UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in:	MAT-INF3600 — Mathematical logic.		
Day of examination:	Monday, December 19, 2022.		
Examination hours:	15:00-19:00.		
This problem set consists of 7 pages.			
Appendices:	None.		
Permitted aids:	None.		

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

The weights might be adjusted.

PART I

Let Q be a unary relation symbol, let S be a unary function symbol, let 0 be a constant symbol and let \mathcal{L} be the language $\{0, S, Q\}$. Furthermore, let

$$\Sigma_1 = \{ \forall x [Q(Sx) \to Q(x)], Q(S0) \}.$$

Problem 1 (weight 10 %)

Give a full Σ_1 -deduction of Q(0). Name all the logical axioms and inference rules involved in the deduction.

1.	$\forall x [Q(Sx) \to Q(x)] \ \to \ (Q(S0) \to Q(0))$	(Q1)
2.	$\forall x [Q(Sx) \to Q(x)]$	Σ_1
3.	Q(S0) o Q(0)	1, 2, (PC)
4.	Q(S0)	Σ_1
5.	Q(0)	3, 4, (PC)

Problem 2 (weight 10 %)

Give a full Σ_1 -deduction of $0 = x \to Q(x)$. Name all the logical axioms and inference rules involved in the deduction.

— Solution:

(Continued on page 2.)

	: :	
	as above	
	÷	
5.	Q(0)	3, 4, (PC)
6.	$y = x \to (Q(y) \to Q(x))$	(E3)
7.	$\top \ \rightarrow \ [y = x \rightarrow (Q(y) \rightarrow Q(x))]$	$6,(\mathrm{PC})$
8.	$\top \ \rightarrow \ \forall y [y = x \rightarrow (Q(y) \rightarrow Q(x))]$	7, (QR)
9.	$\forall y [y = x \to (Q(y) \to Q(x))]$	8, (PC)
10.	$\forall y[y=x \rightarrow (Q(y) \rightarrow Q(x))] \ \rightarrow \ [0=x \rightarrow (Q(0) \rightarrow Q(x))]$	(Q1)
11.	$0 = x \to (Q(0) \to Q(x))$	9, 10, (PC)
12.	$0 = x \to Q(x)$	5, 11, (PC)

For any natural number n, we define the numeral \overline{n} by $\overline{0} = 0$ and $\overline{n+1} = S\overline{n}$. Let

$$\Sigma_n = \{ \forall x [Q(Sx) \to Q(x)], Q(\overline{n}) \}.$$

Problem 3 (weight 10 %)

Do we have $\Sigma_{17} \models \Sigma_{16}$? Do we have $\Sigma_{16} \models \Sigma_{17}$? Justify your answers.

— Solution:

Do we have $\Sigma_{17} \models \Sigma_{16}$? YES. In order to justify our answer we have to argue that any model for Σ_{17} will also be a model for Σ_{16} . This will be true since $\Sigma_{17} \models Q(\overline{16})$, that is, $Q(\overline{16})$ follows (logically) from $\forall x[Q(Sx) \rightarrow Q(x)]$ and $Q(\overline{17})$.

Do we have $\Sigma_{16} \models \Sigma_{17}$? NO. In order to justify our answer we have to argue that it is not true that any model for Σ_{16} also is a model for Σ_{17} . We give a structure that is a model for Σ_{16} , but not for Σ_{17} : Let \mathfrak{A} be the structure where the universe is the set of natural numbers $\{0, 1, 2, \ldots\}$. Let $0^{\mathfrak{A}} = 0$, let $S^{\mathfrak{A}}(x) = x + 1$ and let $Q^{\mathfrak{A}} = \{0, 1, 2, 3, \ldots, 16\}$. Then we have $\mathfrak{A} \models \Sigma_{16}$ and $\mathfrak{A} \not\models \Sigma_{17}$.

Let $\Sigma = \bigcup_{i \in \mathbb{N}} \Sigma_i$.

Problem 4 (weight 10 %)

Give an \mathcal{L} -sentence ϕ such that $\Sigma \not\vdash \phi$ and $\Sigma \not\vdash \neg \phi$. Prove that we indeed have $\Sigma \not\vdash \phi$ and $\Sigma \not\vdash \neg \phi$.

— Solution:

(Continued on page 3.)

Page 3

Let $\phi :\equiv \forall x[Q(x)].$

Let \mathfrak{A} be the \mathcal{L} -structure where the universe is the set of natural numbers $\mathbb{N} = \{0, 1, 2, \ldots\}$. Let $0^{\mathfrak{A}} = 0$, let $S^{\mathfrak{A}}(x) = x + 1$ and let $Q^{\mathfrak{A}} = \mathbb{N}$. Then we have $\mathfrak{A} \models \Sigma$ and $\mathfrak{A} \models \phi$. By the Soundness Theorem, we have $\Sigma \not\vdash \neg \phi$.

Let \mathfrak{B} be the \mathcal{L} -structure where the universe $\mathbb{N} \cup \{\omega\}$ (the natural numbers extended by an element ω). Let $0^{\mathfrak{A}} = 0$; let $S^{\mathfrak{A}}(\omega) = \omega$ and let $S^{\mathfrak{A}}(x) = x + 1$ for any $x \in \mathbb{N}$; furthermore, let $Q^{\mathfrak{A}} = \mathbb{N}$. Then we have $\mathfrak{A} \models \Sigma$ and $\mathfrak{A} \models \neg \phi$. By the Soundness Theorem, we have $\Sigma \not\vdash \phi$.

PART II

Let f be a binary function symbol, let c be a constant symbol and let \mathcal{L} be the language $\{c, f\}$. Let

- $\Gamma_1 = \{ \forall x [x = c], f(c, c) = c \}$
- $\Gamma_2 = \{ \forall x [x = c], \neg (f(c, c) = c) \}$
- $\Gamma_3 = \{ \forall x [\neg (x = c)], \neg (f(c, c) = c) \}$
- $\Gamma_4 = \{ \neg \forall x [x = c], f(c, c) = c \}.$

Problem 5 (weight 10 %)

What does it mean that a set of first-order formulas is consistent? (Give the definition.) Is Γ_1 consistent? Is Γ_2 consistent? Is Γ_3 consistent? Is Γ_4 consistent? Justify your answers.

A set Σ of first-order formulas is consistent iff $\Sigma \not\vdash \bot$. By the Soundness and Completeness theorem, Σ has a modell iff $\Sigma \not\vdash \bot$.

- $\Gamma_1 = \{ \forall x [x = c], f(c, c) = c \}$ is consistent. It is easy to see that the set has a model, in fact the set has one model up to isomorphism, the universe of that model contains exactly one element.
- $\Gamma_2 = \{ \forall x [x = c], \neg (f(c,c) = c) \}$ is not consistent. It is easy to see that $\Gamma_2 \vdash \exists x [\neg x = c]$ (use the axiom (Q2), and then, by logical axioms, $\Gamma_2 \vdash \neg \forall x [x = c]$. Thus, $\Gamma_2 \vdash \bot$ (since we also have $\Gamma_2 \vdash \forall x [x = c]$).
- $\Gamma_3 = \{ \forall x [\neg(x = c)], \neg(f(c, c) = c) \}$ is not consistent. The set is not consistent since the sentence $\forall x [\neg(x = c)]$ does not have model (the sentence is false in any structure as some element of the universe has to be the interpretation of the constant symbol c).
- $\Gamma_4 = \{ \neg \forall x [x = c], f(c, c) = c \}$ is consistent. It is easy to see that Γ_4 has a model.

(Continued on page 4.)

For any \mathcal{L} -term t, let $(t)_y^x$ denote the term t where every occurrence of the variable x is replaced by the variable y. E.g., $(ffv_1cfv_2v_1)_{v_3}^{v_1}$ denotes the term $ffv_3cfv_2v_3$ and $(fcc)_{v_7}^{v_3}$ denotes the term fcc.

Theorem 1. For any variables x, y and any \mathcal{L} -term t, we have

$$\vdash x = y \rightarrow t = (t)_y^x$$
.

Problem 6 (weight 10 %)

Prove Theorem 1. Use induction on the structure of the term t.

—— Solution:

Case t is a variable. The case splits into two subcases: (i) t is the variable x and (ii) t is a variable different from x. First we deal with case (i). We have $t :\equiv x$ and $(t)_y^x :\equiv y$. Thus, we need to prove that

$$\vdash x = y \to x = y . \tag{1}$$

The propositional form of the formula $\vdash x = y \to x = y$ is $A \to A$. Thus, (1) holds since $A \to A$ is a tautology. Next we deal with case (ii). We have $t :\equiv z$ and $(t)_y^x :\equiv z$. Thus, we need to prove that

$$\vdash x = y \to z = z . \tag{2}$$

(Note that z is different from x, but z might be y. Our proof works no matter if z is y or not.) Observe that z = z is an instance of (E1), and then one application of (PC) yields $x = y \rightarrow z = z$. This proves that (2) holds.

Case $t :\equiv c$. We need to prove that

$$\vdash x = y \to c = c . \tag{3}$$

This case is similar to the case when t is a variable different from x. By using (E1) (and other logical axioms), we can deduce $x = y \rightarrow c = c$.

Case $t :\equiv ft_1t_2$. We need to prove

$$\vdash x = y \rightarrow ft_1t_2 = (ft_1t_2)_y^x.$$
 (4)

The induction hypothesis yields

$$\vdash x = y \to t_1 = (t_1)_y^x \quad \text{and} \quad \vdash x = y \to t_2 = (t_2)_y^x \,. \tag{5}$$

By (E2) and other logical axioms, we have

$$\vdash t_1 = (t_1)_y^x \land t_2 = (t_2)_y^x \to ft_1 t_2 = f(t_1)_y^x (t_2)_y^x$$
(6)

By (5), (6) and (PC), we have

$$\vdash x = y \quad \rightarrow \quad ft_1t_2 = f(t_1)_y^x(t_2)_y^x$$

and thus (4) holds since $(ft_1t_2)_y^x :\equiv f(t_1)_y^x(t_2)_y^x$.

(Continued on page 5.)

Page 4

Problem 7 (weight 10 %)

Do we have $\vdash t = (t)_y^x \to x = y$ (for any variables x, y and any \mathcal{L} -term t)? NO. By the Soundness Theorem, we have

$$\vdash t = (t)_{y}^{x} \to x = y \quad \Rightarrow \quad \models t = (t)_{y}^{x} \to x = y .$$

$$\tag{7}$$

Let \mathfrak{A} a be an \mathcal{L} -structure with at least two elements in the universe. Let $t :\equiv c$ and let s be an assignment such that $s(x) \neq s(y)$. We have $\mathfrak{A} \not\models c = c \rightarrow x = y$ [s]. Thus, we have $\not\models c = c \rightarrow x = y$. By (7), we have $\not\models c = c \rightarrow x = y$.

Do we have $\vdash \neg(t = (t)_y^x \to x = y)$ (for any variables x, y and any \mathcal{L} -term t)? NO. Let \mathfrak{A} a be any \mathcal{L} -structure. Let $t :\equiv c$ and let s be an assignment such that s(x) = s(y). We have $\mathfrak{A} \not\models \neg(c = c \to x = y)[s]$. Thus, we have $\not\models c = c \to x = y$. By (7), we have $\not\models \neg(c = c \to x = y)$.

PART III

Recall the language \mathcal{L}_{NT} , that is, the language $\{0, S, +, \cdot, E, <\}$, and its standard structure \mathfrak{N} . Some \mathcal{L}_{NT} -formulas contain bounded quantifiers, and some \mathcal{L}_{NT} -formulas are Δ -formulas.

Problem 8 (weight 5 %)

What is a bounded quantifier? What is a Δ -formula?

Let $\phi(x) :\equiv (\exists y)[y + y = x]$, and let $\psi(x) :\equiv \neg(\exists y)[y + y = x]$.

Problem 9 (weight 5 %)

Give a Δ -formula $\phi_0(x)$ such that $\mathfrak{N} \models \phi_0(\overline{a})$ if and only if $\mathfrak{N} \models \phi(\overline{a})$ (for any natural number a). Give a Δ -formula $\psi_0(x)$ such that $\mathfrak{N} \models \psi_0(\overline{a})$ if and only if $\mathfrak{N} \models \psi(\overline{a})$ (for any natural number a).

— Solution:

 $\phi_0(x) :\equiv (\exists y < Sx)[y + y = x] \quad \text{and} \quad \psi_0(x) :\equiv (\forall y < Sx)[\neg (y + y = x)] .$

Let p_i denote the *i*'th prime, that is, $p_1 = 2$ and $p_2 = 3$ and so on. We encode a nonempty finite sequence of natural numbers a_1, a_2, \ldots, a_k as the single natural number $\langle a_1, a_2, \ldots, a_k \rangle$ where

$$\langle a_1, a_2, \dots, a_k \rangle = p_1^{a_1+1} \cdot p_2^{a_2+1} \cdot \dots \cdot p_k^{a_k+1}$$

(Continued on page 6.)

The Δ -formula $IthElement(x_1, x_2, x_3)$ is known from Leary & Kristiansen's textbook. We have $\mathfrak{N} \models IthElement(\overline{b}, \overline{i}, \overline{a})$ if and only if there exists a sequence of natural numbers a_1, a_2, \ldots, a_k such that $a = \langle a_1, a_2, \ldots, a_k \rangle$ and $a_i = b$.

We define the sequence F_0, F_1, F_2, \ldots of Fibonacci numbers by $F_0 = F_1 = 1$ and $F_{n+2} = F_n + F_{n+1}$.

Problem 10 (weight 10 %)

Give an \mathcal{L}_{NT} -formula $\theta(x_1, x_2)$ such that $\mathfrak{N} \models \theta(\overline{i}, \overline{m})$ if and only if $F_i = m$. Use the formula $IthElement(x_1, x_2, x_3)$ to construct $\theta(x_1, x_2)$.

We write IthE in place of IthElement due to the with of an A4 paper (which is 11.7 inches).

$$\begin{aligned} \theta(x_0, x_1) &:= (\exists w) \Big[\ IthE(\overline{1}, \overline{1}, w) \land \ IthE(\overline{1}, \overline{2}, w) \\ & \land \ (\forall i < x_0)(\forall y)(\forall y')(\forall y'') \Big[\ (\ IthE(y, i, w) \land \ IthE(y', i + \overline{1}, w) \land \\ & IthE(y'', i + \overline{2}, w) \) \rightarrow \ y'' = y + y' \ \Big] \\ & \land \ IthE(x_1, x_0 + \overline{1}, w) \ \Big] \end{aligned}$$

Explanation: The formula states that there exists a number w that encodes the sequence

$$\langle F_0, F_1, F_2, \dots, F_{x_0}, F_{x_0+1} \rangle$$

and that x_1 is the second but last element in the sequence encoded by w.

Recall the first-order theory N from Leary & Kristiansen's book (N is given by 11 nonlogical \mathcal{L}_{NT} -axioms).

Problem 11 (weight 10 %)

Give an \mathcal{L}_{NT} -formula $\eta(x_1, x_2)$ such that

- (1) $N \vdash \eta(\overline{i}, \overline{m})$ if $F_i = m$
- (2) $N \vdash \neg \eta(\overline{i}, \overline{m})$ if $F_i \neq m$

and explain why (1) and (2) hold.

— Solution:

Let $\eta(x_1, x_2)$ be of the form

$$\begin{split} \eta(x_0, x_1) &:= \left(\exists w < t(x_0) \right| \ IthE(\overline{1}, \overline{1}, w) \ \land \ IthE(\overline{1}, \overline{2}, w) \\ &\land \ (\forall i < x_0) (\forall y < w) (\forall y' < w) (\forall y'' < w) \big[\ \left(\ IthE(y, i, w) \ \land \ IthE(y', i + \overline{1}, w) \land \\ &IthE(y'', i + \overline{2}, w) \ \right) \ \rightarrow \ y'' = y + y' \ \big] \\ &\land \ IthE(x_1, x_0 + \overline{1}, w) \ \big] \end{split}$$

(Continued on page 7.)

where the bound $t(x_0)$ is an \mathcal{L}_{NT} -term with only x_0 free. If the bound $t(x_0)$ have the property

$$\langle F_0, F_1, F_2, \dots, F_{x_0}, F_{x_0+1} \rangle < t^{\mathfrak{N}}(x_0)$$
 (8)

then we have $\mathfrak{N} \models \theta(\overline{a}, \overline{b})$ iff $\mathfrak{N} \models \eta(\overline{a}, \overline{b})$ (for any natural numers a and b). Now, we have $p_i \leq 2^i$ (for any $i \geq 1$, this is a very tight bound on the *i*th prime, in a classical texbook on number theory the bound will be given by $p_i < 2^{2^i}$). Given such a bound in the *i*th prime, it is not hard to prove that (8) holds if $t(x_0)$ is something like

$$t(x_0) :\equiv \overline{2}E(\overline{2}E(\overline{2}E(\overline{2}E(\overline{2}E(\overline{2}E(\overline{2}E(\overline{2}E(\overline{2}E(\overline{2}Ex_0))))))))))$$

and which can be written up in less than 11.7 inches (the with of an A4 paper).

We observe that $\eta(x_0, x_1)$ is a Δ -formula, and thus (by results proved in Leary & Kristiansen), we have

$$\mathfrak{N} \models \eta(\overline{i}, \overline{m}) \quad \Leftrightarrow \quad N \vdash \eta(\overline{i}, \overline{m})$$

and

$$\mathfrak{N}\models \neg\eta(\overline{i},\overline{m}) \quad \Leftrightarrow \quad N\vdash \neg\eta(\overline{i},\overline{m})$$

This shows that clause (1) of problem 11 holds as we have

$$F_i = M \quad \Leftrightarrow \quad \mathfrak{N} \models \theta(\overline{i}, \overline{m}) \quad \Leftrightarrow \quad \mathfrak{N} \models \eta(\overline{i}, \overline{m}) \quad \Leftrightarrow \quad N \vdash \eta(\overline{i}, \overline{m}) \quad$$

Furthermore, that clause (2) of problem 11 holds since

$$F_i \neq M \quad \Leftrightarrow \quad \mathfrak{N} \not\models \theta(\overline{i}, \overline{m}) \quad \Leftrightarrow \quad \mathfrak{N} \not\models \eta(\overline{i}, \overline{m}) \quad \Leftrightarrow \quad \mathfrak{N} \models \neg \eta(\overline{i}, \overline{m}) \quad \Leftrightarrow \quad N \vdash \neg \eta(\overline{i}, \overline{m}) \quad$$

END