UNIVERSITY OF OSLO

 Faculty of Mathematics and Natural Sciences

 Faculty of Mathematics and Natural Sciences}

Examination in: MAT-INF3600 - Mathematical logic.
Day of examination: Monday, December 19, 2022.
Examination hours: 15:00-19:00.
This problem set consists of 7 pages.
Appendices: None.
Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

The weights might be adjusted.

PART I

Let Q be a unary relation symbol, let S be a unary function symbol, let 0 be a constant symbol and let \mathcal{L} be the language $\{0, S, Q\}$. Furthermore, let

$$
\Sigma_{1}=\{\forall x[Q(S x) \rightarrow Q(x)], Q(S 0)\}
$$

Problem 1 (weight 10%)

Give a full Σ_{1}-deduction of $Q(0)$. Name all the logical axioms and inference rules involved in the deduction.

Solution:

1. $\forall x[Q(S x) \rightarrow Q(x)] \rightarrow(Q(S 0) \rightarrow Q(0))$
2. $\forall x[Q(S x) \rightarrow Q(x)]$ Σ_{1}
3. $\quad Q(S 0) \rightarrow Q(0)$
1, 2, (PC)
4. $Q(S 0)$
Σ_{1}
5. $Q(0)$
3, 4, (PC)

Problem 2 (weight 10%)

Give a full Σ_{1}-deduction of $0=x \rightarrow Q(x)$. Name all the logical axioms and inference rules involved in the deduction.
as above
5. $\quad Q(0)$
$3,4,(\mathrm{PC})$
6. $y=x \rightarrow(Q(y) \rightarrow Q(x))$
7. $\quad \top \rightarrow[y=x \rightarrow(Q(y) \rightarrow Q(x))]$
8. $\quad \top \rightarrow \forall y[y=x \rightarrow(Q(y) \rightarrow Q(x))]$

6 , (PC)
9. $\forall y[y=x \rightarrow(Q(y) \rightarrow Q(x))]$

7, (QR)
10. $\forall y[y=x \rightarrow(Q(y) \rightarrow Q(x))] \rightarrow[0=x \rightarrow(Q(0) \rightarrow Q(x))]$
11. $0=x \rightarrow(Q(0) \rightarrow Q(x))$ 9, 10, (PC)
12. $0=x \rightarrow Q(x)$

For any natural number n, we define the numeral \bar{n} by $\overline{0}=0$ and $\overline{n+1}=S \bar{n}$. Let

$$
\Sigma_{n}=\{\forall x[Q(S x) \rightarrow Q(x)], Q(\bar{n})\}
$$

Problem 3 (weight 10%)

Do we have $\Sigma_{17} \models \Sigma_{16}$? Do we have $\Sigma_{16} \models \Sigma_{17}$? Justify your answers.
\qquad
Do we have $\Sigma_{17} \models \Sigma_{16}$? YES. In order to justify our answer we have to argue that any model for Σ_{17} will also be a model for Σ_{16}. This will be true since $\Sigma_{17} \models Q(\overline{16})$, that is, $Q(\overline{16})$ follows (logically) from $\forall x[Q(S x) \rightarrow Q(x)]$ and $Q(\overline{17})$.
Do we have $\Sigma_{16}=\Sigma_{17}$? NO. In order to justify our answer we have to argue that it is not true that any model for Σ_{16} also is a model for Σ_{17}. We give a structure that is a model for Σ_{16}, but not for Σ_{17} : Let \mathfrak{A} be the structure where the universe is the set of natural numbers $\{0,1,2, \ldots\}$. Let $0^{\mathfrak{A}}=0$, let $S^{\mathfrak{A}}(x)=x+1$ and let $Q^{\mathfrak{A}}=\{0,1,2,3, \ldots, 16\}$. Then we have $\mathfrak{A} \models \Sigma_{16}$ and $\mathfrak{A} \not \vDash \Sigma_{17}$.

Let $\Sigma=\bigcup_{i \in \mathbb{N}} \Sigma_{i}$.

Problem 4 (weight 10%)

Give an \mathcal{L}-sentence ϕ sucht that $\Sigma \nvdash \phi$ and $\Sigma \nvdash \neg \phi$. Prove that we indeed have $\Sigma \nvdash \phi$ and $\Sigma \nvdash \neg \phi$.
\qquad

Let $\phi: \equiv \forall x[Q(x)]$.
Let \mathfrak{A} be the \mathcal{L}-structure where the universe is the set of natural numbers $\mathbb{N}=\{0,1,2, \ldots\}$. Let $0^{\mathfrak{A}}=0$, let $S^{\mathfrak{A}}(x)=x+1$ and let $Q^{\mathfrak{A}}=\mathbb{N}$. Then we have $\mathfrak{A} \models \Sigma$ and $\mathfrak{A} \models \phi$. By the Soundness Theorem, we have $\Sigma \nvdash \neg \phi$.
Let \mathfrak{B} be the \mathcal{L}-structure where the universe $\mathbb{N} \cup\{\omega\}$ (the natural numbers extended by an element ω). Let $0^{\mathfrak{2}}=0$; let $S^{\mathfrak{A}}(\omega)=\omega$ and let $S^{\mathfrak{A}}(x)=x+1$ for any $x \in \mathbb{N}$; furthermore, let $Q^{\mathfrak{A}}=\mathbb{N}$. Then we have $\mathfrak{A} \models \Sigma$ and $\mathfrak{A} \models \neg \phi$. By the Soundness Theorem, we have $\Sigma \nvdash \phi$.

PART II

Let f be a binary function symbol, let c be a constant symbol and let \mathcal{L} be the language $\{c, f\}$. Let

- $\Gamma_{1}=\{\forall x[x=c], f(c, c)=c\}$
- $\Gamma_{2}=\{\forall x[x=c], \neg(f(c, c)=c)\}$
- $\Gamma_{3}=\{\forall x[\neg(x=c)], \neg(f(c, c)=c)\}$
- $\Gamma_{4}=\{\neg \forall x[x=c], f(c, c)=c\}$.

Problem 5 (weight 10%)

What does it mean that a set of first-order formulas is consistent? (Give the definition.) Is Γ_{1} consistent? Is Γ_{2} consistent? Is Γ_{3} consistent? Is Γ_{4} consistent? Justify your answers.

Solution:

A set Σ of first-order formulas is consistent iff $\Sigma \nvdash \perp$. By the Soundness and Completeness theorem, Σ has a modell iff $\Sigma \nvdash \perp$.

- $\Gamma_{1}=\{\forall x[x=c], f(c, c)=c\}$ is consistent. It is easy to see that the set has a model, in fact the set has one model up to isomorphism, the universe of that model contains exactly one element.
- $\Gamma_{2}=\{\forall x[x=c], \neg(f(c, c)=c)\}$ is not consistent. It is easy to see that $\Gamma_{2} \vdash \exists x[\neg x=c]$ (use the axiom (Q2), and then, by logical axioms, $\Gamma_{2} \vdash \neg \forall x[x=c]$. Thus, $\Gamma_{2} \vdash \perp$ (since we also have $\Gamma_{2} \vdash \forall x[x=c]$).
- $\Gamma_{3}=\{\forall x[\neg(x=c)]$, $\neg(f(c, c)=c)\}$ is not consistent. The set is not consistent since the sentence $\forall x[\neg(x=c)]$ does not have model (the sentence is false in any structure as some element of the universe has to be the interpretation of the constant symbol c).
- $\Gamma_{4}=\{\neg \forall x[x=c], f(c, c)=c\}$ is consistent. It is easy to see that Γ_{4} has a model.

For any \mathcal{L}-term t, let $(t)_{y}^{x}$ denote the term t where every occurrence of the variable x is replaced by the variable y. E.g., $\left(f f v_{1} c f v_{2} v_{1}\right)_{v_{3}}^{v_{1}}$ denotes the term $f f v_{3} c f v_{2} v_{3}$ and $(f c c)_{v_{7}}^{v_{3}}$ denotes the term $f c c$.

Theorem 1. For any variables x, y and any \mathcal{L}-term t, we have

$$
\vdash x=y \rightarrow t=(t)_{y}^{x} .
$$

Problem 6 (weight 10%)

Prove Theorem 1. Use induction on the structure of the term t.

- Solution:

Case t is a variable. The case splits into two subcases: (i) t is the variable x and (ii) t is a variable different from x. First we deal with case (i). We have $t: \equiv x$ and $(t)_{y}^{x}: \equiv y$. Thus, we need to prove that

$$
\begin{equation*}
\vdash x=y \rightarrow x=y . \tag{1}
\end{equation*}
$$

The propositional form of the formula $\vdash x=y \rightarrow x=y$ is $A \rightarrow A$. Thus, (1) holds since $A \rightarrow A$ is a tautology. Next we deal with case (ii). We have $t: \equiv z$ and $(t)_{y}^{x}: \equiv z$. Thus, we need to prove that

$$
\begin{equation*}
\vdash x=y \rightarrow z=z . \tag{2}
\end{equation*}
$$

(Note that z is different from x, but z might be y. Our proof works no matter if z is y or not.) Observe that $z=z$ is an instance of (E1), and then one application of (PC) yields $x=y \rightarrow z=z$. This proves that (2) holds.
Case $t: \equiv c$. We need to prove that

$$
\begin{equation*}
\vdash x=y \rightarrow c=c . \tag{3}
\end{equation*}
$$

This case is simmilar to the case when t is a variable different from x. By using (E1) (and other logical axioms), we can deduce $x=y \rightarrow c=c$.
Case $t: \equiv f t_{1} t_{2}$. We need to prove

$$
\begin{equation*}
\vdash x=y \rightarrow f t_{1} t_{2}=\left(f t_{1} t_{2}\right)_{y}^{x} . \tag{4}
\end{equation*}
$$

The induction hypothesis yields

$$
\begin{equation*}
\vdash x=y \rightarrow t_{1}=\left(t_{1}\right)_{y}^{x} \quad \text { and } \quad \vdash x=y \rightarrow t_{2}=\left(t_{2}\right)_{y}^{x} . \tag{5}
\end{equation*}
$$

By (E2) and other logical axioms, we have

$$
\begin{equation*}
\vdash t_{1}=\left(t_{1}\right)_{y}^{x} \wedge t_{2}=\left(t_{2}\right)_{y}^{x} \rightarrow f t_{1} t_{2}=f\left(t_{1}\right)_{y}^{x}\left(t_{2}\right)_{y}^{x} \tag{6}
\end{equation*}
$$

$\mathrm{By}(5),(6)$ and (PC), we have

$$
\vdash x=y \quad \rightarrow \quad f t_{1} t_{2}=f\left(t_{1}\right)_{y}^{x}\left(t_{2}\right)_{y}^{x}
$$

and thus (4) holds since $\left(f t_{1} t_{2}\right)_{y}^{x}: \equiv f\left(t_{1}\right)_{y}^{x}\left(t_{2}\right)_{y}^{x}$.

Problem 7 (weight 10%)

Do we have $\vdash t=(t)_{y}^{x} \rightarrow x=y$ (for any variables x, y and any \mathcal{L}-term t)? Do we have $\vdash \neg\left(t=(t)_{y}^{x} \rightarrow x=y\right)$ (for any variables x, y and any \mathcal{L}-term t)? Justify your answers.
\longrightarrow Solution:
Do we have $\vdash t=(t)_{y}^{x} \rightarrow x=y$ (for any variables x, y and any \mathcal{L}-term t)? NO. By the Soundness Theorem, we have

$$
\begin{equation*}
\vdash t=(t)_{y}^{x} \rightarrow x=y \quad \Rightarrow \quad \models t=(t)_{y}^{x} \rightarrow x=y . \tag{7}
\end{equation*}
$$

Let \mathfrak{A} a be an \mathcal{L}-structure with at least two elements in the universe. Let $t: \equiv c$ and let s be an assignment such that $s(x) \neq s(y)$. We have $\mathfrak{A} \not \vDash c=c \rightarrow x=y[s]$. Thus, we have $\notin c=c \rightarrow x=y$. By (7), we have $\forall c=c \rightarrow x=y$.
Do we have $\vdash \neg\left(t=(t)_{y}^{x} \rightarrow x=y\right.$) (for any variables x, y and any \mathcal{L}-term t)? NO. Let \mathfrak{A} a be any \mathcal{L}-structure. Let $t: \equiv c$ and let s be an assignment such that $s(x)=s(y)$. We have $\mathfrak{A} \not \vDash \neg(c=c \rightarrow x=y)[s]$. Thus, we have $\not \vDash c=c \rightarrow x=y$. By (7), we have $\forall \neg(c=c \rightarrow x=y)$.

PART III

Recall the language $\mathcal{L}_{N T}$, that is, the language $\{0, S,+, \cdot, E,<\}$, and its standard structure \mathfrak{N}. Some $\mathcal{L}_{N T}$-formulas contain bounded quantifiers, and some $\mathcal{L}_{N T}$-formulas are Δ formulas.

Problem 8 (weight 5%)

What is a bounded quantifier? What is a Δ-formula?
Let $\phi(x): \equiv(\exists y)[y+y=x]$, and let $\psi(x): \equiv \neg(\exists y)[y+y=x]$.

Problem 9 (weight 5%)

Give a Δ-formula $\phi_{0}(x)$ such that $\mathfrak{N} \models \phi_{0}(\bar{a})$ if and only if $\mathfrak{N} \vDash \phi(\bar{a})$ (for any natural number a). Give a Δ-formula $\psi_{0}(x)$ such that $\mathfrak{N} \models \psi_{0}(\bar{a})$ if and only if $\mathfrak{N} \models \psi(\bar{a})$ (for any natural number a).

Solution:

$$
\phi_{0}(x): \equiv(\exists y<S x)[y+y=x] \quad \text { and } \quad \psi_{0}(x): \equiv(\forall y<S x)[\neg(y+y=x)] .
$$

Let p_{i} denote the i 'th prime, that is, $p_{1}=2$ and $p_{2}=3$ and so on. We encode a nonempty finite sequence of natural numbers $a_{1}, a_{2}, \ldots, a_{k}$ as the single natural number $\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle$ where

$$
\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle=p_{1}^{a_{1}+1} \cdot p_{2}^{a_{2}+1} \cdot \ldots \cdot p_{k}^{a_{k}+1} .
$$

The Δ-formula $\operatorname{IthElement}\left(x_{1}, x_{2}, x_{3}\right)$ is known from Leary \& Kristiansen's textbook. We have $\mathfrak{N} \vDash \operatorname{IthElement}(\bar{b}, \bar{i}, \bar{a})$ if and only if there exists a sequence of natural numbers $a_{1}, a_{2}, \ldots, a_{k}$ such that $a=\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle$ and $a_{i}=b$.
We define the sequence $F_{0}, F_{1}, F_{2}, \ldots$ of Fibonacci numbers by $F_{0}=F_{1}=1$ and $F_{n+2}=$ $F_{n}+F_{n+1}$.

Problem 10 (weight 10%)

Give an $\mathcal{L}_{N T}$-formula $\theta\left(x_{1}, x_{2}\right)$ such that $\mathfrak{N} \vDash \theta(\bar{i}, \bar{m})$ if and only if $F_{i}=m$. Use the formula IthElement $\left(x_{1}, x_{2}, x_{3}\right)$ to construct $\theta\left(x_{1}, x_{2}\right)$.

- Solution:

We write IthE in place of IthElement due to the with of an A4 paper (which is 11.7 inches).

$$
\left.\begin{array}{rl}
\theta\left(x_{0}, x_{1}\right): \equiv(\exists w)[\operatorname{IthE}(\overline{1}, \overline{1}, w) \wedge \operatorname{Ith} E(\overline{1}, \overline{2}, w) \\
\wedge\left(\forall i<x_{0}\right)(\forall y)\left(\forall y^{\prime}\right)\left(\forall y^{\prime \prime}\right)\left[\left(\operatorname{IthE}(y, i, w) \wedge \operatorname{IthE}\left(y^{\prime}, i+\overline{1}, w\right) \wedge\right.\right. \\
& \left.\left.\operatorname{IthE}\left(y^{\prime \prime}, i+\overline{2}, w\right)\right) \rightarrow y^{\prime \prime}=y+y^{\prime}\right]
\end{array}\right]
$$

Explanation : The formula states that there exists a number w that encodes the sequence

$$
\left\langle F_{0}, F_{1}, F_{2}, \ldots, F_{x_{0}}, F_{x_{0}+1}\right\rangle
$$

and that x_{1} is the second but last element in the sequence encoded by w.

Recall the first-order theory N from Leary \& Kristiansen's book (N is given by 11 nonlogical $\mathcal{L}_{N T}$-axioms).

Problem 11 (weight 10%)
Give an $\mathcal{L}_{N T}$-formula $\eta\left(x_{1}, x_{2}\right)$ such that
(1) $N \vdash \eta(\bar{i}, \bar{m})$ if $F_{i}=m$
(2) $N \vdash \neg \eta(\bar{i}, \bar{m})$ if $F_{i} \neq m$
and explain why (1) and (2) hold.

> Solution:

Let $\eta\left(x_{1}, x_{2}\right)$ be of the form

$$
\begin{aligned}
& \eta\left(x_{0}, x_{1}\right): \equiv\left(\exists w<t\left(x_{0}\right)[\operatorname{IthE}(\overline{1}, \overline{1}, w) \wedge \operatorname{IthE}(\overline{1}, \overline{2}, w)\right. \\
& \wedge\left(\forall i<x_{0}\right)(\forall y<w)\left(\forall y^{\prime}<w\right)\left(\forall y^{\prime \prime}<w\right)\left[\left(\operatorname{IthE}(y, i, w) \wedge \operatorname{IthE}\left(y^{\prime}, i+\overline{1}, w\right) \wedge\right.\right. \\
&\left.\left.\operatorname{IthE}\left(y^{\prime \prime}, i+\overline{2}, w\right)\right) \rightarrow y^{\prime \prime}=y+y^{\prime}\right] \\
&\left.\wedge \operatorname{IthE}\left(x_{1}, x_{0}+\overline{1}, w\right)\right]
\end{aligned}
$$

where the bound $t\left(x_{0}\right)$ is an $\mathcal{L}_{N T}$-term with only x_{0} free. If the bound $t\left(x_{0}\right)$ have the property

$$
\begin{equation*}
\left\langle F_{0}, F_{1}, F_{2}, \ldots, F_{x_{0}}, F_{x_{0}+1}\right\rangle<t^{\mathfrak{N}}\left(x_{0}\right) \tag{8}
\end{equation*}
$$

then we have $\mathfrak{N} \vDash \theta(\bar{a}, \bar{b})$ iff $\mathfrak{N} \vDash \eta(\bar{a}, \bar{b})$ (for any natural numers a and b). Now, we have $p_{i} \leq 2^{i}$ (for any $i \geq 1$, this is a very tight bound on the i th prime, in a classical texbook on number theory the bound will be given by $p_{i}<2^{2^{i}}$). Given such a bound in the i th prime, it is not hard to prove that (8) holds if $t\left(x_{0}\right)$ is something like

$$
t\left(x_{0}\right): \equiv \overline{2} E\left(\overline{2} E\left(\overline{2}\left(\overline{2} E\left(\overline{2} E\left(\overline{2} E\left(\overline{2} E\left(\overline{2} E\left(\overline{2} E\left(\overline{2} E x_{0}\right)\right)\right)\right)\right)\right)\right)\right)\right.
$$

and which can be written up in less than 11.7 inches (the with of an A4 paper).
We observe that $\eta\left(x_{0}, x_{1}\right)$ is a Δ-formula, and thus (by results proved in Leary \& Kristiansen), we have

$$
\mathfrak{N} \vDash \eta(\bar{i}, \bar{m}) \quad \Leftrightarrow \quad N \vdash \eta(\bar{i}, \bar{m})
$$

and

$$
\mathfrak{N} \models \neg \eta(\bar{i}, \bar{m}) \quad \Leftrightarrow \quad N \vdash \neg \eta(\bar{i}, \bar{m}) .
$$

This shows that clause (1) of problem 11 holds as we have

$$
F_{i}=M \quad \Leftrightarrow \quad \mathfrak{N} \vDash \theta(\bar{i}, \bar{m}) \quad \Leftrightarrow \quad \mathfrak{N} \vDash \eta(\bar{i}, \bar{m}) \quad \Leftrightarrow \quad N \vdash \eta(\bar{i}, \bar{m}) .
$$

Furthermore, that clause (2) of problem 11 holds since

$$
F_{i} \neq M \Leftrightarrow \mathfrak{N} \neq \theta(\bar{i}, \bar{m}) \Leftrightarrow \mathfrak{N} \not \vDash \eta(\bar{i}, \bar{m}) \Leftrightarrow \mathfrak{N} \models \neg \eta(\bar{i}, \bar{m}) \Leftrightarrow N \vdash \neg \eta(\bar{i}, \bar{m}) .
$$

