
14. september, 2015

MAT-INF4130: Compulsory exercise 2

Deadline: 1/10-2015, kl. 14:30

1. In exercise 4.35, we saw an algorithm (the function rothesstri) for solving
an upper Hessenberg linear system using Givens rotations. But we can clearly
solve any linear system using Givens rotations also. Rewrite the algorithm so
that it applies for any linear system (call the new function x=rotsolve(A,b)).
Answer: The following algorithm can be used:

function x=rotsolve(A,b)
n=length(A);
A=[A b];
for k=1:n-1

for i=k+1:n
r=norm([A(k,k),A(i,k)]);
c=A(k,k)/r; s=A(i,k)/r;
A([k i],k+1:n+1)=[c s;-s c]*A([k i],k+1:n+1);
A(k,k)=r; A(i,k)=0;

end
end
x=rbacksolve(A(:,1:n),A(:,n+1),n);

This code starts with rotations which zero out the elements below the diagonal
in column 1, then in column 2, and so on on. For column k, Givens rotations on
the form Pk,k+1, Pk,k+2, Pk,k+1,...,Pk,n are applied (and in that order) to columns
k,k +1,...,n+1, where the Givens rotation Pi , j are defined as the rotation matrix
where only elements i i , i j , j i , and j j differ from those of the identity matrix.

This is not the only order in which you can perform Givens rotations in order
to solve the system. Many of you have also started with the rotations correspon-
ding to the highest column indices, then the two next highest column indices
and so on. This also gives a correct answer. Some of you have performed rota-
tions corresponding to all indices in a row first. This is also possible to do in
a correct way, but care has to be taken in order not to introduce non-zeros at

1



places which already have been zeroed out. Some of you did not do this correct-
ly.

2. In exercise 4.35 we also computed the number of arithmetic operations ne-
eded by rothesstri. In the book (on the bottom of page 116) it was also stated
without proof that rotsolve needs to perform 2n3 arithmetic operations. Prove
this statement.
Hint: see Equation (4.14) for how you can set up an integral for computing the
number of operations. You also did this in the first compulsory exercise.
Answer: A Givens rotation requires 6 arithmetic operations (4 multiplications
and 2 additions). In the inner for loop we perform n −k +1 Givens rotations, so
a total of 6(n −k +1) operations. Taking the for loop into account we perform

n−1∑
k=1

(n−k)6(n−k +1) ≈
∫ n−1

k=1
(6(n−k)2 +6(n−k))dk =

∫ n−1

k=1
(6u2 +6u)dk ≈ 2n3.

3. Let A be the n×n Hilbert matrix (Matlab has the built-in command hilb(n)
for producing this matrix. In Python you can produce the matrix with elements
1/(i + j + 1) manually, see Exercise 0.35). Let xe = (1,1, . . . ,1), and let b = Axe .
Write code which uses the algorithm rotsolve to solve the linear system

Ax = b.

Finally, for each n from 1 to 20, compute the error ‖x − xe‖2 and plot these de-
viations. It turns out that the Hilbert matrix is extremely ill-conditioned, and this
should be reflected in your plots: the error grows rapidly as n increases.
Answer: The following code can be used to plot the plot the deviation between
the exact solution xe to Ax = b, and the solution found with rotsolve.

function oblig2(nmax)
dev = zeros(nmax,1);
for n=1:nmax
xexact = ones(n, 1);
b = hilb(n)*xexact;
x = rotsolve(hilb(n),b);
dev(n) = norm(x-xexact);

end
plot(1:nmax,dev);

Test this code from matrix sizes n = 10 and upwards to see how the error grows.

2


