UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in:	MAT-INF3600 — Mathematical logic.		
Day of examination:	Wednesday, December 18, 2019.		
Examination hours:	14:30-18:30.		
This problem set consists of 6 pages.			
Appendices:	None.		
Permitted aids:	None.		

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Part I

Let P and Q be unary relation symbols. Let R be a binary relation symbol. Let c be a constant symbol. Let f be a unary function symbol. Furthermore, x and y denote variables.

Problem 1 (weight 10 %)

Let $\Sigma = \{ \neg Qc, \forall x [Px \rightarrow Qx] \}$. Give a full Σ -deduction of $\neg \forall x [Px]$. Name all the logical axioms and inference rules involved in the deduction.

– Solution:

1.	$\forall x [Px \to Qx]$	Σ
2.	$\forall x [Px \to Qx] \ \to \ [Pc \to Qc]$	(Q1)
3.	$Pc \rightarrow Qc$	1, 2, (PC)
4.	$\neg Qc$	Σ
5.	$\neg Pc$	3, 4, (PC)
6.	$\forall x[Px] \rightarrow Pc$	(Q1)
7.	$\neg \forall x[Px]$	5, 6, (PC)

Problem 2 (weight 10 %)

Let $\Sigma' = \{ \neg Qc, \forall x [Px \rightarrow Qx], \forall x [Px] \}$. Is Σ' consistent? Does Σ' have a model? Give a brief justification of your answers.

By the previous problem, we have $\Sigma' \vdash \neg \forall x[Px]$. Thus it is easy to see that $\Sigma' \vdash \bot$, and hence Σ' is not consistent. By the Soundness Theorem, Σ' does not have a model.

Problem 3 (weight 20 %)

Twenty Questions: Answer each question with a YES or a NO (and nothing else). If you do not answer a question, your answer to that question will be considered as wrong.

- 1. Does $\forall x[Qx]$ follow tautologically from $\{ \forall x[Px] \rightarrow \forall x[Qx], \forall x[Px] \}$? **YES**
- 2. Does $\forall x[Qx]$ follow logically from $\{ \forall x[Px] \rightarrow \forall x[Qx], \forall x[Px] \}$? **YES**
- 3. Does Qc follow tautologically from $\{ \forall x[Px] \rightarrow \forall x[Qx], \forall x[Px] \}$? **NO**
- 4. Does Qc follow logically from $\{ \forall x[Px] \rightarrow \forall x[Qx], \forall x[Px] \}$? **YES**
- 5. Does $\forall x[Px \to Qx]$ follow logically from $\{ \forall x[Px] \to \forall x[Qx], \forall x[Px] \}$? **YES**
- 6. Does $\forall x[Px] \rightarrow \forall x[Qx]$ follow logically from $\{ \forall x[Px \rightarrow Qx], \forall x[Px] \}$? **YES**
- 7. Does $\forall x[Px \to Qx]$ follow logically from $\{ \forall x[Px] \to \forall x[Qx] \}$? **NO**
- 8. Does $\forall x[Px] \rightarrow \forall x[Qx]$ follow logically from $\{ \forall x[Px \rightarrow Qx] \}$? **YES**
- 9. Does $\exists y \forall x [Rxy]$ follow logically from { $\forall x [Rxfx]$ }? NO
- 10. Does $\forall x \exists y [Rxy]$ follow logically from { $\forall x [Rxfx]$ }? **YES**
- 11. Does $\exists y \forall x [Rxy]$ follow logically from { $\forall x [Rxc]$ }? **YES**
- 12. Does $\forall x \exists y [Rxy]$ follow logically from { $\forall x [Rxc]$ }? **YES**
- 13. Does Qf(c) follow tautologically from $\{ \forall x[Px \to Qx], \forall x[Px] \to \forall x[Qx] \}$? **NO**
- 14. Does Qf(c) follow logically from $\{ \forall x[Px \to Qx], \forall x[Px] \to \forall x[Qx] \}$? **NO**
- 15. Does $Pc \to \forall x[Qx]$ follow logically from $\{ Pc \to Qx \}$? **YES**
- 16. Does $Px \to \forall x[Qx]$ follow logically from $\{ Px \to Qx \}$? **NO**
- 17. Does $\exists x[Px] \rightarrow \forall x[Qx]$ follow logically from $\{Px \rightarrow \forall x[Qx]\}$? **YES**
- 18. Does x = x follow logically from \emptyset ? **YES**
- 19. Does x = y follow logically from \emptyset ? **NO**
- 20. Does $\neg x = y$ follow logically from \emptyset ? **NO**

Part II

Let \mathcal{L} be the first-order language $\{ \leq, f, c \}$ where \leq is a binary relation symbol, f is a binary function symbol and c is a constant symbol. Let T be the \mathcal{L} -theory consisting of the non-logical axioms

 $\begin{array}{l} (T_1) \ \forall xy[\ \neg \, c = f(x, y) \] \\ (T_2) \ \forall x_1 x_2 y_1 y_2[\ f(x_1, x_2) = f(y_1, y_2) \ \rightarrow \ (x_1 = y_1 \land x_2 = y_2) \] \\ (T_3) \ \forall x[\ x \preceq c \ \leftrightarrow \ x = c \] \\ (T_4) \ \forall xy_1 y_2[\ x \preceq f(y_1, y_2) \ \leftrightarrow \ (\ x = f(y_1, y_2) \lor x \preceq y_1 \lor x \preceq y_2 \) \]. \end{array}$

Problem 4 (weight 10 %)

Show that

$$T \vdash \neg f(c,c) = f(f(c,c),c)$$
.

Sketch a formal deduction.

— Solution:

1.
$$\forall xy[\neg c = f(x, y)] \rightarrow \forall y[\neg c = f(c, y)]$$
 (Q1)
2. $\forall y[\neg c = f(c, y)] \rightarrow \neg c = f(c, c)$ (Q1)
3. $\forall xy[\neg c = f(x, y)]$ (T₁)
4. $\neg c = f(c, c)$ 1, 2, 3 and (PC)

This shows that

$$T \vdash \neg c = f(c, c) \tag{*}$$

In a similar way, by using (T_2) , (Q1) and (PC), we can show that

$$T \vdash f(c,c) = f(f(c,c),c) \to (c = f(c,c) \land c = c) .$$
(**)

By (*), (**) and (PC), we have

$$T \vdash \neg f(c,c) = f(f(c,c),c) .$$

Problem 5 (weight 10 %)

Show that

$$T \vdash \neg s = t$$

for any variable-free \mathcal{L} -terms s, t where $s \neq t$ (so s and t are not syntactically equal). Use induction on the structure of s.

– Solution:

The proof splits into the cases: $s :\equiv c$ and $s :\equiv f(s_1, s_2)$.

(Continued on page 4.)

Case $s :\equiv c$. Assume $s \neq t$. Then $t :\equiv f(t_1, t_2)$. By (T_1) , we have $T \vdash \neg s = t$.

Case $s :\equiv f(s_1, s_2)$. Assume $s \neq t$. The proof splits into the subcases $t :\equiv c$ and $t :\equiv f(t_1, t_2)$.

If
$$t := \equiv c$$
, we have $T \vdash \neg s = t$ by (T_1) .

We turn to the case $t :\equiv f(t_1, t_2)$. As s and t are different terms, we can conclude that s_1 is different from t_1 or s_2 is different from t_2 . We can without loss of generality assume that s_1 is different from t_1 (so the case when s_2 is different from t_2 is similar). By our induction hypothesis we have

$$T \vdash \neg s_1 = t_1 \tag{i}$$

By (T_2) , we have

$$T \vdash f(s_1, s_2) = f(t_1, t_2) \to (s_1 = t_1 \land s_2 = t_2)$$
(ii)

By (i), (ii) and (PC), we have $T \vdash \neg f(s_1, s_2) = f(t_1, t_2)$.

Lemma 1. For any variable-free \mathcal{L} -terms s and t, we have $T \vdash s \leq t$ or $T \vdash \neg s \leq t$.

Problem 6 (weight 10 %)

Prove Lemma 1. Use induction on the structure of t.

The proof splits into the cases $t :\equiv c$ and $t :\equiv f(t_1, t_2)$.

Case $t :\equiv c$. If $s :\equiv c$, then we have $T \vdash s \leq t$ by (T_3) . If $s :\not\equiv c$, then we have $T \vdash \neg s \leq t$ by (T_3) and Problem 5.

Case $t :\equiv f(t_1, t_2)$. First we observe that we have

$$T \vdash s \preceq f(t_1, t_2) \iff (s = f(t_1, t_2) \lor s \preceq t_1 \lor s \preceq t_2)$$
(iii)

by (T_4) . Next we observe that if s is the same term as $f(t_1, t_2)$, then we have $T \vdash s \leq f(t_1, t_2)$ by (iii), (E1) and (PC). A short explanation: we have $\vdash t = t$, and thus also $T \vdash t = t$, for any term t.

Thus, we conclude that the theorem holds when s and $f(t_1, t_2)$ are the same term. We are left to prove that the theorem holds when s and $f(t_1, t_2)$ are different terms. So we assume that s and $f(t_1, t_2)$ are different terms. By Problem 5 we have

$$T \vdash \neg s = f(t_1, t_2) \tag{iv}$$

The induction hypothesis applied to t_1 yields

$$T \vdash s \leq t_1$$
 or $T \vdash \neg s \leq t_1$.

(Continued on page 5.)

The induction hypothesis applied to t_2 yields

$$T \vdash s \preceq t_2$$
 or $T \vdash \neg s \preceq t_2$.

The proof splits into the two cases

at least one of
$$T \vdash s \leq t_1$$
 and $T \vdash s \leq t_2$ holds (A)

and

neither
$$T \vdash s \leq t_1$$
 nor $T \vdash s \leq t_2$ holds. (B)

In case (A), we have $T \vdash s \leq f(t_1, t_2)$ by (iii) and (PC).

We turn to case (B). Since we neither $T \vdash s \leq t_1$ nor $T \vdash s \leq t_2$, it must be the case that both $T \vdash \neg s \leq t_1$ and $T \vdash \neg s \leq t_2$ holds. By (iii), (iv) and (PC), we have $T \vdash \neg s \leq f(t_1, t_2)$.

Problem 7 (weight 10 %)

Let ϕ be a quantifier-free and variable-free \mathcal{L} -formula. Prove that we have $T \vdash \phi$ or $T \vdash \neg \phi$. Use Lemma 1.

— Solution:

Assume ϕ is an atomic formula, that is, ϕ is of the form s = t or of the form $s \leq t$. Then we have $T \vdash \phi$ or $T \vdash \neg \phi$ by Problem 5 and Problem 6. (If s and t are the same term, then we have $T \vdash s = t$ by (E1) and other logical axioms.)

Assume $\phi :\equiv \alpha \lor \beta$. By our induction hypothesis, we have

$$T \vdash \alpha \quad \text{or} \quad T \vdash \neg \alpha$$

and

$$T \vdash \beta$$
 or $T \vdash \neg \beta$.

If $T \vdash \alpha$, we have $T \vdash \alpha \lor \beta$ by (PC). If $T \vdash \beta$, we have $T \vdash \alpha \lor \beta$ by (PC). Otherwise, that is, if we neither have $T \vdash \alpha$ nor $T \vdash \beta$, then we have both $T \vdash \neg \alpha$ and $T \vdash \neg \beta$, and thus, by (PC), we have $\neg(\alpha \lor \beta)$.

Assume $\phi :\equiv \neg \alpha$. By our induction hypothesis, we have

$$T \vdash \alpha \quad \text{or} \quad T \vdash \neg \alpha$$

and thus, by (PC), we have

 $T \vdash \neg \neg \alpha$ or $T \vdash \neg \alpha$.

Problem 8 (weight 10 %)

Do we have $T \vdash \forall x [\neg x = f(x, x)]$? Justify your answer.

We say that an \mathcal{L} -structure \mathfrak{A} is *ill-founded* if its universe contains elements a_0, a_1, a_2, \ldots such that $a_{i+1} \neq a_i$ and $a_{i+1} \preceq^{\mathfrak{A}} a_i$ (for all $i \in \mathbb{N}$).

Page 5

Problem 9 (weight 10 %)

Explain why any consistent extension of T has an ill-founded model.

Let T' be a consistent extension of T. By the Completeness Theorem, T' has a model \mathfrak{B} . Let $t_0 :\equiv c$ and $t_{n+1} :\equiv f(t_n, c)$. By the problems above, we have $T \vdash t_i \leq t_{i+1}$ and $T \vdash \neg t_i = t_{i+1}$ (for all i), and thus, by the Soundness Theorem, we have $\mathfrak{B} \models t_i \leq t_{i+1}$ and $\mathfrak{B} \models \neg t_i = t_{i+1}$.

Let \mathcal{L}_* be \mathcal{L} extended by infinitely many fresh constant symbols c_0, c_1, c_2, \ldots Let $\Gamma_0 = Th(\mathfrak{B})$ and $\Gamma_{n+1} = \Gamma_n \cup \{c_{n+1} \leq c_n\}$. Furthermore, let $\Gamma = \bigcup_i \Gamma_i$.

First we argue that Γ_n has a model \mathfrak{A}_n .

Let \mathfrak{A}_n be \mathfrak{B} extended by $c_i^{\mathfrak{A}_n} = t_{n-i}^{\mathfrak{B}}$, for $i = 0, \ldots, n$, and $c_j^{\mathfrak{A}_n} = t_0^{\mathfrak{B}}$, for j > n. Then $\mathfrak{A}_n \models \Gamma_n$.

Next we argue that every finite subset of Γ has a model: Let Ω be a finite subset of Γ . Then we have $\Omega \subseteq \Gamma_n$ for some sufficiently large n, and hence, $\mathfrak{A}_n \models \Omega$.

This proves that every finite subset of Γ has a model. By the Compactness Theorem, Γ has a model \mathfrak{A} . The reduct of \mathfrak{A} to the language \mathcal{L} is an ill-founded model for T'. The model is ill-founded as we have $c_{i+1}^{\mathfrak{A}} \leq^{\mathfrak{A}} c_i^{\mathfrak{A}}$ and $c_{i+1}^{\mathfrak{A}} \neq c_i^{\mathfrak{A}}$ (for all $i \in \mathbb{N}$).

END