$, and $c_{j}^{\mathfrak{A}_{n}}=t_{0}^{\mathfrak{B}}$, for $j>n$. Then $\mathfrak{A}_{n} \models \Gamma_{n}$.
Next we argue that every finite subset of Γ has a model: Let Ω be a finite subset of Γ. Then we have $\Omega \subseteq \Gamma_{n}$ for some sufficiently large n, and hence, $\mathfrak{A}_{n} \models \Omega$.
This proves that every finite subset of Γ has a model. By the Compactness Theorem, Γ has a model \mathfrak{A}. The reduct of \mathfrak{A} to the language \mathcal{L} is an ill-founded model for T^{\prime}. The model is ill-founded as we have $c_{i+1}^{\mathfrak{A}} \preceq^{\mathfrak{A}} c_{i}^{\mathfrak{A}}$ and $c_{i+1}^{\mathfrak{A}} \neq c_{i}^{\mathfrak{A}}$ (for all $i \in \mathbb{N}$).

