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Examination in: MAT-INF 4130 — Numerical Linear Algebra.

Day of examination: Monday 14. December 2015.

Examination hours: 9:00 – 13:00.

This problem set consists of 5 pages.

Appendices: None.

Permitted aids: None.

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

All 10 part questions will be weighted equally.

Problem 1.

a) Let A be the matrix

A =

 1 2
0 1
−1 3


Compute ‖A‖1 and ‖A‖∞.
Solution: ‖A‖1 is the maximum absolute column sum in A. Since the
absolute column sums are 2 and 6, we have that ‖A‖1 = 6.
‖A‖∞ is the maximum absolute row sum in A. Since the absolute row sums
are 3, 1, and 4, we have that ‖A‖∞ = 4.

b) Let B be the matrix

B =

[
1 0 −1
1 1 1

]
Find the spaces span(BT ) and ker(B).
Solution: we have that

BT =

 1 1
0 1
−1 1

 .
Clearly the two columns here are linearly independent, so that they are a
base for span(BT ). To find ker(B) first perform row reduction:[

1 0 −1
1 1 1

]
∼
[
1 0 −1
0 1 2

]
.

x3 is thus a free variable, and we must have that x1 = x3, and x2 = −2x3

(Continued on page 2.)
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for any x ∈ kerB. Therefore

x =

x1x2
x3

 = x3

 1
−2
1

 ,
so that (1,−2, 1) is a basis for kerB.

c) Consider the underdetermined linear system

x1 −x3 = 4
x1 +x2 +x3 = 12

Find the solution x ∈ R3 with ‖x‖2 as small as possible.
Solution: There are several ways one can solve this task.
We can use that span(BT ) and ker(B) is an orthogonal basis for R3. Any
solution x to the above equation can thus be written as x = BTy+z, where
y ∈ R2, z ∈ kerB. The solution with minimum Euclidean norm is then
x = BTy, since span(BT ) and ker(B) are orthogonal, so that one can solve

for y first in BBTy =

[
4
12

]
. Since BBT =

[
2 0
0 3

]
, we get that y =

[
2
4

]
,

and finally x = BTy = (6, 4, 2).
We can also go as follows: We have that[

1 0 −1 4
1 1 1 12

]
∼
[
1 0 −1 4
0 1 2 8

]
,

so that the general solution is

x =

 x3 + 4
−2x3 + 8

x3

 .
We have that ‖x‖22 = (x3+4)2+(−2x3+8)2+x23 = 6x23−24x2+80. This is
minimized when 12x3 − 24 = 0, i.e. when x3 = 2, which gives x = (6, 4, 2).
It is also rather straightforward to solve this exercise using pseudoinverses.

Consider BBT =

[
2 0
0 3

]
(rather than BTB, which is a 3 × 3 matrix).

We see that the singular values of B are σ1 =
√
3 and σ2 =

√
2. The

corresponding eigenvectors for BBT are e2 and e1, respectively. Since
1
σ1
BTe1 = (1/

√
3, 1/
√
3, 1/
√
3) and 1

σ2
BTe2 = (1/

√
2, 0,−1/

√
2), a singular

value factorization of BT is

BT =

 1/
√
3 1/

√
2

1/
√
3 0

1/
√
3 −1/

√
2

[√3 0

0
√
2

] [
0 1
1 0

]
.

Transposing this we get a singular value factorization for B, and we then
easily get the following expression for the pseudoinverse:

B† =

 1/
√
3 1/

√
2

1/
√
3 0

1/
√
3 −1/

√
2

[1/√3 0

0 1/
√
2

] [
0 1
1 0

]
=

 1/2 1/3
0 1/3
−1/2 1/3

 .
(Continued on page 3.)
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The least squares solution (which also here is a solution) with minimum
Euclidean norm can now be obtained by computing

B†b =

 1/2 1/3
0 1/3
−1/2 1/3

[ 4
12

]
=

64
2

 .
d) Let A ∈ Rm×n be a matrix with linearly independent columns, and
b ∈ Rm a vector. Assume that we use the Gauss-Seidel method to solve the
normal equations ATAx = ATb. Will the method converge? Justify your
answer.
Solution: If A has linearly independent columns, ATA is invertible (by the
characterization of least squares solutions in terms of the normal equations),
so that it is also positive definite. But from Theorem 11.15 we know that
the Gauss-Seidel method converges for any positive definite matrix.

Problem 2.

a) Let E ∈ Rn×n be of the form E = I+ uuT , where u ∈ Rn. Show that E
is symmetric and positive definite, and find an expression for E−1.
(Hint: E−1 is of the form E−1 = I+ auuT for some a ∈ R.)
Solution: We have that ET = (I+ uuT )T = IT + (uuT )T = I+ uuT = E,
and

xTEx = xT (I+ uuT )x = xTx+ xTuuTx = ‖x‖2 + (xTu)2 > 0,

so that E is symmetric and positive definite. Using the hint we compute

(I+auuT )(I+uuT ) = I+(1+a)uuT +auuTuuT = I+(1+a+a‖u‖2)uuT .

This equals I if 1 + a + a‖u‖2 = 0, i.e. if a = −1/(1 + ‖u‖2). This shows
that

E−1 = I− 1

1 + ‖u‖2
uuT .

b) LetA ∈ Rn×n be of the formA = B+uuT , whereB ∈ Rn×n is symmetric
and positive definite, and u ∈ Rn. Show that A can be decomposed on the
form

A = L(I+ vvT )LT ,

where L is nonsingular and lower triangular, and v ∈ Rn.
Solution: Since B is symmetric and positive definite it has a Cholesky
factorization B = LLT . We have that

L(I+ vvT )LT = LLT + LvvTLT = B+ Lv(Lv)T .

If we now choose v so that Lv = u (this is possible since L is nonsingular),
this equals B + uuT = A, and this shows that A can be written on the
desired form.

c) Assume that the Cholesky decomposition of B is already computed.
Outline a procedure to solve the system Ax = b, where A is of the form
above.
Solution: We first find a v so that A = L(I+vvT )LT (by solving Lv = u,
which is a lower triangular system). Then we solve Lz = b (lower triangular
system), then (I + vvT )w = z (where we can use a), where we found an
expression for (I+vvT )−1), and finally LTx = w (upper triangular system).

(Continued on page 4.)
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Problem 3.

a) Let A ∈ Rn×n be a symmetric matrix. Explain how we can use the
spectral theorem for symmetric matrices to show that

λmin = min
x 6=0

R(x) = min
‖x‖2=1

R(x),

where λmin is the smallest eigenvalue ofA, and R(x) is the Rayleigh quotient
given by

R(x) =
xTAx

xTx
.

Solution: The spectral theorem says that we can write any real symmetric
matrix as A = UDUT , where U is orthogonal and D is diagonal. We now
get that

R(x) =
xTAx

xTx
=

xTUDUTx

xTx
=

(UTx)TD(UTx)

‖x‖2

=
(UTx)TD(UTx)

‖UTx‖2
= RD(U

Tx)

since U is orthogonal (RD is the Rayleigh quotient using D instead of A).
We thus have that

min
x 6=0

R(x) = min
x 6=0

RD(U
Tx) = min

x 6=0
RD(x) = min

x 6=0

n∑
i=1

λix
2
i /‖x‖2 = λi,

where the minimum is attained for x = ei with λi = λmin.

b) Let x,y ∈ Rn such that ‖x‖2 = 1 and y 6= 0. Show that

R(x− ty) = R(x)− 2t(Ax−R(x)x)Ty +O(t2).

where t > 0 is small.
(Hint: Use Taylor’s theorem for the function f(t) = R(x− ty).)
Solution: Using the hint we have that f(0) = R(x). We also have that

f(t) =
(x− ty)TA(x− ty)
(x− ty)T (x− ty)

=
xTAx− 2txTAy + t2yTAy

‖x‖2 − 2txTy + t2‖y‖2
=
g(t)

h(t)
.

We here have that

g(0) = xTAx g′(t) = −2xTAy + 2tyTAy g′(0) = −2xTAy

h(0) = ‖x‖2 = 1 h′(t) = −2xTy + 2t‖y‖2 h′(0) = −2xTy

We now get that

f ′(0) =
g′(0)h(0)− g(0)h′(0)

h(0)2
= −2xTAy + 2xTyxTAx

= −2((Ax)Ty −R(x)xTy) = −2(Ax−R(x)x)Ty.

Clearly the second derivative of f is bounded close to 0, so that f(t) =
f(0)+tf ′(0)+O(t2). Inserting f(0) = R(x) and f ′(0) = −2(Ax−R(x)x)Ty
gives the desired result.

(Continued on page 5.)
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c) Based on the characterisation given in 3a) above it is tempting to develop
an algorithm for computing λmin by approximating the minimum of R(x)
over the unit ball

B1 = {x ∈ Rn | ‖x‖2 = 1 }.

Assume that x0 ∈ B1 satisfies Ax0 − R(x0)x0 6= 0, i.e. (R(x0),x0) is not
an eigenpair for A. Explain how we can find a vector x1 ∈ B1 such that
R(x1) < R(x0).
Solution: If Ax0 − R(x0)x0 6= 0 we can choose a vector y so that
(Ax0 − R(x0)x0)Ty > 0 (y can for instance be a vector pointing in the
same direction as Ax0 − R(x0)x0). But then −2t(Ax0 − R(x0)x0)Ty < 0
(t is assumed to be positive here) and since this term dominates O(t2) for
small t, we see that R(x0 − ty) < R(x0). In other words, we can reduce
the Rayleigh quotient by taking a small step from x0 in the direction of
Ax0 −R(x0)x0.

Good luck!


