UNIVERSITY OF OSLO
 Faculty of Mathematics and Natural Sciences

Examination in: MAT-INF 4130 - Numerical Linear Algebra.
Day of examination: Monday 14. December 2015.
Examination hours: 9:00-13:00.
This problem set consists of 5 pages.
Appendices: None.
Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 10 part questions will be weighted equally.

Problem 1.

a) Let \mathbf{A} be the matrix

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & 2 \\
0 & 1 \\
-1 & 3
\end{array}\right]
$$

Compute $\|\mathbf{A}\|_{1}$ and $\|\mathbf{A}\|_{\infty}$.
Solution: $\|\mathbf{A}\|_{1}$ is the maximum absolute column sum in \mathbf{A}. Since the absolute column sums are 2 and 6 , we have that $\|\mathbf{A}\|_{1}=6$.
$\|\mathbf{A}\|_{\infty}$ is the maximum absolute row sum in \mathbf{A}. Since the absolute row sums are 3,1 , and 4 , we have that $\|\mathbf{A}\|_{\infty}=4$.
b) Let \mathbf{B} be the matrix

$$
\mathbf{B}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & 1 & 1
\end{array}\right]
$$

Find the spaces $\operatorname{span}\left(\mathbf{B}^{T}\right)$ and $\operatorname{ker}(\mathbf{B})$.
Solution: we have that

$$
\mathbf{B}^{T}=\left[\begin{array}{cc}
1 & 1 \\
0 & 1 \\
-1 & 1
\end{array}\right]
$$

Clearly the two columns here are linearly independent, so that they are a base for $\operatorname{span}\left(\mathbf{B}^{T}\right)$. To find $\operatorname{ker}(\mathbf{B})$ first perform row reduction:

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2
\end{array}\right]
$$

x_{3} is thus a free variable, and we must have that $x_{1}=x_{3}$, and $x_{2}=-2 x_{3}$
for any $\mathbf{x} \in \operatorname{ker} \mathbf{B}$. Therefore

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right],
$$

so that $(1,-2,1)$ is a basis for $\operatorname{ker} \mathbf{B}$.
c) Consider the underdetermined linear system

$$
\begin{array}{lll}
x_{1} & & -x_{3}=4 \\
x_{1} & +x_{2} & +x_{3}=12
\end{array}
$$

Find the solution $\mathbf{x} \in \mathbb{R}^{3}$ with $\|\mathbf{x}\|_{2}$ as small as possible.
Solution: There are several ways one can solve this task.
We can use that $\operatorname{span}\left(\mathbf{B}^{T}\right)$ and $\operatorname{ker}(\mathbf{B})$ is an orthogonal basis for \mathbb{R}^{3}. Any solution \mathbf{x} to the above equation can thus be written as $\mathbf{x}=\mathbf{B}^{T} \mathbf{y}+\mathbf{z}$, where $\mathbf{y} \in \mathbb{R}^{2}, \mathbf{z} \in \operatorname{ker} \mathbf{B}$. The solution with minimum Euclidean norm is then $\mathbf{x}=\mathbf{B}^{T} \mathbf{y}$, since $\operatorname{span}\left(\mathbf{B}^{T}\right)$ and $\operatorname{ker}(\mathbf{B})$ are orthogonal, so that one can solve for \mathbf{y} first in $\mathbf{B B}^{T} \mathbf{y}=\left[\begin{array}{c}4 \\ 12\end{array}\right]$. Since $\mathbf{B B}^{T}=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$, we get that $\mathbf{y}=\left[\begin{array}{l}2 \\ 4\end{array}\right]$, and finally $\mathbf{x}=\mathbf{B}^{T} \mathbf{y}=(6,4,2)$.
We can also go as follows: We have that

$$
\left[\begin{array}{cccc}
1 & 0 & -1 & 4 \\
1 & 1 & 1 & 12
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & -1 & 4 \\
0 & 1 & 2 & 8
\end{array}\right]
$$

so that the general solution is

$$
\mathbf{x}=\left[\begin{array}{c}
x_{3}+4 \\
-2 x_{3}+8 \\
x_{3}
\end{array}\right]
$$

We have that $\|\mathbf{x}\|_{2}^{2}=\left(x_{3}+4\right)^{2}+\left(-2 x_{3}+8\right)^{2}+x_{3}^{2}=6 x_{3}^{2}-24 x_{2}+80$. This is minimized when $12 x_{3}-24=0$, i.e. when $x_{3}=2$, which gives $\mathbf{x}=(6,4,2)$. It is also rather straightforward to solve this exercise using pseudoinverses. Consider $\mathbf{B B}^{T}=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$ (rather than $\mathbf{B}^{T} \mathbf{B}$, which is a 3×3 matrix). We see that the singular values of \mathbf{B} are $\sigma_{1}=\sqrt{3}$ and $\sigma_{2}=\sqrt{2}$. The corresponding eigenvectors for $\mathbf{B B}^{T}$ are \mathbf{e}_{2} and \mathbf{e}_{1}, respectively. Since $\frac{1}{\sigma_{1}} \mathbf{B}^{T} \mathbf{e}_{1}=(1 / \sqrt{3}, 1 / \sqrt{3}, 1 / \sqrt{3})$ and $\frac{1}{\sigma_{2}} \mathbf{B}^{T} \mathbf{e}_{2}=(1 / \sqrt{2}, 0,-1 / \sqrt{2})$, a singular value factorization of \mathbf{B}^{T} is

$$
\mathbf{B}^{T}=\left[\begin{array}{cc}
1 / \sqrt{3} & 1 / \sqrt{2} \\
1 / \sqrt{3} & 0 \\
1 / \sqrt{3} & -1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{cc}
\sqrt{3} & 0 \\
0 & \sqrt{2}
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

Transposing this we get a singular value factorization for \mathbf{B}, and we then easily get the following expression for the pseudoinverse:

$$
\mathbf{B}^{\dagger}=\left[\begin{array}{cc}
1 / \sqrt{3} & 1 / \sqrt{2} \\
1 / \sqrt{3} & 0 \\
1 / \sqrt{3} & -1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{cc}
1 / \sqrt{3} & 0 \\
0 & 1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
1 / 2 & 1 / 3 \\
0 & 1 / 3 \\
-1 / 2 & 1 / 3
\end{array}\right] .
$$

The least squares solution (which also here is a solution) with minimum Euclidean norm can now be obtained by computing

$$
\mathbf{B}^{\dagger} \mathbf{b}=\left[\begin{array}{cc}
1 / 2 & 1 / 3 \\
0 & 1 / 3 \\
-1 / 2 & 1 / 3
\end{array}\right]\left[\begin{array}{c}
4 \\
12
\end{array}\right]=\left[\begin{array}{l}
6 \\
4 \\
2
\end{array}\right] .
$$

d) Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a matrix with linearly independent columns, and $\mathbf{b} \in \mathbb{R}^{m}$ a vector. Assume that we use the Gauss-Seidel method to solve the normal equations $\mathbf{A}^{T} \mathbf{A x}=\mathbf{A}^{T} \mathbf{b}$. Will the method converge? Justify your answer.
Solution: If \mathbf{A} has linearly independent columns, $\mathbf{A}^{T} \mathbf{A}$ is invertible (by the characterization of least squares solutions in terms of the normal equations), so that it is also positive definite. But from Theorem 11.15 we know that the Gauss-Seidel method converges for any positive definite matrix.

Problem 2.

a) Let $\mathbf{E} \in \mathbb{R}^{n \times n}$ be of the form $\mathbf{E}=\mathbf{I}+\mathbf{u u}^{T}$, where $\mathbf{u} \in \mathbb{R}^{n}$. Show that \mathbf{E} is symmetric and positive definite, and find an expression for \mathbf{E}^{-1}.
(Hint: \mathbf{E}^{-1} is of the form $\mathbf{E}^{-1}=\mathbf{I}+a \mathbf{u u}{ }^{T}$ for some $a \in \mathbb{R}$.)
Solution: We have that $\mathbf{E}^{T}=\left(\mathbf{I}+\mathbf{u u}^{T}\right)^{T}=\mathbf{I}^{T}+\left(\mathbf{u} u^{T}\right)^{T}=\mathbf{I}+\mathbf{u u}^{T}=\mathbf{E}$, and

$$
\mathbf{x}^{T} \mathbf{E x}=\mathbf{x}^{T}\left(\mathbf{I}+\mathbf{u} \mathbf{u}^{T}\right) \mathbf{x}=\mathbf{x}^{T} \mathbf{x}+\mathbf{x}^{T} \mathbf{u} \mathbf{u}^{T} \mathbf{x}=\|\mathbf{x}\|^{2}+\left(\mathbf{x}^{T} \mathbf{u}\right)^{2}>0,
$$

so that \mathbf{E} is symmetric and positive definite. Using the hint we compute
$\left(\mathbf{I}+a \mathbf{u u}^{T}\right)\left(\mathbf{I}+\mathbf{u u}^{T}\right)=\mathbf{I}+(1+a) \mathbf{u u}^{T}+a \mathbf{u u}^{T} \mathbf{u u}^{T}=\mathbf{I}+\left(1+a+a\|\mathbf{u}\|^{2}\right) \mathbf{u u}^{T}$. This equals \mathbf{I} if $1+a+a\|\mathbf{u}\|^{2}=0$, i.e. if $a=-1 /\left(1+\|\mathbf{u}\|^{2}\right)$. This shows that

$$
\mathbf{E}^{-1}=\mathbf{I}-\frac{1}{1+\|\mathbf{u}\|^{2}} \mathbf{u u}^{T} .
$$

b) Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be of the form $\mathbf{A}=\mathbf{B}+\mathbf{u u}^{T}$, where $\mathbf{B} \in \mathbb{R}^{n \times n}$ is symmetric and positive definite, and $\mathbf{u} \in \mathbb{R}^{n}$. Show that \mathbf{A} can be decomposed on the form

$$
\mathbf{A}=\mathbf{L}\left(\mathbf{I}+\mathbf{v v}^{T}\right) \mathbf{L}^{T}
$$

where \mathbf{L} is nonsingular and lower triangular, and $\mathbf{v} \in \mathbb{R}^{n}$.
Solution: Since B is symmetric and positive definite it has a Cholesky factorization $\mathbf{B}=\mathbf{L} \mathbf{L}^{T}$. We have that

$$
\mathbf{L}\left(\mathbf{I}+\mathbf{v} \mathbf{v}^{T}\right) \mathbf{L}^{T}=\mathbf{L L}^{T}+\mathbf{L v} \mathbf{v}^{T} \mathbf{L}^{T}=\mathbf{B}+\mathbf{L v}(\mathbf{L} \mathbf{v})^{T} .
$$

If we now choose \mathbf{v} so that $\mathbf{L v}=\mathbf{u}$ (this is possible since \mathbf{L} is nonsingular), this equals $\mathbf{B}+\mathbf{u u}^{T}=\mathbf{A}$, and this shows that \mathbf{A} can be written on the desired form.
c) Assume that the Cholesky decomposition of \mathbf{B} is already computed. Outline a procedure to solve the system $\mathbf{A x}=\mathbf{b}$, where \mathbf{A} is of the form above.
Solution: We first find a \mathbf{v} so that $\mathbf{A}=\mathbf{L}\left(\mathbf{I}+\mathbf{v v}^{T}\right) \mathbf{L}^{T}$ (by solving $\mathbf{L v}=\mathbf{u}$, which is a lower triangular system). Then we solve $\mathbf{L z}=\mathbf{b}$ (lower triangular system), then $\left(\mathbf{I}+\mathbf{v v}^{T}\right) \mathbf{w}=\mathbf{z}$ (where we can use a), where we found an expression for $\left(\mathbf{I}+\mathbf{v} \mathbf{v}^{T}\right)^{-1}$), and finally $\mathbf{L}^{T} \mathbf{x}=\mathbf{w}$ (upper triangular system).

Problem 3.

a) Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Explain how we can use the spectral theorem for symmetric matrices to show that

$$
\lambda_{\min }=\min _{\mathbf{x} \neq 0} R(\mathbf{x})=\min _{\|\mathbf{x}\|_{2}=1} R(\mathbf{x})
$$

where $\lambda_{\text {min }}$ is the smallest eigenvalue of \mathbf{A}, and $R(\mathbf{x})$ is the Rayleigh quotient given by

$$
R(\mathbf{x})=\frac{\mathbf{x}^{T} \mathbf{A} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}
$$

Solution: The spectral theorem says that we can write any real symmetric matrix as $\mathbf{A}=\mathbf{U D} \mathbf{U}^{T}$, where \mathbf{U} is orthogonal and \mathbf{D} is diagonal. We now get that

$$
\begin{aligned}
R(\mathbf{x}) & =\frac{\mathbf{x}^{T} \mathbf{A} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}=\frac{\mathbf{x}^{T} \mathbf{U D}^{T} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}=\frac{\left(\mathbf{U}^{T} \mathbf{x}\right)^{T} \mathbf{D}\left(\mathbf{U}^{T} \mathbf{x}\right)}{\|\mathbf{x}\|^{2}} \\
& =\frac{\left(\mathbf{U}^{T} \mathbf{x}\right)^{T} \mathbf{D}\left(\mathbf{U}^{T} \mathbf{x}\right)}{\left\|\mathbf{U}^{T} \mathbf{x}\right\|^{2}}=R_{D}\left(\mathbf{U}^{T} \mathbf{x}\right)
\end{aligned}
$$

since \mathbf{U} is orthogonal (R_{D} is the Rayleigh quotient using \mathbf{D} instead of \mathbf{A}). We thus have that

$$
\min _{\mathbf{x} \neq 0} R(\mathbf{x})=\min _{\mathbf{x} \neq 0} R_{D}\left(\mathbf{U}^{T} \mathbf{x}\right)=\min _{\mathbf{x} \neq 0} R_{D}(\mathbf{x})=\min _{\mathbf{x} \neq 0} \sum_{i=1}^{n} \lambda_{i} x_{i}^{2} /\|\mathbf{x}\|^{2}=\lambda_{i}
$$

where the minimum is attained for $\mathbf{x}=\mathbf{e}_{i}$ with $\lambda_{i}=\lambda_{\text {min }}$.
b) Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ such that $\|\mathbf{x}\|_{2}=1$ and $\mathbf{y} \neq 0$. Show that

$$
R(\mathbf{x}-t \mathbf{y})=R(\mathbf{x})-2 t(\mathbf{A} \mathbf{x}-R(\mathbf{x}) \mathbf{x})^{T} \mathbf{y}+\mathcal{O}\left(t^{2}\right)
$$

where $t>0$ is small.
(Hint: Use Taylor's theorem for the function $f(t)=R(\mathbf{x}-t \mathbf{y})$.)
Solution: Using the hint we have that $f(0)=R(\mathbf{x})$. We also have that

$$
f(t)=\frac{(\mathbf{x}-t \mathbf{y})^{T} \mathbf{A}(\mathbf{x}-t \mathbf{y})}{(\mathbf{x}-t \mathbf{y})^{T}(\mathbf{x}-t \mathbf{y})}=\frac{\mathbf{x}^{T} \mathbf{A} \mathbf{x}-2 t \mathbf{x}^{T} \mathbf{A} \mathbf{y}+t^{2} \mathbf{y}^{T} \mathbf{A} \mathbf{y}}{\|\mathbf{x}\|^{2}-2 t \mathbf{x}^{T} \mathbf{y}+t^{2}\|\mathbf{y}\|^{2}}=\frac{g(t)}{h(t)}
$$

We here have that

$$
\begin{array}{lll}
g(0)=\mathbf{x}^{T} \mathbf{A} \mathbf{x} & g^{\prime}(t)=-2 \mathbf{x}^{T} \mathbf{A} \mathbf{y}+2 t \mathbf{y}^{T} \mathbf{A} \mathbf{y} & g^{\prime}(0)=-2 \mathbf{x}^{T} \mathbf{A} \mathbf{y} \\
h(0)=\|\mathbf{x}\|^{2}=1 & h^{\prime}(t)=-2 \mathbf{x}^{T} \mathbf{y}+2 t\|\mathbf{y}\|^{2} & h^{\prime}(0)=-2 \mathbf{x}^{T} \mathbf{y}
\end{array}
$$

We now get that

$$
\begin{aligned}
f^{\prime}(0) & =\frac{g^{\prime}(0) h(0)-g(0) h^{\prime}(0)}{h(0)^{2}}=-2 \mathbf{x}^{T} \mathbf{A} \mathbf{y}+2 \mathbf{x}^{T} \mathbf{y} \mathbf{x}^{T} \mathbf{A} \mathbf{x} \\
& =-2\left((\mathbf{A} \mathbf{x})^{T} \mathbf{y}-R(\mathbf{x}) \mathbf{x}^{T} \mathbf{y}\right)=-2(\mathbf{A} \mathbf{x}-R(\mathbf{x}) \mathbf{x})^{T} \mathbf{y}
\end{aligned}
$$

Clearly the second derivative of f is bounded close to 0 , so that $f(t)=$ $f(0)+t f^{\prime}(0)+\mathcal{O}\left(t^{2}\right)$. Inserting $f(0)=R(\mathbf{x})$ and $f^{\prime}(0)=-2(\mathbf{A x}-R(\mathbf{x}) \mathbf{x})^{T} \mathbf{y}$ gives the desired result.
c) Based on the characterisation given in 3a) above it is tempting to develop an algorithm for computing $\lambda_{\text {min }}$ by approximating the minimum of $R(\mathbf{x})$ over the unit ball

$$
B_{1}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid\|\mathbf{x}\|_{2}=1\right\}
$$

Assume that $\mathbf{x}^{0} \in B_{1}$ satisfies $\mathbf{A} \mathbf{x}^{0}-R\left(\mathbf{x}^{0}\right) \mathbf{x}^{0} \neq 0$, i.e. $\left(R\left(\mathbf{x}^{0}\right), \mathbf{x}^{0}\right)$ is not an eigenpair for \mathbf{A}. Explain how we can find a vector $\mathbf{x}^{1} \in B_{1}$ such that $R\left(\mathbf{x}^{1}\right)<R\left(\mathbf{x}^{0}\right)$.
Solution: If $\mathbf{A} \mathbf{x}^{0}-R\left(\mathbf{x}^{0}\right) \mathbf{x}^{0} \neq 0$ we can choose a vector \mathbf{y} so that $\left(\mathbf{A} \mathbf{x}^{0}-R\left(\mathbf{x}^{0}\right) \mathbf{x}^{0}\right)^{T} \mathbf{y}>0(\mathbf{y}$ can for instance be a vector pointing in the same direction as $\left.\mathbf{A} \mathbf{x}^{0}-R\left(\mathbf{x}^{0}\right) \mathbf{x}^{0}\right)$. But then $-2 t\left(\mathbf{A} \mathbf{x}^{0}-R\left(\mathbf{x}^{0}\right) \mathbf{x}^{0}\right)^{T} \mathbf{y}<0$ (t is assumed to be positive here) and since this term dominates $\mathcal{O}\left(t^{2}\right)$ for small t, we see that $R\left(\mathbf{x}^{0}-t \mathbf{y}\right)<R\left(\mathbf{x}^{0}\right)$. In other words, we can reduce the Rayleigh quotient by taking a small step from \mathbf{x}^{0} in the direction of $\mathbf{A} \mathbf{x}^{0}-R\left(\mathbf{x}^{0}\right) \mathbf{x}^{0}$.
Good luck!

