UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in:	MAT-INF 4130 — Numerical Linear Algebra.
Day of examination:	Monday 14. December 2015.
Examination hours:	9:00-13:00.
This problem set consists of 5 pages.	
Appendices:	None.
Permitted aids:	None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 10 part questions will be weighted equally.

Problem 1.

a) Let A be the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 2\\ 0 & 1\\ -1 & 3 \end{bmatrix}$$

Compute $\|\mathbf{A}\|_1$ and $\|\mathbf{A}\|_{\infty}$.

Solution: $\|\mathbf{A}\|_1$ is the maximum absolute column sum in **A**. Since the absolute column sums are 2 and 6, we have that $\|\mathbf{A}\|_1 = 6$.

 $\|\mathbf{A}\|_{\infty}$ is the maximum absolute row sum in **A**. Since the absolute row sums are 3, 1, and 4, we have that $\|\mathbf{A}\|_{\infty} = 4$.

b) Let **B** be the matrix

$$\mathbf{B} = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \end{bmatrix}$$

Find the spaces $\operatorname{span}(\mathbf{B}^T)$ and $\operatorname{ker}(\mathbf{B})$. Solution: we have that

$$\mathbf{B}^T = \begin{bmatrix} 1 & 1\\ 0 & 1\\ -1 & 1 \end{bmatrix}.$$

Clearly the two columns here are linearly independent, so that they are a base for span(\mathbf{B}^T). To find ker(\mathbf{B}) first perform row reduction:

$$\begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix}.$$

 x_3 is thus a free variable, and we must have that $x_1 = x_3$, and $x_2 = -2x_3$

for any $\mathbf{x} \in \ker \mathbf{B}$. Therefore

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix},$$

so that (1, -2, 1) is a basis for ker **B**.

c) Consider the underdetermined linear system

Find the solution $\mathbf{x} \in \mathbb{R}^3$ with $\|\mathbf{x}\|_2$ as small as possible.

Solution: There are several ways one can solve this task.

We can use that span(\mathbf{B}^T) and ker(\mathbf{B}) is an orthogonal basis for \mathbb{R}^3 . Any solution \mathbf{x} to the above equation can thus be written as $\mathbf{x} = \mathbf{B}^T \mathbf{y} + \mathbf{z}$, where $\mathbf{y} \in \mathbb{R}^2$, $\mathbf{z} \in \ker \mathbf{B}$. The solution with minimum Euclidean norm is then $\mathbf{x} = \mathbf{B}^T \mathbf{y}$, since span(\mathbf{B}^T) and ker(\mathbf{B}) are orthogonal, so that one can solve for \mathbf{y} first in $\mathbf{B}\mathbf{B}^T\mathbf{y} = \begin{bmatrix} 4\\12 \end{bmatrix}$. Since $\mathbf{B}\mathbf{B}^T = \begin{bmatrix} 2 & 0\\0 & 3 \end{bmatrix}$, we get that $\mathbf{y} = \begin{bmatrix} 2\\4 \end{bmatrix}$, and finally $\mathbf{x} = \mathbf{B}^T\mathbf{y} = (6, 4, 2)$.

We can also go as follows: We have that

$$\begin{bmatrix} 1 & 0 & -1 & 4 \\ 1 & 1 & 1 & 12 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & 4 \\ 0 & 1 & 2 & 8 \end{bmatrix},$$

so that the general solution is

$$\mathbf{x} = \begin{bmatrix} x_3 + 4\\ -2x_3 + 8\\ x_3 \end{bmatrix}.$$

We have that $\|\mathbf{x}\|_2^2 = (x_3+4)^2 + (-2x_3+8)^2 + x_3^2 = 6x_3^2 - 24x_2 + 80$. This is minimized when $12x_3 - 24 = 0$, i.e. when $x_3 = 2$, which gives $\mathbf{x} = (6, 4, 2)$. It is also rather straightforward to solve this exercise using pseudoinverses. Consider $\mathbf{BB}^T = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ (rather than $\mathbf{B}^T \mathbf{B}$, which is a 3×3 matrix). We see that the singular values of \mathbf{B} are $\sigma_1 = \sqrt{3}$ and $\sigma_2 = \sqrt{2}$. The corresponding eigenvectors for \mathbf{BB}^T are \mathbf{e}_2 and \mathbf{e}_1 , respectively. Since $\frac{1}{\sigma_1}\mathbf{B}^T\mathbf{e}_1 = (1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})$ and $\frac{1}{\sigma_2}\mathbf{B}^T\mathbf{e}_2 = (1/\sqrt{2}, 0, -1/\sqrt{2})$, a singular value factorization of \mathbf{B}^T is

$$\mathbf{B}^{T} = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{2} \\ 1/\sqrt{3} & 0 \\ 1/\sqrt{3} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Transposing this we get a singular value factorization for \mathbf{B} , and we then easily get the following expression for the pseudoinverse:

$$\mathbf{B}^{\dagger} = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{2} \\ 1/\sqrt{3} & 0 \\ 1/\sqrt{3} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1/\sqrt{3} & 0 \\ 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/3 \\ 0 & 1/3 \\ -1/2 & 1/3 \end{bmatrix}.$$

(Continued on page 3.)

$$\mathbf{B}^{\dagger}\mathbf{b} = \begin{bmatrix} 1/2 & 1/3 \\ 0 & 1/3 \\ -1/2 & 1/3 \end{bmatrix} \begin{bmatrix} 4 \\ 12 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 2 \end{bmatrix}.$$

d) Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a matrix with linearly independent columns, and $\mathbf{b} \in \mathbb{R}^m$ a vector. Assume that we use the Gauss-Seidel method to solve the normal equations $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$. Will the method converge? Justify your answer.

Solution: If **A** has linearly independent columns, $\mathbf{A}^T \mathbf{A}$ is invertible (by the characterization of least squares solutions in terms of the normal equations), so that it is also positive definite. But from Theorem 11.15 we know that the Gauss-Seidel method converges for any positive definite matrix.

Problem 2.

a) Let $\mathbf{E} \in \mathbb{R}^{n \times n}$ be of the form $\mathbf{E} = \mathbf{I} + \mathbf{u}\mathbf{u}^T$, where $\mathbf{u} \in \mathbb{R}^n$. Show that \mathbf{E} is symmetric and positive definite, and find an expression for \mathbf{E}^{-1} . (Hint: \mathbf{E}^{-1} is of the form $\mathbf{E}^{-1} = \mathbf{I} + a\mathbf{u}\mathbf{u}^T$ for some $a \in \mathbb{R}$.) Solution: We have that $\mathbf{E}^T = (\mathbf{I} + \mathbf{u}\mathbf{u}^T)^T = \mathbf{I}^T + (\mathbf{u}\mathbf{u}^T)^T = \mathbf{I} + \mathbf{u}\mathbf{u}^T = \mathbf{E}$, and

$$\mathbf{x}^T \mathbf{E} \mathbf{x} = \mathbf{x}^T (\mathbf{I} + \mathbf{u} \mathbf{u}^T) \mathbf{x} = \mathbf{x}^T \mathbf{x} + \mathbf{x}^T \mathbf{u} \mathbf{u}^T \mathbf{x} = \|\mathbf{x}\|^2 + (\mathbf{x}^T \mathbf{u})^2 > 0,$$

so that \mathbf{E} is symmetric and positive definite. Using the hint we compute

 $(\mathbf{I} + a\mathbf{u}\mathbf{u}^T)(\mathbf{I} + \mathbf{u}\mathbf{u}^T) = \mathbf{I} + (1+a)\mathbf{u}\mathbf{u}^T + a\mathbf{u}\mathbf{u}^T\mathbf{u}\mathbf{u}^T = \mathbf{I} + (1+a+a\|\mathbf{u}\|^2)\mathbf{u}\mathbf{u}^T.$ This equals \mathbf{I} if $1 + a + a\|\mathbf{u}\|^2 = 0$, i.e. if $a = -1/(1 + \|\mathbf{u}\|^2)$. This shows that

$$\mathbf{E}^{-1} = \mathbf{I} - \frac{1}{1 + \|\mathbf{u}\|^2} \mathbf{u} \mathbf{u}^T.$$

b) Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be of the form $\mathbf{A} = \mathbf{B} + \mathbf{u}\mathbf{u}^T$, where $\mathbf{B} \in \mathbb{R}^{n \times n}$ is symmetric and positive definite, and $\mathbf{u} \in \mathbb{R}^n$. Show that \mathbf{A} can be decomposed on the form

$$\mathbf{A} = \mathbf{L}(\mathbf{I} + \mathbf{v}\mathbf{v}^T)\mathbf{L}^T,$$

where **L** is nonsingular and lower triangular, and $\mathbf{v} \in \mathbb{R}^n$. Solution: Since **B** is symmetric and positive definite it has a Cholesky factorization $\mathbf{B} = \mathbf{L}\mathbf{L}^T$. We have that

$$\mathbf{L}(\mathbf{I} + \mathbf{v}\mathbf{v}^T)\mathbf{L}^T = \mathbf{L}\mathbf{L}^T + \mathbf{L}\mathbf{v}\mathbf{v}^T\mathbf{L}^T = \mathbf{B} + \mathbf{L}\mathbf{v}(\mathbf{L}\mathbf{v})^T.$$

If we now choose \mathbf{v} so that $\mathbf{L}\mathbf{v} = \mathbf{u}$ (this is possible since \mathbf{L} is nonsingular), this equals $\mathbf{B} + \mathbf{u}\mathbf{u}^T = \mathbf{A}$, and this shows that \mathbf{A} can be written on the desired form.

c) Assume that the Cholesky decomposition of **B** is already computed. Outline a procedure to solve the system $\mathbf{A}\mathbf{x} = \mathbf{b}$, where **A** is of the form above.

Solution: We first find a **v** so that $\mathbf{A} = \mathbf{L}(\mathbf{I} + \mathbf{v}\mathbf{v}^T)\mathbf{L}^T$ (by solving $\mathbf{L}\mathbf{v} = \mathbf{u}$, which is a lower triangular system). Then we solve $\mathbf{L}\mathbf{z} = \mathbf{b}$ (lower triangular system), then $(\mathbf{I} + \mathbf{v}\mathbf{v}^T)\mathbf{w} = \mathbf{z}$ (where we can use a), where we found an expression for $(\mathbf{I} + \mathbf{v}\mathbf{v}^T)^{-1}$), and finally $\mathbf{L}^T\mathbf{x} = \mathbf{w}$ (upper triangular system).

(Continued on page 4.)

Problem 3.

a) Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Explain how we can use the spectral theorem for symmetric matrices to show that

$$\lambda_{\min} = \min_{\mathbf{x} \neq 0} R(\mathbf{x}) = \min_{\|\mathbf{x}\|_2 = 1} R(\mathbf{x}),$$

where λ_{min} is the smallest eigenvalue of **A**, and $R(\mathbf{x})$ is the Rayleigh quotient given by

$$R(\mathbf{x}) = \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}.$$

Solution: The spectral theorem says that we can write any real symmetric matrix as $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{U}^T$, where \mathbf{U} is orthogonal and \mathbf{D} is diagonal. We now get that

$$R(\mathbf{x}) = \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} = \frac{\mathbf{x}^T \mathbf{U} \mathbf{D} \mathbf{U}^T \mathbf{x}}{\mathbf{x}^T \mathbf{x}} = \frac{(\mathbf{U}^T \mathbf{x})^T \mathbf{D} (\mathbf{U}^T \mathbf{x})}{\|\mathbf{x}\|^2}$$
$$= \frac{(\mathbf{U}^T \mathbf{x})^T \mathbf{D} (\mathbf{U}^T \mathbf{x})}{\|\mathbf{U}^T \mathbf{x}\|^2} = R_D(\mathbf{U}^T \mathbf{x})$$

since **U** is orthogonal (R_D is the Rayleigh quotient using **D** instead of **A**). We thus have that

$$\min_{\mathbf{x}\neq 0} R(\mathbf{x}) = \min_{\mathbf{x}\neq 0} R_D(\mathbf{U}^T \mathbf{x}) = \min_{\mathbf{x}\neq 0} R_D(\mathbf{x}) = \min_{\mathbf{x}\neq 0} \sum_{i=1}^n \lambda_i x_i^2 / \|\mathbf{x}\|^2 = \lambda_i,$$

where the minimum is attained for $\mathbf{x} = \mathbf{e}_i$ with $\lambda_i = \lambda_{min}$. b) Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ such that $\|\mathbf{x}\|_2 = 1$ and $\mathbf{y} \neq 0$. Show that

$$R(\mathbf{x} - t\mathbf{y}) = R(\mathbf{x}) - 2t(\mathbf{A}\mathbf{x} - R(\mathbf{x})\mathbf{x})^T\mathbf{y} + \mathcal{O}(t^2).$$

where t > 0 is small.

(Hint: Use Taylor's theorem for the function $f(t) = R(\mathbf{x} - t\mathbf{y})$.) Solution: Using the hint we have that $f(0) = R(\mathbf{x})$. We also have that

$$f(t) = \frac{(\mathbf{x} - t\mathbf{y})^T \mathbf{A}(\mathbf{x} - t\mathbf{y})}{(\mathbf{x} - t\mathbf{y})^T (\mathbf{x} - t\mathbf{y})} = \frac{\mathbf{x}^T \mathbf{A} \mathbf{x} - 2t \mathbf{x}^T \mathbf{A} \mathbf{y} + t^2 \mathbf{y}^T \mathbf{A} \mathbf{y}}{\|\mathbf{x}\|^2 - 2t \mathbf{x}^T \mathbf{y} + t^2 \|\mathbf{y}\|^2} = \frac{g(t)}{h(t)}.$$

We here have that

$$g(0) = \mathbf{x}^T \mathbf{A} \mathbf{x} \qquad g'(t) = -2\mathbf{x}^T \mathbf{A} \mathbf{y} + 2t \mathbf{y}^T \mathbf{A} \mathbf{y} \qquad g'(0) = -2\mathbf{x}^T \mathbf{A} \mathbf{y}$$
$$h(0) = \|\mathbf{x}\|^2 = 1 \qquad h'(t) = -2\mathbf{x}^T \mathbf{y} + 2t \|\mathbf{y}\|^2 \qquad h'(0) = -2\mathbf{x}^T \mathbf{y}$$

We now get that

$$f'(0) = \frac{g'(0)h(0) - g(0)h'(0)}{h(0)^2} = -2\mathbf{x}^T \mathbf{A}\mathbf{y} + 2\mathbf{x}^T \mathbf{y}\mathbf{x}^T \mathbf{A}\mathbf{x}$$
$$= -2((\mathbf{A}\mathbf{x})^T \mathbf{y} - R(\mathbf{x})\mathbf{x}^T \mathbf{y}) = -2(\mathbf{A}\mathbf{x} - R(\mathbf{x})\mathbf{x})^T \mathbf{y}.$$

Clearly the second derivative of f is bounded close to 0, so that $f(t) = f(0) + tf'(0) + \mathcal{O}(t^2)$. Inserting $f(0) = R(\mathbf{x})$ and $f'(0) = -2(\mathbf{A}\mathbf{x} - R(\mathbf{x})\mathbf{x})^T\mathbf{y}$ gives the desired result.

(Continued on page 5.)

c) Based on the characterisation given in 3a) above it is tempting to develop an algorithm for computing λ_{min} by approximating the minimum of $R(\mathbf{x})$ over the unit ball

$$B_1 = \{ \mathbf{x} \in \mathbb{R}^n \, | \, \|\mathbf{x}\|_2 = 1 \}.$$

Assume that $\mathbf{x}^0 \in B_1$ satisfies $\mathbf{A}\mathbf{x}^0 - R(\mathbf{x}^0)\mathbf{x}^0 \neq 0$, i.e. $(R(\mathbf{x}^0), \mathbf{x}^0)$ is not an eigenpair for **A**. Explain how we can find a vector $\mathbf{x}^1 \in B_1$ such that $R(\mathbf{x}^1) < R(\mathbf{x}^0)$.

Solution: If $\mathbf{A}\mathbf{x}^0 - R(\mathbf{x}^0)\mathbf{x}^0 \neq 0$ we can choose a vector \mathbf{y} so that $(\mathbf{A}\mathbf{x}^0 - R(\mathbf{x}^0)\mathbf{x}^0)^T\mathbf{y} > 0$ (\mathbf{y} can for instance be a vector pointing in the same direction as $\mathbf{A}\mathbf{x}^0 - R(\mathbf{x}^0)\mathbf{x}^0$). But then $-2t(\mathbf{A}\mathbf{x}^0 - R(\mathbf{x}^0)\mathbf{x}^0)^T\mathbf{y} < 0$ (t is assumed to be positive here) and since this term dominates $\mathcal{O}(t^2)$ for small t, we see that $R(\mathbf{x}^0 - t\mathbf{y}) < R(\mathbf{x}^0)$. In other words, we can reduce the Rayleigh quotient by taking a small step from \mathbf{x}^0 in the direction of $\mathbf{A}\mathbf{x}^0 - R(\mathbf{x}^0)\mathbf{x}^0$.

Good luck!