UNIVERSITY OF OSLO

Faculty of Mathematics and Natural
Sciences

Examination in: MAT-INF 4130 — Numerical Linear Algebra.
Day of examination: Monday 14. December 2015.

Examination hours:  9:00-13:00.

This problem set consists of 5 pages.

Appendices: None.

Permitted aids: None.

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

All 10 part questions will be weighted equally.

Problem 1.
a) Let A be the matrix
1 2
A=1|0 1
-1 3
Compute [|A[; and ||A|| .
Solution: ||A|; is the maximum absolute column sum in A. Since the
absolute column sums are 2 and 6, we have that [|A||; = 6.

|A|oo is the maximum absolute row sum in A. Since the absolute row sums
are 3, 1, and 4, we have that ||A | = 4.

b) Let B be the matrix
1 0 -1
B= [1 11 ]

Find the spaces span(B”) and ker(B).
Solution: we have that

1 1
0 1].
-1 1

Clearly the two columns here are linearly independent, so that they are a
base for span(B”). To find ker(B) first perform row reduction:

1 0 -1 1 0 -1
1 1 1 01 2|

xg is thus a free variable, and we must have that z; = x3, and z9 = —2x3

BT =

(Continued on page 2.)
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for any x € ker B. Therefore

il 1
X= |x2| =23 |—2],
I3 1

so that (1,—2,1) is a basis for ker B.

c) Consider the underdetermined linear system

1 —xI3 =4
1 Hx2 4xz =12

Find the solution x € R? with [x||2 as small as possible.

Solution: There are several ways one can solve this task.

We can use that span(B”) and ker(B) is an orthogonal basis for R3. Any
solution x to the above equation can thus be written as x = BTy + z, where
y € R?, z € kerB. The solution with minimum Euclidean norm is then
x = BTy, since span(B”) and ker(B) are orthogonal, so that one can solve

4 2 0 2
: Ty, — : T _ _
for y first in BB'y = LQ} Since BB = [0 3], we get that y = [4},

and finally x = BTy = (6,4,2).
We can also go as follows: We have that

1 0 -1 4 1 0 -1 4
11 1 12 01 2 8|’

so that the general solution is

{L‘3—1—4
Xx=|—2x3+8
x3

We have that ||x||3 = (23 +4)% + (=223 +8)? + 23 = 623 — 2479 +80. This is
minimized when 1223 — 24 = 0, i.e. when x3 = 2, which gives x = (6,4, 2).
It is also rather straightforward to solve this exercise using pseudoinverses.

Consider BB = [S g} (rather than BTB, which is a 3 x 3 matrix).

We see that the singular values of B are o1 = V3 and 65 = V2. The
corresponding eigenvectors for BBT are ey and e;, respectively. Since
J%BTel =(1/v/3,1/4/3,1/4/3) and O%QBTeQ = (1/v/2,0,—1/+/2), a singular

value factorization of BT is

1/vV3 1/V2
B'=|1/v/3 0
1/vV3 —1/V2

Transposing this we get a singular value factorization for B, and we then
easily get the following expression for the pseudoinverse:

1/vV3  1/V2 . /2 1/3

_ /V3 0 0o 1]
Bf = }/\/3 0 [ 0 1/\@H1 o]_ 0 1/3
V3 —1/3/2 -1/2 1/3

)

(Continued on page 3.)
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The least squares solution (which also here is a solution) with minimum
Euclidean norm can now be obtained by computing

1/2 1/3 6
B'b=| 0 1/3 [4] = |4
12

-1/2 1/3 2
d) Let A € R™*™ be a matrix with linearly independent columns, and
b € R™ a vector. Assume that we use the Gauss-Seidel method to solve the
normal equations ATAx = ATb. Will the method converge? Justify your
answer.
Solution: If A has linearly independent columns, AT A is invertible (by the
characterization of least squares solutions in terms of the normal equations),
so that it is also positive definite. But from Theorem 11.15 we know that
the Gauss-Seidel method converges for any positive definite matrix.

Problem 2.

a) Let E € R™*" be of the form E = I +uu’, where u € R”. Show that E
is symmetric and positive definite, and find an expression for E~1.

(Hint: E~1 is of the form E~! = I + quu’ for some a € R.)

Solution: We have that ET = (I +uu?)? =17 + (uu?’)? =1+ uu’ =E,
and

xTEx = xT(I + uu?)x = x'x + xTuu’x = ||x||? + (xu)? > 0,
so that E is symmetric and positive definite. Using the hint we compute
(I+auu”)(I+uu’) = 1+ (14+a)uun’ +auu’ uu’? =1+ (1 +a+al|u)?)un’.

This equals I if 1+ a + al|ul|* = 0, i.e. if a = —1/(1 + ||u/|?). This shows

that 1
E'l=1- 72uuT.
L+ u

b) Let A € R™" be of the form A = B+uu’, where B € R™*" is symmetric
and positive definite, and u € R™. Show that A can be decomposed on the
form

A =L{I+v)LT,
where L is nonsingular and lower triangular, and v € R".

Solution: Since B is symmetric and positive definite it has a Cholesky
factorization B = LL”. We have that

LI+ vv)L? = LLT + LvwTLT = B 4+ Lv(Lv)T.

If we now choose v so that Lv = u (this is possible since L is nonsingular),
this equals B +uu? = A, and this shows that A can be written on the
desired form.

c) Assume that the Cholesky decomposition of B is already computed.
Outline a procedure to solve the system Ax = b, where A is of the form
above.

Solution: We first find a v so that A = L(I+ vvT)LT (by solving Lv = u,
which is a lower triangular system). Then we solve Lz = b (lower triangular
system), then (I + vvl)w = z (where we can use a), where we found an
expression for (I+vv?)™1), and finally L”x = w (upper triangular system).

(Continued on page 4.)
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Problem 3.
a) Let A € R™™ be a symmetric matrix. Explain how we can use the
spectral theorem for symmetric matrices to show that
Amin = min R(x) = min R(x
in = min R(x) = min R(x)

where Ay, is the smallest eigenvalue of A, and R(x) is the Rayleigh quotient
given by

Solution: The spectral theorem says that we can write any real symmetric
matrix as A = UDU?, where U is orthogonal and D is diagonal. We now
get that
R(x) = xT Ax _ xTUDUTx _ (UTx)TD(UTx)
xT'x xT'x lIx||?
(UTx)TD(UTx)

T
= ok ReU

since U is orthogonal (Rp is the Rayleigh quotient using D instead of A).
We thus have that

n
in R(x) = min Rp(UTx) = min R = mi Na? J|x|]? = N
min R(x) = min Rp(U"x) = min Rp(x) g%; g /Ix[1% = N,

where the minimum is attained for x = e; with A\; = A\in-
b) Let x,y € R™ such that ||x||2 =1 and y # 0. Show that

R(x — ty) = R(x) — 2t(Ax — R(x)x)Ty + O(t?).

where ¢ > 0 is small.
(Hint: Use Taylor’s theorem for the function f(t) = R(x — ty).)
Solution: Using the hint we have that f(0) = R(x). We also have that

(x—ty)TA(x—ty) xTAx-—2txTAy+t*yTAy  g(t)
(x —ty)"(x — ty) 1x[|* = 2txTy + £2[|y? h(t)’

f(t) =
We here have that

9(0) =x"Ax Jt) = —2xTAy + 2tyTAy  ¢(0) = —2xT Ay
h0) = [x|>=1 K(t)=—2x"y + 2t[|y|? R (0) = —2xTy

We now get that

f'(0) = g’(O)h(O})L O)Z(O)h/(o) = —2xT Ay + 2xTyxT Ax

— —2((Ax)"y — R(x)x"y) = ~2(Ax — R(x)x)"y.

Clearly the second derivative of f is bounded close to 0, so that f(t) =
F(0)+tf(0)+O(t?). Inserting f(0) = R(x) and f'(0) = —2(Ax— R(x)x)Ty
gives the desired result.

(Continued on page 5.)
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c) Based on the characterisation given in 3a) above it is tempting to develop
an algorithm for computing A, by approximating the minimum of R(x)
over the unit ball

By ={xeR"||x|2=1}.

Assume that x° € By satisfies Ax? — R(x%)x" # 0, i.e. (R(x°),x°) is not
an eigenpair for A. Explain how we can find a vector x! € By such that
R(x') < R(xY).

Solution: If Ax? — R(x")x" # 0 we can choose a vector y so that
(Ax? — R(x")x%Ty > 0 (y can for instance be a vector pointing in the
same direction as Ax? — R(x%)x%). But then —2t(Ax" — R(x*)x%)Ty < 0
(t is assumed to be positive here) and since this term dominates O(t?) for
small ¢, we see that R(x? — ty) < R(x"). In other words, we can reduce
the Rayleigh quotient by taking a small step from x° in the direction of
Ax? — R(x%)x".

Good luck!



