Numerical Linear Algebra
A Solution Manual

Georg Muntingh and Christian Schulz






Chapter 1.
Exercise 1.12:
Exercise 1.25:
Exercise 1.26:
Exercise 1.27:
Exercise 1.28:
Exercise 1.29:
Exercise 1.30:
Exercise 1.38:
Exercise 1.39:
Exercise 1.40:
Exercise 1.41:
Exercise 1.42:
Exercise 1.43:
Exercise 1.44:

Chapter 2.

Contents

Chapter 0. A Short Review of Linear Algebra
Exercise 0.25:
Exercise 0.26:
Exercise 0.27:
Exercise 0.29:
Exercise 0.30:
Exercise 0.31:
Exercise 0.32:
Exercise 0.33:
Exercise 0.34:
Exercise 0.35:

The inverse of a general 2 x 2 matrix
The inverse of a 2 x 2 matrix
Sherman-Morrison formula

Cramer’s rule; special case

Adjoint matrix; special case
Determinant equation for a plane
Signed area of a triangle
Vandermonde matrix

Cauchy determinant

Inverse of the Hilbert matrix

Diagonally dominant tridiagonal matrices; three examples

The shifted power basis is a basis

LU factorization of 2nd derivative matrix

Inverse of 2nd derivative matrix

Central difference approximation of 2nd derivative
Two point boundary value problem

Two point boundary value problem; computation
Approximate force

Matrix element as a quadratic form

Outer product expansion of a matrix

The product ATA

Outer product expansion

System with many right hand sides; compact form
Block multiplication example

Another block multiplication example

Gaussian eliminations and LU Factorizations

Exercise 2.8: Column oriented backsolve

Exercise 2.11:
Exercise 2.13:
Exercise 2.14:
Exercise 2.23:
Exercise 2.24:
Exercise 2.25:
Exercise 2.31:
Exercise 2.36:
Exercise 2.37:
Exercise 2.38:

Computing the inverse of a triangular matrix
Finite sums of integers

Multiplying triangular matrices

Row interchange

LU and determinant

Diagonal elements in U

Making a block LU into an LU

Using PLU of A to solve ATx =b

Using PLU to compute the determinant
Using PLU to compute the inverse

i

T W WN N R P ==

© 00 00 1

10
10
10
10
11
11
11

12
12
12
14
15
16
16
16
17
18
18
18



Chapter 3. LDL* Factorization and Positive definite Matrices

Exercise 3.20:

Positive definite characterizations

Chapter 4. Orthonormal and Unitary Transformations
Exercise 4.4: The ATA inner product
Exercise 4.5: Angle between vectors in complex case

Exercise 4.18:
Exercise 4.19:
Exercise 4.20:
Exercise 4.28:
Exercise 4.29:
Exercise 4.32:
Exercise 4.34:
Exercise 4.35:

What does Algorithm housegen do when x = ;7
Examples of Householder transformations

2 x 2 Householder transformation

QR decomposition

Householder triangulation

QR using Gram-Schmidt, 11

Plane rotation

Solving upper Hessenberg system using rotations

Chapter 5. Eigenpairs and Similarity Transformations
Exercise 5.9: Idempotent matrix

Exercise 5.10:
Exercise 5.11:
Exercise 5.12:
Exercise 5.13:
Exercise 5.17:
Exercise 5.22:
Exercise 5.24:
Exercise 5.25:
Exercise 5.27:
Exercise 5.30:
Exercise 5.34:
Exercise 5.35:
Exercise 5.49:
Exercise 5.51:
Exercise 5.54:
Exercise 5.57:

Nilpotent matrix

Eigenvalues of a unitary matrix

Nonsingular approximation of a singular matrix
Companion matrix

Find eigenpair example

Jordan example

Properties of the Jordan form

Powers of a Jordan block

Big Jordan example

Schur decomposition example

Skew-Hermitian matrix

Eigenvalues of a skew-Hermitian matrix
Eigenvalue perturbation for Hermitian matrices
Hoffman-Wielandt

Biorthogonal expansion

Generalized Rayleigh quotient

Chapter 6. The Singular Value Decomposition
Exercise 6.7: SVD examples
Exercise 6.8: More SVD examples

Exercise 6.16:
Exercise 6.17:
Exercise 6.18:
Exercise 6.19:
Exercise 6.20:
Exercise 6.26:
Exercise 6.27:

Counting dimensions of fundamental subspaces
Rank and nullity relations

Orthonormal bases example

Some spanning sets

Singular values and eigenpair of composite matrix
Rank example

Another rank example

Chapter 7. Norms and Perturbation theory for linear systems
Exercise 7.7: Consistency of sum norm?
Exercise 7.8: Consistency of max norm?
Exercise 7.9: Consistency of modified max norm?

Exercise 7.11:

The sum norm is subordinate to?

ii

19
19

20
20
20
20
21
21
22
22
23
23
24

25
25
25
25
25
26
26
26
27
27
28
28
28
28
29
29
29
29

30
30
31
31
32
32
33
33
33
34

36
36
36
36
37



Chapter 10.
Exercise 10.5:
Exercise 10.6:
Exercise 10.7:

Exercise 7.12:
Exercise 7.19:
Exercise 7.20:
Exercise 7.21:
Exercise 7.24:
Exercise 7.25:
Exercise 7.26:
Exercise 7.27:
Exercise 7.28:
Exercise 7.35:
Exercise 7.36:
Exercise 7.47:
Exercise 7.48:
Exercise 7.49:
Exercise 7.50:
Exercise 7.51:

The max norm is subordinate to?

Spectral norm

Spectral norm of the inverse

p-norm example

Unitary invariance of the spectral norm

| AU]|, rectangular A

p-norm of diagonal matrix

Spectral norm of a column vector

Norm of absolute value matrix

Sharpness of perturbation bounds
Condition number of 2nd derivative matrix
When is a complex norm an inner product norm?
p-norm for p =1 and p = oo

The p-norm unit sphere

Sharpness of p-norm inequality

p-norm inequalities for arbitrary p

Chapter 8. Least Squares
Exercise 8.10:
Exercise 8.17:
Exercise 8.18:
Exercise 8.19:
Exercise 8.20:
Exercise 8.21:
Exercise 8.22:
Exercise 8.23:
Exercise 8.24:
Exercise 8.25:
Exercise 8.26:
Exercise 8.27:
Exercise 8.28:
Exercise 8.29:
Exercise 8.32:
Exercise 8.35:

Fitting a circle to points

The generalized inverse

Uniqueness of generalized inverse

Verify that a matrix is a generalized inverse
Linearly independent columns and generalized inverse
The generalized inverse of a vector

The generalized inverse of an outer product

The generalized inverse of a diagonal matrix
Properties of the generalized inverse

The generalized inverse of a product

The generalized inverse of the conjugate transpose
Linearly independent columns

Analysis of the general linear system

Fredholm’s Alternative

Condition number

Problem using normal equations

Chapter 9. The Kronecker Product

Exercise 9.2: 2 x 2 Poisson matrix
Exercise 9.5: Properties of Kronecker products
Exercise 9.9: 2nd derivative matrix is positive definite

Exercise 9.10:
Exercise 9.11:
Exercise 9.12:
Exercise 9.13:
Exercise 9.14:

1D test matrix is positive definite?
Eigenvalues for 2D test matrix of order 4
Nine point scheme for Poisson problem
Matrix equation for nine point scheme
Biharmonic equation

Fast Direct Solution of a Large Linear System

Fourier matrix
Sine transform as Fourier transform
Explicit solution of the discrete Poisson equation

iii

38
38
38
39
39
39
39
40
40
41
41
43
44
45
45
45

47
47
48
48
48
49
49
49
20
50
20
51
ol
ol
52
52
93

o4
o4
o4
95
95
o6
56
57
38

60
60
60
61



Chapter 11.
Exercise 11.12:
Exercise 11.13:

Chapter 12.

Chapter 13.

Exercise 10.8: Improved version of Algorithm 10.1
Exercise 10.9: Fast solution of 9 point scheme

Exercise 10.10:
Exercise 10.11:
Exercise 10.12:
Exercise 10.13: Check algorithm for fast solution of biharmonic equation

real part

Exercise 11.16:
Exercise 11.17:
Exercise 11.18:
Exercise 11.19:
Exercise 11.23:
Exercise 11.24:
Exercise 11.25:
Exercise 11.31:
Exercise 11.33:

Algorithm for fast solution of 9 point scheme
Fast solution of biharmonic equation
Algorithm for fast solution of biharmonic equation

The Classical Iterative Methods

Richardson and Jacobi

Convergence of the R-method when eigenvalues have positive

Example: GS converges, J diverges

Divergence example for J and GS

Strictly diagonally dominance; The J method
Strictly diagonally dominance; The GS method
Convergence example for fix point iteration
Estimate in Lemma 11.22 can be exact

Slow spectral radius convergence

A special norm

When is A + E nonsingular?

The Conjugate Gradient Method

Exercise 12.1: A-norm

Exercise 12.2: Paraboloid

Exercise 12.5: Steepest descent iteration
Exercise 12.8: Conjugate gradient iteration, II
Exercise 12.9: Conjugate gradient iteration, I1I

Exercise 12.10:
Exercise 12.11:
Exercise 12.17:
Exercise 12.18:
Exercise 12.23:
Exercise 12.26:
Exercise 12.28:

The cg step length is optimal

Starting value in cg

Program code for testing steepest descent

Using cg to solve normal equations

Krylov space and cg iterations

Another explicit formula for the Chebyshev polynomial
Maximum of a convex function

Numerical Eigenvalue Problems

Exercise 13.5: Nonsingularity using Gerschgorin
Exercise 13.6: Gerschgorin, strictly diagonally dominant matrix
Exercise 13.8: Continuity of eigenvalues

Exercise 13.12:
Exercise 13.15:
Exercise 13.17:
Exercise 13.18:
Exercise 13.22:
Exercise 13.23:
Exercise 13.24:
Exercise 13.25:
Exercise 13.26:

Chapter 14. The QR Algorithm

oo-norm of a diagonal matrix

Number of arithmetic operations

Number of arithmetic operations

Tridiagonalize a symmetric matrix

Counting eigenvalues

Overflow in LDL? factorization

Simultaneous diagonalization

Program code for one eigenvalue

Determinant of upper Hessenberg matrix (TODO)

iv

61
62
63
63
64
64

66
66

66
66
67
67
68
68
69
69
71
71

72
72
72
72
73
4
4
4
75
77
78
79
79

80
80
80
30
81
81
81
82
82
83
83
84
85

86



Exercise 14.4: Orthogonal vectors

86



CHAPTER 0

A Short Review of Linear Algebra

Exercise 0.25: The inverse of a general 2 x 2 matrix

A straightforward computation yields

1 d —blla b 1 ad — be 0 {10
ad—bc |—c a | lc d|  ad = be 0 ad —be| |0 1}|°

showing that the two matrices are inverse to each other.

Exercise 0.26: The inverse of a 2 X 2 matrix
By Exercise 0.25, and using that cos?# + sin? # = 1, the inverse is given by

cosf sind
—sinf cosf@| "’

Exercise 0.27: Sherman-Morrison formula
A direct computation yields
(A+BCH(A™'—A'B(I+C"A'B)"'CTA™)
=I-B(I+C"A'B)"!C"A ' +BC'A!' -BC"A'B(I+ C"A'B)"!CTA™!
=I1+BC"A ' -B(I+C'A'B)(I+CTA'B) 'CTA™!
=I+BC'A™' —-BC"A™!
= I’

showing that the two matrices are inverse to each other.

Exercise 0.29: Cramer’s rule; special case
Cramer’s rule yields

3 2

B 1 2 1 3] ,]1 2
=16 1

/’2 1‘:3’ “"2:’2 6'/‘2 1‘:0'

Exercise 0.30: Adjoint matrix; special case
We are given the matrix

2 -6 3
A=13 -2 -6
6 3 2



Computing the cofactors of A gives

i —2 —6 3 —6 3 —2|]
_1\1+1 _1\1+2 _1)1+3
Rt Py NSV e (NS
. -6 3 2 3 2 —6
adJX: (_1)2+1 3 2’ (_1)2+2 6 2' (_1)2+3 6 3
-6 3 2 3 2 —6
(_1)3+1 5 _6‘ (_1)3+2 5 _6' (_1)3+3 5 _o
f14 921 42]7
= |—42 —14 21
21 —42 14

One checks directly that adj, A = det(A)I, with det(A) = 343.

Exercise 0.31: Determinant equation for a plane

Let ax + by + ¢z 4+ d = 0 be an equation for a plane through the points (x;, y;, z;), with
1 = 1,2,3. There is precisely one such plane if and only if the points are not colinear.
Then ax; + by; + cz; +d =0 for = 1,2, 3, so that

r Yy 2z 1| |a 0
r1 Y1 21 1 b o 0
Ty Yo 29 1| |c| |0
rs Ys Z3 1 d 0

Since the coordinates a, b, c,d of the plane are not all zero, the above matrix is sin-
gular, implying that its determinant is zero. Computing this determinant by cofactor
expansion of the first row gives the equation

n oz 1 2 1 oy 1 1 W A
+ly2 20 llxz—|x9 20 lly+ |22 Y2 1llz—|22 Y2 22| =0
ys 23 1 T3 23 1 x3 Yz 1 T3 Y3 23

of the plane.

Exercise 0.32: Signed area of a triangle

Let T denote the triangle with vertices P;, P», P;. Since the area of a triangle is
invariant under translation, we can assume P = A = (0,0), P» = (22, ¥2), P5 = (23,93),
B = (x3,0), and C' = (x2,0). As is clear from Figure 1, the area A(T') can be expressed
as

A(T) = A(ABPy) + A(PsBCP,) — A(ACPy)

1 1 1
= §x3y3 + (z2 — z3)y2 + 5@2 — x3)(ys — y2) — §m2y2
1 1 1 1
=—10 T2 T3,
2o
Y2 Y3

which is what needed to be shown.



Exercise 0.33: Vandermonde matrix

For any n =1,2,..., let

2 n—1
1 o x% Ty X
e
1 w9 x% SRR X
e
2 n—1

1 z, z;, - a

be the determinant of the Vandermonde matrix in the Exercise. Clearly the formula

(%) Dy= ] (&i—=)

1<j<i<N

holds for N =1 (in which case the product is empty and defined to be 1) and N = 2.

Let us assume (x) holds for N = n—1 > 2. Since the determinant is an alternating
multilinear form, adding a scalar multiple of one column to another does not change
the value of the determinant. Subtracting z* times column k from column k + 1 for
k=n—1,n—2...,1, we find

1 2 -2, 22—ma, --- 2712z,
1 my—x, 22—, --- 2 ' —ab %z,
2 n—1 n—2
D, =1 x3—x, x3—x32, -+ x3 —xy T,
1 xp—x, 22 —2p1, -+ 2"t —2" i,

Next, by cofactor expansion along the last row and by the multilinearity in the rows,

T1 — Tp 3 — 17, e x’f‘i — x?‘jxn
2 n— n—
Dy= (L1 1. To — T, T3 — Tomy, st —ab P,
Tpn—1 — Tn 33%71 — Tp-1Tn -~ xz:% - xﬁi%wn
= (=1)""Yay —x,)(xa — ) -+ (X1 — 20) Dy s
= (Tn — 21)(Tn — T2)  (Tn — Tp—1) H (2; — ;)

1<j<i<n—1

H (x; — ;).

1<j<i<n

By induction, we conclude that (%) holds for any N =1,2,...

Exercise 0.34: Cauchy determinant

(a) Let [ag,...,a,]T, [B1, ..., 8. € R™ and let

1
A = (aij)i; = (ozi n 5j>

_1
a1+51
1

az2+p1

N
an+P1
3

_1
a1+B2
1

az+P2

1
B2

1
al‘{ﬁn

az+Bn

1
on+Pn




Multiplying the ith row of A by [];_,(cu + Bk) for i = 1,2,...,n gives a matrix

C = (cig)iys = [T (e + 50

k=1
k#j

The determinant of an n x n matrix is a homogeneous polynomial of degree n in the
entries of the matrix. Since each entry of C is a polynomial of degree n — 1 in the
variables o, 3;, the determinant of C must be a homogeneous polynomial of degree
n(n —1) in «;, 5;.

By the multilinearity of the determinant, det C = [[;_,(a; + ;) det A. Since A
vanishes whenever o; = o or 5; = 3; for i 7é 7, the homogeneous polynomial det C
contains factors (a; — «;) and (5; — ;) for 1 < i < j < n. As there are precisely

2 (4) = (n — 1)n such factors, necessarily

*)  detC=k [[ (i—ay) J[ B:—5)

1<i<j<n 1<i<j<n

for some constant k. To determine k, we can evaluate det C at a particular value, for
instance any {«;, §;}:; satisfying oy + 1 = - - - = ay, + 5, = 0. In that case C becomes
a diagonal matrix with determinant

i=1 k=1 1<i<k<n 1<i<k<n
ki

det C HH O‘H'ﬁ’“):HH a;— ) H (o — ) H (o — ;).

Comparing with (x) shows that £ = 1. We conclude that

[T (w—ap) ] -8
1<i<j<n 1<i<j<n

[ (ai+5)

i.j=1

(%) det A =

(b) Deleting row ! and column k from A, results in the matrix A, associated to
the vectors [, ..., 1,11,...,a,] and [By, ..., Bk_1, Bks1, - - -, Bn]. By the adjoint

4



formula for the inverse A~! = (by;) and by (x*),

det A
by = (—1)FH 20k
e = (1) det A
[T+8) I] (w-a) ] B:-5)
ij=1 1<i<j<n 1<i<j<n
_ (_1)k+l ,j 71 1,77k
[T+8) J] (@—-a) [ Bi—-58)
ij=1 1<i<j<n 1<i<j<n
il
J#k
H(as + 6k) H(ﬁs + al)
s=1 s=1
_ (Oél i Bk) s;;l sfk
H(as - al) H(ﬁs - ﬁk)
7 Sk
& Qg + Bk = Bs + 87/
= | —|— 5
(l Bk)gas_algﬁs_ﬁk
sF#£l s#k

which is what needed to be shown.

Exercise 0.35: Inverse of the Hilbert matrix

If we write
a=lay,...,q,) =11,2,...,n], B=1[P,..,0u) =10,1,....,n—1],

then the Hilbert matrix matrix is of the form H, = (h;;) = (1/(e; + 3;)). By Exercise
0.34.(b), its inverse T,, = (t7;) := H,' is given by

oG- D[, 1<ij<n
s=1 8_‘7 s=1 §—1
s#j S#£1

We wish to show that

(%) t;fj:%, 1<ij<n,

where f: N — Q is the sequence defined by

f)y=—-n,  fli+1)= (i2 ;”2) f(@),  fori=1,2....



Clearly (%) holds when i = j = 1. Suppose that (x) holds for some (7, ). Then

i 55— po s—1—1
Ss#£j s#i+1
n+1 n
H(s+z—1)H(s+]—1)
_ (Z+j) ]- s=2 s=1
(+iF
H(S_]) (s —1)
s=1 s=0
B sF#£i
[[s+i-D][s+i-1)
i+ 1Pt i)(n—i) yors
(2 + j)i(—1) - . - .
[Hs-5  [6-9
s=1 s=1
S#£7J SF#1
1 i?—n? Ls4i—1 s+ —1
_ . 1 . 1
s#£j SF#1L
1 2—-n?_ _
S e O
G DIG)
(i+1)+j-1

so that (x) holds for (i + 1, 7). Carrying out a similar calculation for (¢, j + 1), or using
the symmetry of T,,, we conclude by induction that (x) holds for any ¢, j.



CHAPTER 1

Diagonally dominant tridiagonal matrices; three examples

Exercise 1.12: The shifted power basis is a basis

We know that the set of polynomials of degree n is a vector space of dimension n + 1:
They are spanned by {x*}?_,, and these are linearly independent (if a linear combina-
tion of these is zero, then it has in particular n + 1 zeros (since every x is a zero), and
it follows from the fundamental theorem of algebra that the linear combination must
be zero). Since the shifted power basis also has n + 1 vectors which are polynomials,
all we need to show is that they are linearly independent. Suppose then that

Z aj(x — ;)7 = 0.
=0

In particular we can then pick n + 1 distinct values z; for = so that this is zero. But
then the polynomial 77 a;z/ has the n+ 1 different zeros 2, — ;. Since the {z*};_,
are linearly independent, it follows that all a; = 0, so that the shifted power basis also
is a basis.

Exercise 1.25: LU factorization of 2nd derivative matrix

Let L = (1;;)ij; U = (745);; and T be as in the exercise. Clearly L is unit lower
triangular and U is upper triangular. We compute the product LU by separating cases
for its entries. There are several ways to carry out and write down this computation,
some more precise than others. For instance,

— 1 + 1
(LU)ii:_Z. ~—1+1'Z—i._ =2, fori=2,...,m;
i i
1 .
LUiz‘A:—Z. ‘.Z =—1 fori=2,...,m;
( ) Y ) ) )
1 1—1
(LU);;=1-—-1=—1, fori=2,...,m;

It follows that T = LU is an LU factorization.

One can also show this by induction using the trifactor-algorithm. Since T
and U have the same super-diagonal, we must have ¢,, = —1 for all m. Assume now
that L,,U,, = T,,, and that [,y = —(m — 1)/m and u,, = (m + 1)/m. From the
trifactor-algorithm,

Iy = /U, = —1/((m+1)/m) = —m/(m + 1)
Umt1 = 1 — e =2 —m/(m+1) = (m+2)/(m + 1).

This shows that the trifactor-algorithm produces the desired terms in L,,; and
U,,1 as well.



Another way to show this by induction is as follows. For m = 1, one has L;U; =
1-2=T;. Now let m > 1 be arbitrary and assume that L,,U,, = T,,. With

T p=1o,...,0,-1",

block multiplication yields

L, o/ |U, b }
Lm Um = T m =
+1 +1 |:aT 1:| |: 0 m_ﬁ

T,
5. obt] - [ 2]

m~+1
By induction, we can then conclude that T,, = L,,U,, for all m > 1.

Exercise 1.26: Inverse of 2nd derivative matrix
Let S = (s;5)i; be defined by
1
Sij = S; o 1] (m + i) (

In order to show that S = T~!, we multiply S by T and show that the result is the
identity matrix. To simplify notation we define s;; := 0 whenever ¢ = 0, i = m + 1,
j=0,orj=m+1. With 1 <5 <i<m, we find

)
m+1

)j, for 1 <j<i<m.

(ST)’L’J — Z Si,k‘Tk,j = _Si“jfl + 28@',]’ - S’i,j+1
k=1
=<1—m+1)(—3+1+27—9—1)=0,
k=1
—-1 i 1+1
=—(1—-—=)j+2(1———)j—(1- '
< 1)]+ ( m+1)‘7 ( m+1)‘7
P e e R R S
=—j+2j—j+] 1 =0
(ST)M = Z SikThi = —Sii—1 +28; — Siit1
k=1

) ) 1+ 1
=—(1—-—) (-1 21— ——i—[1— =1
( m—i—l><Z )+ ( m—i—l)Z ( m—i—1>Z

which means that ST = I. Moreover, since S, T, and I are symmetric, transposing
this equation yields TS = I. We conclude that S = T,
Exercise 1.27: Central difference approximation of 2nd derivative

If all h; equal to the same number h, then

2h Yit1 — Yi Yit1 — Yi—1
Ai = pp = —— =1, 0y = ————, i = 3(0i—1 +0;) = 3¥————,
M hth n B (0i—1 + 6;) A

which is what needed to be shown.



Exercise 1.28: Two point boundary value problem

(a) For j =1,...,m, we get when we gather terms that

B f(a;) = <—1 - gf‘(%‘)) i1+ (2 + hPq(a;))v; + (—1 + gr(%‘)) Vjt1

From this we get the desired formula for a;, ¢;, and d;, and the right hand sides b; for
2<j<m—1.

For j = 1, since vy is known we have to move (—1 — %r(:co)) vy = ay1go over to the right
hand side, so that we obtain by = h?f(x1) — a1go.

For j = m, since v,,1 is known we have to move (—1 + %T(Im)) Umil = Cmg1 OVer
to the right hand side, so that we obtain b,, = h®f(x,,) — ¢ng1. This leads to the
tridiagonal system Av = b in the exercise.

(b) One has When h|r(x)|/2 < 1 for all x € [a,b], we see that a,j,c; € (—2,0). It
follows that |a;| + |cj| = 14 2r(z,) + 1 + 4r(z,,) = 2. Since q(z;) > 0, |d;| = d; > 2,
so that A is weakly diagonally dominant. Since |¢;| = 1+ 2r(z;) < 2, and |d;| > 2 it
follows in particular that |di| > |c¢;]|. Clearly also all a; > 0 since h|r(z)|/2 < 1, and
since also |d;| > 2, in particular d,, # 0, so that all the conditions in the theorem are
fulfilled.

(c) We can use the method trisolve to find the vy, ..., v,,. Note that the indexing
of the a; should be shifted with one in this exercise, to be compatible with the notation
used in tridiag(a;, d;, ¢;) (a; and d; have the same index when they are in the
same column of the matrix. In this exercise they have the same index when they are
in the same row).

Exercise 1.29: Two point boundary value problem; computation
(a) and (c) The provided values for r, f, ¢ give that a; = ¢; = —1, d; = 2+ h?. The

initial conditions are gy = 1, g; = 0, so that b = (h? + 1,h?,...,h?). The code can
look as follows

form= [9 19 39 79, 159]
h=1/@t1);
X=hx(1lm)’;
[1, u] = trifactor( -ones(l, m - 1), (2+h"2)+ones(1l, m), —-ones(l, m — 1));
b=h"2xnes@m, 1); b(l) =b(l) + 1;
v = trisolve(l, u, —ones(l, m - 1), b);
err = max(@bs( (1-sinh(x)/sinh(1l)) — v))
log(err) /1og(h)
end

The code also solves (c); If the error is proportional to h?, then err = Ch? for some
C. But then p = (log(err) — log C')/log h ~ log(err)/logh for small h, which is the
quantity computed inside the for-loop. It seems that this converges to 3, so that one
would guess that the error is proportional to h®.

(b)

m=9
h=1/@l);
Xx=hx(lm)’;



[1, u] = trifactor( —-ones(l, m - 1), (2+h"2)+ones(1l, m), —ones(l, m — 1));
b =h"2xnes(m, 1); b(l) =b(1) + 1;

v = trisolve(l, u, —ones(l, m- 1), b);

plot(x, (1-sinh(x) /sinh(1)), %, V)

legend(’Exact solutiorY, ’Estimated solutior)

Exercise 1.30: Approximate force

Since sinz has Taylor series z — z®/3! + z°/5! — ..., We have that sin(wh/2) =
7h/2 + O(h?). If we square both sides we obtain sin®(7h/2) = 72h%/4 + O(h*). From
this we obtain that 4sin®(wh/2)R/(h?L?) = 2R/ L* + O(h?).

Exercise 1.38: Matrix element as a quadratic form
Write A = (aij)i]‘ and e, = (6zkz)k7 where
S — 1 ifi=k,
k7 0 otherwise,

is the Kronecker delta. Then, by the definition of the matrix product,

TAe] = e (Aej) = (Z alk5Jk> = e alj Z(Szlal]

Exercise 1.39: Outer product expansion of a matrix

Clearly eie;-r is the matrix F;; with 1 at entry (7, j), and zero elsewhere. Clearly also
A=37aiE =3 i ee).

Exercise 1.40: The product ATA

A matrix product is defined as long as the dimensions of the matrices are compatible.
More precisely, for the matrix product AB to be defined, the number of columns in A
must equal the number of rows in B.

Let now A be an n x m matrix. Then AT is an m x n matrix, and as a consequence
the product B := ATA is well defined. Moreover, the (i, j)-th entry of B is given by

n

(B)i = (ATA), = > apay; = aja; = (a;a;),
k=1

which is what was needed to be shown.

Exercise 1.41: Outer product expansion

Recall that the matrix product of A € C™" and B™ = C € C"? is defined by

n n
= E ik Crj = E aikbjk~
k=1 k=1

10



For the outer product expansion of the columns of A and B, on the other hand, we
find ( ka) = a;xb;i. It follows that

(AB"), Za,kb]k = Z (axbg) ;-

k=1

Exercise 1.42: System with many right hand sides; compact form

Let A, B, and X be as in the Exercise.

(=): Suppose AX = B. Multiplying this equation from the right by e; yields
Ax;=b forj=1,...,p.

(«<=): Suppose Ax; =b; for j=1,...,p. Let I =1, denote the identity matrix.
Then

AX = AXI = AXJey, ..., e, = [AXey,...,AXe)]
= [AX.l,. .. ,AX.p] = [b‘l, R ,b.p] = B.

Exercise 1.43: Block multiplication example

The product AB of two matrices A and B is defined precisely when the number of
columns of A is equal to the number of rows of B. For both sides in the equation
AB = A;B; to make sense, both pairs (A, B) and (A, B;) need to be compatible in
this way. Conversely, if the number of columns of A equals the number of rows of B
and the number of columns of A; equals the number of rows of By, then there exists
integers m, p,n, and s with 1 < s < p such that

AeC™ BeCP" A eC™, Ay e C™P% By € C".
Then

p
B)Z] = Zaikbk] Zalkbk] + Z a;, - 0= A Bl)
k=1

k=s+1

Exercise 1.44: Another block multiplication example

Since the matrices have compatible dimensions, a direct computation gives

CAB_lOT)\aT10T_)\ a 1[1 o] [X a™B,
|0 Cy| |0 Ayl |0 Byl |0 CAy| |0 By| [0 CAB|"°

11



CHAPTER 2

Gaussian eliminations and LU Factorizations

Exercise 2.8: Column oriented backsolve

If A is upper triangular, suppose that we after n — k steps of the algorithm have
reduced our system to one of the form

a1 Airz2 - A1k T by
0 a1 -+ agp T2 by
0 0 s Ok Tk bk

Clearly then xy, = bg/ay . (this explains the first statement inside the for-loop). Elim-
inating the zp-variable we obtain the system

a1 Aiz - aq,k—1 I by a1,k
0 ag1 -+ agp— T by as
. . = . — Tk
0 0 - a1k Th—1 br—1 Ak—1k

This means that the right hand side b should be updated by subtracting
A(l:(k-1),k)xx(k). If Ais d-banded, A1y = --- = Ajp_4-1% = 0, so that this is
the same as subtracting A (1k: (k—=1), k) xx (k) with 1k being the maximum of 1
and k — d. This explains the second part inside the for-loop. Finally we end up with
a 1 x 1-matrix, so to find x; we only need to divide with a; ;.

Exercise 2.11: Computing the inverse of a triangular matrix

This exercise introduces an efficient method for computing the inverse B of a triangular
matrix A.

Let us solve the problem for an upper triangular matrix (the lower triangular case
is similar). By the rules of block multiplication,

[Abl,...,Abn] :A[bl,,bn] =AB=1= [el,...,en].

The kth column in this matrix equation says that Aby = e;. Let by, = (big, ..., bur) ™.
Since the last n — k components of e, are 0, back subsitution yields that by, = ... =
bnx = 0, so that B is upper triangular (as stated also by Lemma 1.35). Splitting A into

blocks [AH Arz

0 A ] where Ay has size k X k (A1 and Ay are then upper triangular),
22
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we get

|iA11 A12:| bkk

0 Ay 0
L 0 .
so that we need to solve
bk @11 - Q1k bik
(1) Ap|:|=|0o . D = ey
bik 0 0 agpkl [bwk

This yields (2.10) for solving for the kth column of B (note that the Matlab notation
I(1: k, k) yields eg).

Let us consider the number of arithmetic operations needed to compute the inverse.
In finding b, we need to solve a k x k triangular system. Solving for x; we need to
compute k£ — 1 multiplications, £ — 2 additions, and one division. This gives a total
number of 2k — 2 arithmetic operations. Solving for x5 needs 2k — 4 operations, and so
on, all the way down to z;_; which needs 2 operations. Solving for x; = 1/ayj needs
an additional division, so that we need to perform

k—1
1+Y 2r =1+ (k- 1)k
r=1

operations. Since we solve a triangular system for any 1 < k < n, we end up with a
total of

Z(l +(k—1k)=n+ Z(k‘ —Dk=n+ %(n —n(n+1) = %n(n2 +2).
k=1 k=1
arithmetic operations. Here we used the formulas we deduced in Exercise 2.13.

Usually we are just interesting in the “leading term” for the number of opera-
tions (here n®/3). This can be obtained more simply by approximating the sums
with integrals as in the book: solving the k x k triangular system can be solved in
1+ Zf;ll 2r & frkz_ll 2r ~ (k — 1)? ~ k? operations, and adding together the number of
operations for all k we obtain Y, k* ~ [ k*dk ~ n®/3 operations.

Performing this block multiplication for £k = n,n — 1,...,1, we see that the com-
putations after step k£ only use the first £ — 1 leading principal submatrices of A. It
follows that the column by computed at step k can be stored in row (or column) k
of A without altering the remaining computations. A Matlab implementation which
stores the inverse (in-place) in A can thus look as follows:

n=_8;

A = rand(n) ;

A = triu@);

U=A;

for k=n:-1:1
Uk, k) = 1/U(k,k);
for r=k-1:-1:1

13




U(r, k) = U(xr,rtl:k) «U(r+l:k, k) /U(r, 1) ;
end
end
UxA

A Python implementation can look as follows:

from numpy import =*

n=3_8
A = matrix(random.random( (n,n) ) )
A=triu(d)
U=A.copy ()
for k in range(n-1,-1,-1) :

Ulk, k] = 1/U0[k, k]

for r in range(k-1,-1,-1) :

Ulr, k] = -Ulr, (r+l) : &t+1) ]50[ (r+1) : (kt+1),Kk] /U[x, r]

print UsA

In the code, r and k are row- and column indices, respecively. Inside the for-loop we
compute z, for the system in Equation (1). The contribution from x,,1,...,x; can
be written as a dot product, which here is computed as a matrix product (the minus
sign comes from that we isolate z, on the left hand side). Note that k goes from n and
downwards. If we did this the other way we would overwrite matrix entries needed for
later calculations.

Exercise 2.13: Finite sums of integers

There are many ways to prove these identities. The quickest is perhaps by induction.
We choose instead an approach based on what is called a generating function. This
approach does not assume knowledge of the sum-expressions we want to derive, and
the approach also works in a wide range of other circumstances.

It is easily checked that the identities hold for m = 1,2,3. So let m > 4 and define

1— J/,m—&-l
Pm = 1 PEREY m - @
(x) +r+--+w T
Then
1—(m+1)z™+ ma™*!
Pi(a) = L D
P! (z) = =24+ (m*+m)z™ 1 +2(1 — m?)a™ + (m? — m)a:mﬂ.

(z —1)°
14



Applying I’'Hopital’s rule twice, we find

1+2+---4+m=PF,(1)
1— (m+1)z™+ ma™t?

B glclgi (x —1)2
— m—1 m
— im m(m+ Dz™ ' +m(m+ 1)x
o1 2(x —1)
1
= im(m +1),
establishing (2.12). In addition it follows that
143+ 42m—1=> 2k—1)=-m+2) k=-m+m(m+1)=m’
k=1 k=1

which establishes (2.14). Next, applying 'Hopital’s rule three times, we find that
1:242-34+--+(m—1)-m=P/(1)

is equal to
=2+ (m2+m)a™ 1t +2(1 —m2)a™ + (m? — m)z™ !
lim
P (@ —1)
. (m=1D(m2+m)a™ 2+ 2m(1 — m?)az™ L + (m+ 1)(m? — m)z™
= lim
z—1 3(x—1)2
_ (m —2)(m — 1)(m? + m)a™ =3 +2(m — \)m(1 — m?)z™ 2 + m(m + 1)(m? — m)z™ !
o rl—>ml 6(xz —1)
= ~(m— Um(m +1)
establishing (2.15). Finally,
P42 4dm® =) =Y ((k=Dk+k)=> (k=Dk+> k
k=1 k=1 k=1 k=1
1 1
= 5(m —1)m(m+1)+ §m(m +1)==(m+1)(m+ §)m’

which establishes (2.13).

Exercise 2.14: Multiplying triangular matrices

Computing the (i, j)-th entry of the matrix AB amounts to computing the inner prod-
uct of the ith row a of A and the jth column b.; of B. Because of the triangular
nature of A and B, only the first i entries of a] can be nonzero and only the first
j entries of b.; can be nonzero. The computation a; b.; therefore involves min{3, j}
multiplications and min{i, j} — 1 additions. Carrying out this calculation for all 7 and
J, amounts to a total number of

SN eminfi g -1 =Y (Z(Zj —D+ ) (2i— 1))

i=1 j=1 i=1 \j=1 j=i+1
=> (P+n—0)2i—1) = (—i+2ni—n+i)
=1 =1
15



n n

=—n?+@2n+1)Y i—» i

=1 =1

=—n®+ %n(n +1)(2n+1) — én(n +1)(2n+1)

1 2 1 1
= —n?+ gn(n +1)(2n+1) = §n3 + 3= 571(2712 +1)

arithmetic operations. A similar calculation gives the same result for the product BA.

Exercise 2.23: Row interchange
Suppose we are given an LU factorization
1 1] |1 0} {Un U12}
0 1) [l 1] | 0 ug|’
Carrying out the matrix multiplication on the right hand side, one finds that

-1 1- [ U11 U12
10 1] oun laurg +uga |’

implying that u;; = uo = 1. It follows that necessarily l; = 0 and ugy = 1, and the

pair
10 11
TR

is the only possible LU factorization of the matrix [ 11. One directly checks that

1
01
this is indeed an LU factorization.

Exercise 2.24: LU and determinant

Suppose A has an LU factorization A = LU. Then, by Lemma 2.16, Ay = Lj) U,
is an LU factorization for k = 1,...,n. By induction, the cofactor expansion of the
determinant yields that the determinant of a triangular matrix is the product of its
diagonal entries. One therefore finds that det(Ly) = 1, det(Up) = w1y - - - upr and

fork=1,...,n.

Exercise 2.25: Diagonal elements in U

From Exercise 2.24, we know that det(Apy) = w1 ---ug for £ = 1,...,n. Since A
is nonsingular, its determinant det(A) = uqy -+ Up, is nonzero. This implies that
det(Ap) = i ---upe # 0 for k = 1,...,n, yielding a;y = uy; for £ = 1 and a
well-defined quotient

det(Ap) Up e Up—1 k=1 Uk k

= = Uk, k,
det(A[k_”) Up,1 e Ukg—1,k—1

for k=2,...,n.
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Exercise 2.31: Making a block LU into an LU

We can write a block LU factorization of A as

I 0 --- 0 Uy Up - Uy,
L I .. 0 0 Uy --- U,y
A-LU=| 2 7~ P ’
L,i Ly -+ I 0 0 Ui

(i.e. the blocks are denoted L;;, U;;). We now assume that U;; has an LU factorization

L; U, (I:n' unit lower triangular, U upper triangular), and define L = Ldiag(f,“-),
U = diag(L;;')U. We get that

I o --- 0 I~411 ~O e 0
. - L I - 0 0 L e 0
L= Ldiag(L“‘) = .21 . . . . .22 . .
Ly 0 -0
. L21L11 L22 e O
LmI]:ll Lm2£22 e ]:mm

This shows that L has the blocks L;; on the diagonal, and since these are unit lower
triangular, it follows that also L is unit lower triangular. Also,

I~J1_11 0o - 0 Uy, Up -+ Uy,
. N 0 Lzt ... 0 0 Uy --- Uy,
U = diag(L;))U = 22 _ S ?
0 0 ... f%lm 0 0 U,m
[ LiUn LU, - LU,
B 0 Ly Uy L, Usy,
0 0 L Upm
[ fq_llflnﬁn } fq_fUlg ];1_11U1m
B 0 Lyy LyoUgy - L5, Usy,
i 0 0 | i A, §
[ Uy, fifolz e I:JfllUlm
B 0 Uy e L§21U2m
0 0 U,

where we inserted U;; = fmﬁm This shows U has the blocks [NJ“- on the diagonal, and
since these are upper triangular, it follows that also U is upper triangular.

17



Exercise 2.36: Using PLU of A to solve ATx=b

If A =PLR, then AT = RTLTPT. The matrix L" is upper triangular and the matrix
RT is lower triangular, implying that RTLT is an LU factorization of ATP. Since A
is nonsingular, the matrix RT must be nonsingular, and we can apply Algorithms 2.6
and 2.7 to economically solve the systems Rz = b, LTy = z, and P™x =y, to find a
solution x to the system RTLTPTx = ATx = b.

Exercise 2.37: Using PLU to compute the determinant

If A =PLU, then
det(A) = det(PLU) = det(P) det(L) det(U)

and the determinant of A can be computed from the determinants of P, L, and U.
Since the latter two matrices are triangular, their determinants are simply the products
of their diagonal entries. The matrix P, on the other hand, is a permutation matrix,
so that every row and column is everywhere 0, except for a single entry (where it is 1).
Its determinant is therefore quickly computed by cofactor expansion.

Exercise 2.38: Using PLU to compute the inverse

Solving an n x n-triangular system takes n? operations, as is clear from the
rforwardsolve and rbacksolve algorithms. From Exercise 2.11 it is thus clear
that inverting an upper /lower triangular matrix takes > ;'_, k% ~ n?/3 operations (see
Exercise 2.13). Inverting both L and U thus takes 2n3/3 ~ G,, operations. According
to Exercise 2.14, it takes approximately G, arithmetic operations to multiply an upper
and a lower triangular matrix. It thus takes approximately G, + G,, = 2G,, operations
to compute U'L~!,

18



CHAPTER 3

LDL* Factorization and Positive definite Matrices

Exercise 3.20: Positive definite characterizations

We check the equivalent statements of Theorem 3.18 for the matrix
2 1
A= [1 2} .
1. Obviously A is symmetric. In addition A is positive definite, because

2 1| |x
[z y] {1 2] [y}:2x2+2xy+2y2:(:z:+y)2+a:2+y2>0

for any nonzero vector [z, y|T € R2.
2. The eigenvalues of A are the roots of the characteristic equation

O=det(A—-A)=(2-X)>—1=(A—1)(A-23).

Hence the eigenvalues are A = 1 and A = 3, which are both positive.

3. The leading principal submatrices of A are [2] and A itself, which both have
positive determinants.

4. If we assume as in a Cholesky factorization that B is lower triangular we have
that

BBT — buu 0 b bar | _ bt b11b21 _ 121
ba1  bos 0 Do Dby 3 + b3, L2p

Since b;12 = 2 we can choose by; = v/2. bj1bs; = 1 then gives that by; = 1/\/5,
and b3, + b2, = 2 finally gives byy = /2 — 1/2 = 1/3/2 (we chose the positive
square root). This means that we can choose
g_|v2 0

V2 V3)2]
This could also have been obtained by writing down an LDL-factorization (as

in the proof for its existence), and then multiplying in the square root of the
diagonal matrix.
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CHAPTER 4

Orthonormal and Unitary Transformations

Exercise 4.4: The ATA inner product

Assume that A € R™*" has linearly independent columns. We show that
<'> '>A : (iL‘,y) — XTATAy

satisfies the axioms of an inner product on a real vector space V), as described in
Definition 4.1. Let x,y,z € V and a,b € R, and let (-, -) be the standard inner product
on V.

Positivity. One has (x,x)4 = x' ATAx = (Ax, Ax) > 0, with equality holding
if and only if Ax = 0. Since Ax is a linearly combination of the columns of A with
coefficients the entries of x, and since the columns of A are assumed to be linearly
independent, one has Ax = 0 if and only if x = 0.

Symmetry. One has (x,y)a = xTATAy = (xTATAy)T = yTATAx = (y, x)a.

Linearity. One has (ax + by, z)a = (ax + by)TATAz = ax"ATAz + by"ATAz =
a(x,2)a + by, 2)a.

Exercise 4.5: Angle between vectors in complex case

By the Cauchy-Schwarz inequality for a complex inner product space,

0 < x|

< <L
|11yl

Note that taking x and y perpendicular yields zero, taking x and y equal yields one,
and any value in between can be obtained by picking an appropriate affine combination
of these two cases.

Since the cosine decreases monotonously from one to zero on the interval [0, /2],
there is a unique argument 6 € [0, /2] such that

|, ¥)]

cosf = .
[/ [lyl

Exercise 4.18: What does Algorithm housegen do when x =e;7

If x = ey, then the algorithm yields p = 1, and a = —||e1|| = —1. We then get z = ey,
and

2
u— Z+ e —ﬂ:\/ael

VIt V2
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and

-1 0 0
H=1-uu' = 0 1 X
0O 0 - 1

Exercise 4.19: Examples of Householder transformations

(a) Let x and y be as in the exercise. As [|x||2 = ||¥||2, we can apply what we did
in Example 4.15 to obtain a vector v and a matrix H,
—2 vw' 1[3 4

such that Hx = y. As explained in the text above Example 4.15, this matrix H is a
Householder transformation with u := v/2v/||v||2.

(b) Let x and y be as in the exercise. As ||x|2 = ||y||2, we can apply what we did
in Example 4.15 to obtain a vector v and a Householder transformation H,

9 w112 -2
v=x—-y=|—-1], H=1-2—=-12 2 1],
1 ViV 3|9 1 9

such that Hx = y.

Exercise 4.20: 2 x 2 Householder transformation

Let H=I—uu’ € R?? be any Householder transformation. Then u = [u; us]™ € R? is
a vector satisfying u3+u3 = ||ul|3 = 2, implying that the components of u are related via
u?—1=1—u3. Moreover, as 0 < u? u3 < ||[ul|*> =2,0onehas -1 <w?—1=1—u3 <1,
and there exists an angle ¢ € [0,27) such that cos(¢') = u? —1 =1 — u3. For such an
angle ¢', one has

—upty = F4/1 + cos ¢'v/1 — cos ¢ = £1/1 — cos? ¢/ = sin(£¢’).
We thus find an angle ¢ := +¢’ for which

m- [t 7] - [ ] - [y ]

—uwug 1 —u;
Furthermore, we find

q cos¢p| |—cos¢ sing| |coso| sin? ¢ — cos? ¢
sing| | sing cos¢| |sing| | 2sin¢cos

—cos(2¢)

-]

When applied to the vector [cos @, sin ¢]T, therefore, H doubles the angle and reflects
the result in the y-axis.
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Exercise 4.28: QR decomposition

That Q is orthonormal, and therefore unitary, can be shown directly by verifying that
Q'Q =1. A direct computation shows that QR = A. Moreover,

2 2

o 2| [Ry

R= 0 o= o)
00

where R is upper triangular. It follows that A = QR is a QR decomposition.
A QR factorization is obtained by removing the parts of Q and R that don’t
contribute anything to the product QR. Thus we find a QR factorization

1

1 2 2
~1|’ Rl':{o 2]

-1

1
A= Q1R1, Ql = 5

—_ =

Exercise 4.29: Householder triangulation

(a) Let
1 0 1
A= [al,ag,ag,] =|-2 -1 0
2 2 1

be as in the Exercise. We wish to find Householder transformations H;, Hy that pro-
duce zeros in the columns a;, as, ag of A. Applying Algorithm 4.17 to the first column
of A, we find first that a = —3, z = (1/3,-2/3,2/3)", and then
2 -3 -2 -1
u =— |1}, HA=I-wu)A=|0 0 1

V31 0 1 0

Next we need to map the bottom element (H;A);5 of the second column to zero,
without changing the first row of HyA. For this, we apply Algorithm 4.17 to the
vector (0,1)T to find a = —1, z = (0,1)", and then

u, = {ﬂ and H, =1- u2ug = {_01 _01} ,

which is a Householder transformation of size 2 x 2. Since

1 0 -3 -2 -1
H2H1A = |:0 H :| HlA = 0 —1 0 s
2 0 0 -1
it follows that the Householder transformations H; and Hs bring A into upper trian-
gular form.
(b) Clearly the matrix H3 := —I is orthogonal and R := H;H,H;A is upper

triangular with positive diagonal elements. It follows that
A =QR, Q:= H/H,H; = H,H,H;,
is a QR factorization of A of the required form.
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Exercise 4.32: QR using Gram-Schmidt, I1

Let
1 3 1
1 3 7
A= [a17a27a3] = 1 —1 —4
1 -1 2

Applying Gram-Schmidt orthogonalization, we find

1 1
1 111
Vi =a = 1 , A1 5 11
1 1
2 1
agvlzl V2_a2_agV1V1: 2 q2_1 1
vivy ’ vivy =2\’ 2 | -1
—2 —1
azvy 3 ajvy 5
viv, 2 vivy 4
-3 —1
vf:a—agvlv—a?’Tvzv: 3 qzl 1
3 3 VrlI‘Vl 1 ngz 2 N 3 9 -1
3 1

Since (Ri1)11 = |[vi|| = 2, (R1)aa = ||v2|| = 4, (R1)s3 = ||v3|| = 6, and since also
(Ry)i; = (a;)"q; = ||VZ||(a;fvz)/(VTVZ) for i > 7 we get that

3 5
(R1)12:2X1:2, (R1)13:2X§:3, (R1)23:4XZ:5’
so that
1 1 -1
11 1 1 223
Qr=|a @ q3] == . Ry=10 45
211 1 1 00 6
1 -1 1
and
1 1 -1
11 1 1 223
A=QR, == 0 4 5
2/ =1 =11y 0 6
1 -1 1
Exercise 4.34: Plane rotation
Suppose
7 COS (Y cosf sind
X = . , P= . .
rsin o« —sinf cos®
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Using the angle difference identities for the sine and cosine functions,
cos(6 — ) = cosf cos o + sin @ sin v,
sin(f — a) = sinf cos a — cos fsin a,

we find
cos B cos av + sinGsina} [ rcos(0 — a)}
Px=r = .

— sin f cos av + cos O sin « —rsin(f — «)

Exercise 4.35: Solving upper Hessenberg system using rotations

To determine the number of arithmetic operations of Algorithm 4.36, we first consider
the arithmetic operations in each step. Initially the algorithm stores the length of the
matrix and adds the right hand side as the (n + 1)-th column to the matrix. Such
copying and storing operations do not count as arithmetic operations.

The second big step is the loop. Let us consider the arithmetic operations at the
k-th iteration of this loop. First we have to compute the norm of a two dimensional
vector, which comprises 4 arithmetic operations: two multiplications, one addition and
one square root operation. Assuming r > 0 we compute ¢ and s each in one division,
adding 2 arithmetic operations to our count. Computing the product of the Givens
rotation and A includes 2 multiplications and one addition for each entry of the result.
As we have 2(n + 1 — k) entries, this amounts to 6(n 4+ 1 — k) arithmetic operations.
The last operation in the loop is just the storage of two entries of A, which again does
not count as an arithmetic operation.

The final step of the whole algorithm is a backward substitution, known to require
O(n?) arithmetic operations. We conclude that the Algorithm uses

O(n2)+§:(4+2+6(n+1—k)) :O(n2)—|—6nz_:(n+2—k)
k=1 k=1

= O(n?) + 3n* + 9n — 12 = O(4n?)

arithmetic operations.
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CHAPTER 5

Eigenpairs and Similarity Transformations

Exercise 5.9: Idempotent matrix

Suppose that (), x) is an eigenpair of a matrix A satisfying A? = A. Then
Ax = Ax = A’x = Mx = \’x.

Since any eigenvector is nonzero, one has A\ = A2, from which it follows that either
A=0or A =1. We conclude that the eigenvalues of any idempotent matrix can only
be zero or one.

Exercise 5.10: Nilpotent matrix

Suppose that ()\,x) is an eigenpair of a matrix A satisfying A¥ = 0 for some natural
number k. Then

0=AFx = MA"Ix = N2A"2x = ... = \'x.

Since any eigenvector is nonzero, one has A* = 0, from which it follows that A\ = 0. We
conclude that any eigenvalue of a nilpotent matrix is zero.

Exercise 5.11: Eigenvalues of a unitary matrix

Let x be an eigenvector corresponding to A\. Then Ax = Ax and, as a consequence,
x*A* = x*\. To use that A*A =1, it is tempting to multiply the left hand sides of
these equations, yielding

IN?[|x]|? = x*Ax = x*A*Ax = x'Ix = |x||%.

Since x is an eigenvector, it must be nonzero. Nonzero vectors have nonzero norms, and
we can therefore divide the above equation by ||x||?, which results in [A\|? = 1. Taking
square roots we find that |A\| = 1, which is what needed to be shown. Apparently the
eigenvalues of any unitary matrix reside on the unit circle in the complex plane.

Exercise 5.12: Nonsingular approximation of a singular matrix

Let A\q,..., )\, be the eigenvalues of the matrix A. As the matrix A is singular, its
determinant det(A) = A;---\, is zero, implying that one of its eigenvalues is zero.
If all the eigenvalues of A are zero let gy := 1. Otherwise, let gy := miny, .o |A;| be
the absolute value of the eigenvalue closest to zero. By definition of the eigenvalues,
det(A — AI) is zero for A = Aq, ..., \,, and nonzero otherwise. In particular det(A —eI)
is nonzero for any ¢ € (0,¢¢), and A — eI will be nonsingular in this interval. This is
what we needed to prove.
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Exercise 5.13: Companion matrix

(a) To show that (—1)"f is the characteristic polynomial w5 of the matrix A, we
need to compute

_q'n,—l - )\ —qn_2 e _(h _qO
TA(A) = det(A — AT) = det 0 1 - 0 0
0 0 1 -\

By the rules of determinant evaluation, we can substract from any column a linear
combination of the other columns without changing the value of the determinant.
Multiply columns 1,2,...,n — 1 by A" 1, A\»=2 ... X and adding the corresponding
linear combination to the final column, we find

—Qn-1 — A —Qn-2 -+ —q1 _f<)‘>
1 A -0 0
7a()) = det 0 Lo 00 0= (=) f(),
0 0 1 0

where the second equality follows from cofactor expansion along the final column.
Multiplying this equation by (—1)" yields the statement of the Exercise.

(b) Similar to (a), by multiplying rows 2, 3,...,n by A\, A%,..., A""! and adding the
corresponding linear combination to the first row.

Exercise 5.17: Find eigenpair example

As A is a triangular matrix, its eigenvalues correspond to the diagonal entries. One
finds two eigenvalues \; = 1 and Ay = 2, the latter with algebraic multiplicity two.

Solving Ax; = Aix; and Axs = M9Xy, one finds (valid choices of) eigenpairs, for
instance
1 2
()\laxl) = (17 0 )7 (>\27X2) = (27 1 )
0 0

It follows that the eigenvectors span a space of dimension 2, and this means that A is
defective.

Exercise 5.22: Jordan example

This exercise shows that it matters in which order we solve for the columns of S. One
would here need to find the second column first before solving for the other two. The
matrices given are

3.0 1 110
A=|-41 =2, J=101 o],
—4 0 -1 001

we are asked to find S = [sq, s, s3] satisfying
[Asi, Asy, As3] = AS = SJ = [s1, 80, 53] = [s1,81 +82,85] .
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The equations for the first and third columns say that s; and s3 are eigenvectors for
A =1, so that they can be found by row reducing A — I

2 0 1 2 01
A-I=]|-40 -2{~1{0 00
-4 0 =2 000

(1,0,—2)" and (0,1,0)" thus span the set of eigenvectors for A = 1.

sy can be found by solving Asy = s; + sy, so that (A — I)sy = s;. This means
that (A —I)%s, = (A —I)s; = 0, so that s, € ker(A — I)2. A simple computation
shows that (A —I)? = 0 so that any s, will do, but we must also choose sy so that
(A —I)sy = s; is an eigenvector of A. Since A — I has rank one, we may choose
any s so that (A — I)sy is nonzero. In particular we can choose s; = ey, and then
S1 = (A — I)S2 = (2, —4, —4)T

We can also choose s3 = (0,1,0)T, since it is an eigenvector not spanned by the s;
and sy which we just defined. All this means that we can set

2 10
-4 01
-4 0 0

S:

Exercise 5.24: Properties of the Jordan form

Let J = S7*AS be the Jordan form of the matrix A as in Theorem 5.19. Items 1. —
3. are easily shown by induction, making use of the rules of block multiplication in 2.
and 3. For Item 4., write E,, := J,,,(A\) — AL, with J,,(\) the Jordan block of order
m. By the binomial theorem,

T

I\ = (B + ALy)" =) (

k=0

r
k

Since Ef = 0 for any k > m, we obtain

( )/\T‘kE’“ .

min{r,m—1}

2.

k=0

r
k

Jm(A)"

)E’jn(AIm)’”"“ => (

r
r

N FEE
)

k=0

Exercise 5.25: Powers of a Jordan block

Let S be as in Exercise 5.22. J is block-diagonal so that we can write

n

110 11”O
(%) J =10 1 ol =1|l0 1
00 1 0 1"

where we used property 4. in exercise 5.24

AlOO — (SJs—l)mO — SJIOOS—l —

2 1 1 1 100 O
=|1-4 0 0 0 1 0
-4 0 =2( (0 0 1

1 n O
=10 1 of,
00 1
on the upper left block. It follows that
2 01 17t 100072 1 17"
-4 0 0|0 1 o0ofl|-4 0 0
-4 0 —2| |0 0 1]|-4 0 -2
0 —3 0 201 0 100
1 0 L1|=|-400 1 —200
0 & —3 —400 0 —199



Exercise 5.27: Big Jordan example

The matrix A has Jordan form A = SJS™!, with

3 1/]0 0 0{0 010 [—-14 9 -5 6 0 -8 9 9
0 3]0 0 0[{0 010 —28 18 —-10 12 0 =7 0 O
0 0[|2 1 00 0]0 —42 27 —-15 18 0 -6 0 -9
J_00021000 8—1_5636_20240_500
10 0[]0 0 20 0(0O]>" 9| —=70 45 —16 12 9 —4 0 O
0 0|0 0 0|2 1]0 -84 54 —-12 9 0 -3 0 O
0 0[]0 0 0|0 2|0 -98 63 -8 6 0 -2 0 O
0 0[]0 0 0|0 0]2 | 49 0 -4 3 0 -1 0 O
Exercise 5.30: Schur decomposition example
The matrix U is unitary, as U*U = UTU = 1. One directly verifies that
1T -1 -1
R:=U"AU = [0 E
Since this matrix is upper triangular, A = URU" is a Schur decomposition of A.
Exercise 5.34: Skew-Hermitian matrix
By definition, a matrix C is skew-Hermitian if C* = —C.
“=": Suppose that C = A + B, with A;B € R"™"™_ is skew-Hermitian. Then
~A-iB=-C=C"=(A+iB)"=A"-iB",
which implies that AT = —A and B = BT (use that two complex numbers coincide

if and only if their real parts coincide and their imaginary parts coincide). In other
words, A is skew-Hermitian and B is real symmetric.

“«=": Suppose that we are given matrices A,B € R"™™ such that A is skew-
Hermitian and B is real symmetric. Let C = A + iB. Then

C'=(A+iB=A"-iB"=-A-iB=—(A+iB)=-C,

meaning that C is skew-Hermitian.

Exercise 5.35: Eigenvalues of a skew-Hermitian matrix

Let A be a skew-Hermitian matrix and consider a Schur triangularization A = URU*

of A. Then
R =U'AU =U"(-A"U = -U"A"U = —(U'AU)" = —R".

Since R differs from A by a similary transform, their eigenvalues coincide (use the
multiplicative property of the determinant to show that

det(A — AI) = det(U”) det(URU* — AI)) det(U) = det(R — AI).)
As R is a triangular matrix, its eigenvalues ); appear on its diagonal. From the equation
R = —R* it then follows that \; = —\;, implying that each ); is purely imaginary.
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Exercise 5.49: Eigenvalue perturbation for Hermitian matrices

Since a positive semidefinite matrix has no negative eigenvalues, one has 3, > 0. It
immediately follows from «a; 4+ 3, < ~; that in this case v; > «;.

Exercise 5.51: Hoffman-Wielandt

The matrix A has eigenvalues 0 and 4, and the matrix B has eigenvalue 0 with alge-
braic multiplicity two. Independently of the choice of the permutation iy, ... 4,, the
Hoffman-Wielandt Theorem would yield

16—Zluz—Al2<ZZIam byl* =12,

=1 j5=1

which clearly cannot be valid. The Hoffman-Wielandt Theorem cannot be applied to
these matrices, because B is not normal,

BB = B g] # {_22 _22} = BB".

Exercise 5.54: Biorthogonal expansion

The matrix A has characteristic polynomial det(A — AI) = (A — 4)(A — 1) and right
eigenpairs (A, x;1) = (4,[1,1]7) and (A2, x2) = (1,[1, —2]"). Since the right eigenvectors
X1, Xz are linearly independent, there exists vectors yi,y» satisfying (y;, x;) = 0;;. The
set {x1xy} forms a basis of C?, and the set {y;,y2} is called the dual basis.

How do we find such vectors yy,y»? Any vector [x;, x5 is orthogonal to the vector

o, —ax|T for any a. Choosing o appropriately, one finds y; = %[1,—1]T,y2 =
[2,1]*. By Theorem 5.53, y; and y, are left eigenvectors of A. For any vector
= [v1,v9]T € C?%, Equation (5.21) then gives us the biorthogonal expansions

1

1
v = (y1,V)x1 + {y2, V)Xy = g(vl — vg)X; + 5(21)1 + v9)Xs

= (X1, V)y1 + (X2, V)y2 = (v1 + v2)y1 + (v1 — 20v2)yo.

[

1
3
v

Exercise 5.57: Generalized Rayleigh quotient
Suppose (A, x) is a right eigenpair for A, so that Ax = Ax. Then the generalized
Rayleight quotient for A is
y*Ax  y*Ax
R(y,x) = "—— = —
yX y'x
which is well defined whenever y*x # 0. On the other hand, if (), y) is a left eigenpair
for A, then y*A = \y* and it follows that
y'Ax  Ay*x
R(y,x) := — = —
y'x y'x

=\
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CHAPTER 6

The Singular Value Decomposition

Exercise 6.7: SVD examples

(a) For A = [3,4]T we find a 1 x 1 matrix ATA = 25, which has the eigenvalue
A1 = 25. This provides us with the singular value oy = ++v/A; = 5 for A. Hence the
matrix A has rank 1 and a SVD of the form

5

A=[U, U {O

} V4], with Uy, U, € R¥, V=V, e R.

The eigenvector of ATA that corresponds to the eigenvalue \; = 25 is given by v; = 1,
providing us with V = [1] Using part 3 of Theorem 6.5, one finds u; = %[3,4]T.
Extending u; to an orthonormal basis for R? gives up = $[—4,3]T. A SVD of A is
therefore

A=z 3 bl

(b) One has

11
_ T_122 T_99
a=fzofar=p G ata=[g ]

The eigenvalues of ATA are the zeros of det(ATA — XI) = (9 — \)? — 81, yielding
A = 18 and Ay = 0, and therefore o4 = /18 and o, = 0. Note that since there is only
one nonzero singular value, the rank of A is one. Following the dimensions of A, one

finds

V18 0
=0 o0
0 0

The normalized eigenvectors v, vy of ATA corresponding to the eigenvalues \;, Ay are
the columns of the matrix

veiei=gglh i

Using part 3 of Theorem 6.5 one finds u;, which can be extended to an orthonor-
mal basis {u;, ug, uz} using Gram-Schmidt Orthogonalization (see Theorem 4.9). The
vectors uyp, Uy, ug constitute a matrix

1 -2 =2
2 2 -1
2 =1 2
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A SVD of A is therefore given by

1 -2 2] [V18 0
2 2 -1 0 01{_11}}.

A= —
2 -1 2| |0 o2

W

Exercise 6.8: More SVD examples

(a) We have A = e; and ATA = ele, = [1} This gives the eigenpair (A, vy) =
(1,1) of ATA. Hence oy =1 and ¥ =e; = A. As ¥ = A and V = I, we must have
U =1, yielding a singular value decomposition

A = ImelIl.
(b) For A = el the matrix
0 - 00
0 0
0 01

has eigenpairs (0,e;) for j = 1,...,n — 1 and (1,e,). Then ¥ = ef € R"" and
V = [en,en_l, e ,el} € R™". Using part 3 of Theorem 6.5 we get u; = 1, yielding
U= [1] A SVD for A is therefore given by

A=e) =[l]e] [en, €4 1,....€].
(c) In this exercise
_[-1 0 T T, _[1 0
A—_0 3}, A" =A AA—[O 9}.

The eigenpairs of ATA are given by (A;,vy) = (9,e;) and (\g,vo) = (1,ey), from
which we find

3 0 0 1
¥ = 0 1]7 V:L o}'
Using part 3 of Theorem 6.5 one finds u; = e; and uy = —e;, which constitute the
matrix
0 —1
U=l o

A SVD of A is therefore given by
[0 —1][3 0] fo 1
A=l 0 | [0 1} L 0}

Exercise 6.16: Counting dimensions of fundamental subspaces

Let A have singular value decomposition UXV™*.

1. By parts 1. and 3. of Theorem 6.15, span(A) and span(A*) are vector spaces of
the same dimension r, implying that rank(A) = rank(A*).

2. This statement is known as the rank-nullity theorem, and it follows immediately
from combining parts 1. and 4. in Theorem 6.15.

3. As rank(A*) = rank(A) by 1., this follows by replacing A by A* in 2.
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Exercise 6.17: Rank and nullity relations

Let A = UXV* be a singular value decomposition of a matrix A € C™*",
1. By part 5 of Theorem 6.4, rank(A) is the number of positive eigenvalues of

AA* =UXV'VY'U" =UDU",

where D := ¥3¥* is a diagonal matrix with real nonnegative elements. Since UDU*
is an orthogonal diagonalization of AA*, the number of positive eigenvalues of AA* is
the number of nonzero diagonal elements in D. Moreover, rank(AA*) is the number
of positive eigenvalues of

AA*(AAY) = AA*AA* = UXT*EX*V* = UD?U",

which is the number of nonzero diagonal elements in D?, so that rank(A) = rank(AA*).
From a similar argument for rank(A*A), we conclude that

rank(A) = rank(AA*) = rank(A*A).

2. Let r := rank(A) = rank(A*) = rank(AA*) = rank(A*A). Applying Theorem
6.4, parts 3 and 4, to the singular value decompositions

A =UZV* A*=VEU", AA* = USS'U*, A*A = VE*'SV*,

one finds that {v,,1,...,v,} is a basis for both ker(A) and ker(A*A), while {u, 41, ... u,}
is a basis for both ker(A*) and ker(AA*). In particular it follows that

dim ker(A) = dim ker(A*A), dim ker(A*) = dimker(AA*),

which is what needed to be shown.

Exercise 6.18: Orthonormal bases example
Given is the matrix

114 4 16
1502 22 13)°

From Example 6.6 we know that B = AT and hence A = UXVT and B = VXTUT,
with

1 2 2
1 2 010 113 4
vei[p B[] sz welfr g

From Theorem 6.15 we know that V; forms an orthonormal basis for span(AT) =
span(B), V3 an orthonormal basis for ker(A) and Uj an orthonormal basis for ker(A™) =
ker(B). Hence

span(B) = avy + fva, ker(A) = yvs and ker(B) = 0.
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Exercise 6.19: Some spanning sets

The matrices A € C™*™ and A*A have the same rank r since they have the same
number of singular values, so that the vector spaces span(A*A) and span(A*) have
the same dimension. It is immediate from the definition that span(A*A) C span(A*),
and therefore span(A*A) = span(A*).

Let A = U;%,V7 be a singular value factorization of A. Taking the Hermitian
transpose A* = V,37U7 one finds span(A*) C span(Vy). Moreover, since V, € C**"
has orthonormal columns, it has the same rank as A*, and we conclude span(A*) =
span(Vy).

Exercise 6.20: Singular values and eigenpair of composite matrix

Given is a singular value decomposition A = UXV*. Let r = rank(A), so that
o > -+ >0, >0 and Opy1 = *°° = 0Op = 0. Let U = [Ul,UQ] and V = [Vl,VQ]
be partitioned accordingly and 3; = diag(oy,...,0,) as in Equation (6.7), so that
A =U,;3,V7 forms a singular value factorization of A.

By Theorem 6.15,

Co. — 0 Al |u _|Av;| | opi fori=1,...,r
pz__A* 0| (vi|] [A*wy| | 0-p; fori=r+1,...,n

C '__0 AlTw ] [-Av;| [ —oiq; fori=1,...,r
q’__A* 0| [-vi] [Aw] | 0-q fori=r+1,...,n

[0 Al[w] [ 0 ] [o] -
er__A* 0 0}—[A*u3}—{0]—0‘r7" forj=n+1,...,m.

This gives a total of n +mn 4+ (m —n) = m + n eigen pairs.

Exercise 6.26: Rank example

We are given the singular value decomposition

1.1 1 17T6 0 0
A B 2 2 1
) [T IThloeol |3 § 3
A=URDVT = % %_% _% 0003 "3 3
2 2 2 T2 000 ’ ’ ’

Write U = [uy, ug, uz, wy) and V = [vy, vy, v3]. Clearly r = rank(A) = 2.
(a) A direct application of Theorem 6.15 with r = 2 gives
{uy,uy} is an orthonormal basis for span(A),
{uz,uy} is an orthonormal basis for ker(AT),
{v1,Vvs} is an orthonormal basis for span(A™),
{vs} is an orthonormal basis for ker(A).

Since U is orthogonal, {u;, us, us,uy} is an orthonormal basis for R In particular
u3, uy are orthogonal to uy, uy, so that they span the orthogonal complement span(A)+
to span(A) = span{u;, us}.

(b) Applying Theorem 6.25 with r = 1 yields

|A =Bl > /03 + 03 = V62402 =6.
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(c) Following Section 6.3.2, with D’ := diag(c1,0,...,0) € R™", take
2 21
D’ 2 21
_ A T _
w-amufR]vea 2]
2 2 1

Exercise 6.27: Another rank example

(a) The matrix B = (b;;);; € R™" is defined by

1 if i = j;

b -1 if 1 < 7;

57 =22 it (i) = (n,1);
0 otherwise.

while the column vector x = (z;); € R" is given by
)1 if ) =mn;
TIT 2m ' otherwise.

For the final entry in the matrix product Bx one finds that

(BX)n - Z b”jxj = b1y + bupn = 2% . gn2 +1-1=0.

j=1
For any of the remaining indices i # n, the i-th entry of the matrix product Bx can
be expressed as

n n—1
(]_))X)z = Z bijxj = bzn -+ Z 2”717]‘@]‘
j=1 j=1

n—1
=142 Y 2n Ty
j=it1
n—1
— 1+ on—1—i _ Z gn—1-j
P

n—2—1

, . 1\’
— 271—1—7, o 2n—2—2 -
+ > (3)

i'=

| 11— (Y
=14+ 2n—1—z . 2n—2—z (2

=1 + 2n717i - 2n717i (1 _ 27(77,7171’))
=0.

As B has a nonzero kernel, it must be singular. The matrix A, on the other hand,
is nonsingular, as its determinant is (—1)" # 0. The matrices A and B differ only in

their (n, 1)-th entry, so one has ||A —B||r = \/|an1 — bn1]? = 227" In other words, the

tiniest perturbation can make a matriz with large determinant singular.
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(b) Let 0y > --+ > 0, > 0 be the singular values of A. Applying Theorem 6.25 for
r = rank(B) < n, we obtain

On < \/O-Z—i—l +totop = crél]RiaHn |A = Cllr <[[A—B|lp=2""
rank(C)=r

We conclude that the smallest singular value o,, can be at most 227",

35



CHAPTER 7

Norms and Perturbation theory for linear systems

Exercise 7.7: Consistency of sum norm?

Observe that the sum norm is a matrix norm. This follows since it is equal to the
l1-norm of the vector v = vec(A) obtained by stacking the columns of a matrix A on
top of each other.

Let A = (a;;);; and B = (b;;);; be matrices for which the product AB is defined.
Then

IABlls = <> lail - lb]

E aikbkj
k

i ijk
< ail - bl = laal D bl = [ Alls|Bls,

B4kl ik 1,j
where the first inequality follows from the triangle inequality and multiplicative prop-
erty of the absolute value | - |. Since A and B where arbitrary, this proves that the

sum norm is consistent.

Exercise 7.8: Consistency of max norm?

Observe that the max norm is a matrix norm. This follows since it is equal to the
l-norm of the vector v = vec(A) obtained by stacking the columns of a matrix A on
top of each other.

To show that the max norm is not consistent we use a counter example. Let

11
A=B= L 1}.Then

[ [ | [ W T

contradicting |[AB||ar < ||A]la]|B]| -

Exercise 7.9: Consistency of modified max norm?

Exercise 7.8 shows that the max norm is not consistent. In this Exercise we show that
the max norm can be modified so as to define a consistent matrix norm.

(a) Let A € C™" and define ||A|| := \/mn||A||ys as in the Exercise. To show that
|| - || defines a consistent matrix norm we have to show that it fulfills the three matrix
norm properties and that it is submultiplicative. Let A, B € C"™" be any matrices and
a any scalar.

(1) Positivity. Clearly ||A|| = /mn||Al/s > 0. Moreover,

(2) Homogeneity. [laAll = v/mnllaAlly = |alvmn[| Al = |af Al
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(3) Subadditivity. One has

|A + Bl = vam|[A + Bl < vam([[Alla + [Bllar) = Al + [B]|

(4) Submultiplicativity. One has

q
|AB|| = vmn max

a; b ;
s Z 1,kVk,j

1<j<n | k=1

mn max Z |a; ||k ;]

1<j<n k=1

q
S vmn max (f??i( bk ; |az’,k|>
—1

1<j<n
< gymn (}gg{g Iaz;k|> (}ngg |bk,g|>
1<k<gq 1<j<n
= [[A]llIB]-
(b) For any A € C™", let
IAND =m|Allpr and AP = 0]l Al
Comparing with the solution of part (a) we see, that the points of positivity, homo-

geneity and subadditivity are fulfilled here as well, making ||A[®) and ||A[|® valid
matrix norms. Furthermore, for any A € C™?, B € C?",

q
E a;kbrj| <m | max |a; x| | ¢ | max
’ ’ 1<i<m ’ 1<k<gq
1<k<q 1<]<n

q
IAB|® = n max | > " a;ubyl < g <lrgégg \ai,k|> n <1m§<x |bm|>

|AB||Y = m max

1<i<m
1<j<n | k=1
= ||A®VB|

1<j<n k=1 1<k<q 1<j<n

= [lA]®]B®

which proves the submultiplicativity of both norms.

Exercise 7.11: The sum norm is subordinate to?

For any matrix A = (a;;);; € C™™ and column vector x = (z;); € C", one has

[ Ax]ly = Z Z%% = ZZI@M |z;] < ZZ\%IZI%\ = [[Alls[[xl]1,

=1 | j=1 =1 j=1 =1 j=1

which shows that the matrix norm || - |5 is subordinate to the vector norm || - ||;.
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Exercise 7.12: The max norm is subordinate to?

Let A = (a;;);; € C™" be a matrix and x = (z;); € C" a column vector.
(a) One has

E :aw%

= ||A||MHX||1-

< max Zw ol < s [l Yl

Jl,, J=1

|AX]| 00 = max

(b) Assume that the maximum in the definition of ||Al|s; is attained in column [,
implying that ||A|/as = |ax,| for some k. Let e; be the [th standard basis vector. Then
lle|ls = 1 and

[Aefloo = max Jaig| = |ar| = axa| - 1= [[Allar - [led]ls,
i=1,....m
which is what needed to be shown.
(c) By (a), ||Allam > [|Ax|le/]|x]]1 for all nonzero vectors x, implying that

By (b), equality is attained for any standard basis vector e; for which there exists a k
such that ||Al/a = |ak.|. We conclude that

Ax| o
A s = ma 12l | Ax]
%1
which means that || - || is the (oo, 1)-operator norm (see Definition 7.13).

Exercise 7.19: Spectral norm

Let A = UXV* be a singular value decomposition of A, and write oy := ||A||5 for
the biggest singular value of A. Since the orthogonal matrices U and V leave the
Fuclidean norm invariant,

max |y"Ax|= max |[y'UXV'x|= max |y"Zx|
Ixll2=1=]ly]l2 Ix|l2=1=]y]l2 Ixllz2=1=]ly|l2
ma. X = 01.
S iy, oyl < max | orflyllalixle = o

Moreover, this maximum is achieved for x = y = e;, and we conclude

[All2 = o1 = |y Ax].

x ||2 1 HY||2

Exercise 7.20: Spectral norm of the inverse

Let 01 > --- > o, be the singular values of A. Since A is nonsingular, ¢, must be
nonzero. Using Equations (7.17) and (7?), we find

- 1 1 112
| I On . JJAx|l2  o#xeCn ||Ax]]y]
min
o#xeCn || x|

which is what needed to be shown.
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Exercise 7.21: p-norm example
We have
AZ{_21 _21} Alzéﬁ ;}
Using Theorem 7.15, one finds [|All; = ||Allw = 3 and |A7||; = |[A™» = 1. The
singular values o7 > o9 of A are the square roots of the zeros of
0=det(ATA - AI)=(5-A)?=16=X2—10A+9=(A—9)(\ —1).

Using Theorem 7.17, we find ||All; = 01 = 3 and ||A7!||; = 0,' = 1. Alternatively,
since A is symmetric positive definite, we know from (7.18) that ||Als = A; and
A=Y, = 1/Xy, where A; = 3 is the biggest eigenvalue of A and A\, = 1 is the
smallest.

Exercise 7.24: Unitary invariance of the spectral norm

Suppose V is a rectangular matrix satisfying V*V = 1. Then
VA2 = n|1ax [VAx||% = ‘m‘aX x"A*V*VAx

Il lIx|l2=1

= max x*A*Ax = max ||Ax|5 = ||A]3.
[[x[[2=1 lIxl[2=1

The result follows by taking square roots.

Exercise 7.25: |AU||, rectangular A

Let U = [uy, us]™ be any 2 x 1 matrix satisfying 1 = UTU. Then AU is a 2 x I-matrix,
and clearly the operator 2-norm of a 2 x l-matrix equals its euclidean norm (when

In order for ||[AU||2 < ||A]]2 to hold, we need to find a vector v with ||v||2 = 1 so that
|AU|l2 < ||Av]z. In other words, we need to pick a matrix A that scales more in the
direction v than in the direction U. For instance, if

S |

IAll: = max | Ax]y > [Av]ls =2 > 1= |AU[..

then

Exercise 7.26: p-norm of diagonal matrix

The eigenpairs of the matrix A = diag(Ay,..., \,) are (A, e1),..., (An,€,). For p(A) =
max{|A1],...,|A\|}, one has
Mzi|P 4+ Az, |P) P
HA”p _ max (‘ 1331’ + +’ z ’ )
(21,020 )70 (|x1|p 4+t |xn|p)1/p
(P(A)P[1]" + -+ + p(A)P | |?) "

< max — (A,
T (21,05mn)#0 (‘x1]p+..._|_|xn|p)1/p P( )
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On the other hand, for e; such that p(A) = ||, one finds
IAxl, | JAedy o
Il = lesll

Together, the above two statements imply that ||Al|, = p(A) for any diagonal matrix
A and any p satisfying 1 < p < oc.

All, =
| A, = max

Exercise 7.27: Spectral norm of a column vector

We write A € C™! for the matrix corresponding to the column vector a € C™. Write
|A||, for the operator p-norm of A and ||a||, for the vector p-norm of a. In particular
|Al2 is the spectral norm of A and ||al|3 is the Euclidean norm of a. Then

Az, |z][lall,

Al = max S = ma T =

proving (b). Note that (a) follows as the special case p = 2.

Exercise 7.28: Norm of absolute value matrix

(a) One finds
|A|:[|1+i| |_2|} {\/5 2]
11— V2|

(b) Let b;; denote the entries of |A|. Observe that b; ; = |a; ;| = |b;;|. Together
with Theorem 7.15, these relations yield

Al = (i2|) _ (iiwi,ﬂ?) — 1Al

i=1 j=1 i=1 j=1

m m

bl = o (3] = s (3 ) = 1
i=1 i=1
n n

Al = max (Z !m,ﬂ) = max (Z |bi,j|) = 1Al
J= J=

which is what needed to be shown.
(¢) To show this relation between the 2-norms of A and |A|, we first examine
the connection between the lo-norms of Ax and |A| - |x|, where x = (x1,...,2,) and

x| = (|z1], - - -, |zn]). We find
) = (Z (Z|az’,j||l’j|> ) = | |A] - [x] ]2
=1 j=1

m
s (3
i=1
Now let x* with ||x*[| = 1 be a vector for which ||A||; = ||Ax*||o. That is, let x* be
a unit vector for which the maximum in the definition of 2-norm is attained. Observe
that |x*| is then a unit vector as well, || |x*| || = 1. Then, by the above estimate of
l>-norms and definition of the 2-norm,
[A[l2 = [AXT[]2 < || [A]- [x*] {2 < [[|A]]l2.
40

(NI

n

E :am‘%‘

Jj=1




(d) By Theorem 7.15, we can solve this exercise by finding a matrix A for which A
and |A| have different largest singular values. As A is real and symmetric, there exist
a, b, c € R such that

_la b . ]a| |b|
A= [b } A= [wr |

2 | 32 2, 32
T, _|a®+b° ab+be TiA | @@+ |ab] + |bcl
ATA = {ab—i— be b2+ 2|’ AlTAl= lab| + |bc| b2+ |
To simplify these equations we first try the case a + ¢ = 0. This gives
2 | 32 2 4 12
T _|a +b 0 T __|a +b Q‘Gb‘
ata= |TE L0 amar= 0T 2]

To get different norms we have to choose a, b in such a way that the maximal eigenvalues
of ATA and |A|T|A] are different. Clearly ATA has a unique eigenvalue A := a® + b?
and putting the characteristic polynomial () = (a® + b* — p)? — 4|ab|? of |A|T|A] to
zero yields eigenvalues s = a® + b? £ 2|ab|. Hence |A|T|A| has maximal eigenvalue
py = a* +b* + 2|ab] = X + 2|ab|]. The spectral norms of A and |A| therefore differ

whenever both a and b are nonzero. For example, when a = b= —c =1 we find
1 1
A<l A rak=ve =2

Exercise 7.35: Sharpness of perturbation bounds

Suppose Ax = b and Ay = b +e. Let K = K(A) = ||A]|||A™!|| be the condition
number of A. Let ya and ya-1 be unit vectors for which the maxima in the definition

of the operator norms of A and A~! are attained. That is, ||[yall = 1 = |lya-1],
|A|l = ||Ayall, and A7 = [|[A"'ys-1||. If b= Ay and e = y5-1, then

ly =l _ [[A"el| _ A" ya]| - —apllya-d] el
o = A7 = JANIA A = K
x| I | [yall [Ayall b
showing that the upper bound is sharp. If b = ys-1 and e = Aya, then
ly-xl _JAe|  lyal 1 1 JAyal 1 e
x| A=l [[A=tyal [[ATH] [JAf[[AT lya-]l Kbl

showing that the lower bound is sharp.

Exercise 7.36: Condition number of 2nd derivative matrix

Recall that T = tridiag(—1,2, —1) and, by Exercise 1.26, T~! is given by
1
T =(T". =(1-ih)j>0, 1<j<i< h=——.
( )z] ( )Jl ( Z)] ) S)Stsm, 1
From Theorems 7.15 and 7.17, we have the following explicit expressions for the 1-, 2-

and oco-norms
m

a 1
[Al = max > faigl, [Al2=01 A 2= —, [|Allo = max  Jal
m

n

1<j<n 4 1<i<m 4
=1 7=1

for any matrix A € C™", where o, is the largest singular value of A, o,, the smallest
singular value of A, and we assumed A to be nonsingular in the third equation.
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a) For the matrix T this gives [|T|j1 = || T|joo = m + 1 for m = 1,2 and ||T||; =
| T|lo = 4 for m > 3. For the inverse we get |[T!|; = [T || =3 = sh 2 form =1

and
12 1 1(2 1
-1 — — = = — = -1
eI P R | Il

for m = 2. For m > 2, one obtains

>

7j—1

(1—jhz—|—21—zh

=1 =7
7j—1 m Jj—1
=> (1 —jh)i+ > (1—ih)j—> (1—ih)j
i=1 i=1 i=1
G =1)j  gm (1)
(1 — i T gy T
A =gh)=——+5 — 2= jh)~—
= §<m+ )
1 1.
which is a quadratic function in j that attains its maximum at j = ﬁ = mTH For

odd m > 1, this function takes its maximum at integral j, yielding [|T~!||; = $h~2.
For even m > 2, on the other hand, the maximum over all integral j is attained at
j="1%="%50or j =22 = Wb which both give | T~!||; = (b2 - 1).

Similarly, we have for the infinity norm of T—!
and hence HT_IHOO = |IT7!|;. This is what one would expect, as T (and therefore
T~!) is symmetric. We conclude that the 1- and oco-condition numbers of T are

i1 1 1,

(1—zh]+z 1 —jh)i —ﬁz—iz

J=1

2 m =1

116 m = 2;
cond;(T) = condo(T) = 2 ) 42 m odd, m > 1;
h™2—1 meven, m > 2.

b) Since the matrix T is symmetric, TTT = T? and the eigenvalues of TTT are the
squares of the eigenvalues A{,..., A, of T. As all eigenvalues of T are positive, each
singular value of T is equal to an eigenvalue. Using that \; = 2 — 2 cos(imh), we find

01 = |Am| =2 — 2cos(mmh) = 2 + 2 cos(mh),

Om = |A\1] =2 — 2cos(mh).
It follows that

1
condy(T) = - — LWZ) ot (@) ‘
T



c¢) From tanz > x we obtain cot?z = tar}% < $—12 Using this and cot? z > 272 — %
we find
4 2 4
— = < condy(T) < )
m2h? 3 2(T) m2h?

(d) For p = 2, substitute h = 1/(m~+1) in ¢) and use that 4/7% < 1/2. For p =1, 00
we need to show due to a) that

4 1 1
—h?2-2/3<=-h2<=-hp2
2 [B<3h <y

when m is odd, and that
4 1 1
—h2-2 —(h?—-1)<=-h%
2 /3< 2( ) < 2

when m is even. The right hand sides in these equations are obvious. The left equation

for m odd is also obvious since 4/72 < 1/2. The left equation for m even is also obvious
since —2/3 < —1/2.

Exercise 7.47: When is a complex norm an inner product norm?

As in the Exercise, we let

_x vl lx =yl

(x,y) = s(x,y) +is(x,iy),  s(x,y) 1

We need to verify the three properties that define an inner product. Let x,y,z be
arbitrary vectors in C™ and a € C be an arbitrary scalar.

(1) Positive-definiteness. One has s(x,x) = ||x/|* > 0 and
s, e) = I =l =P 10+ D — (L= o)x)?
4 4
_ (il == i
= y _9,

so that (x,x) = ||x||? > 0, with equality holding precisely when x = 0.
(2) Conjugate symmetry. Since s(x,y) is real, s(x,y) = s(y,x), s(ax,ay) =
|CL|2S(X, Y)a and S(X7 _Y) = —S(X, Y>7

(y,x) = s(y, x)—is(y,ix) = s(x,y) —is(ix,y) = s(x,y) —is(x, =iy) = (X, y).
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(3) Linearity in the first argument. Assuming the parallelogram identity,

1 1 1 1
2s(x,2) + 25(y,2) = Sllx+ 2l = Slla = xI* + Sy + 2l - S 12— I’

1 X+y X-—-Yy 1 X+y X-—-Y 2
_2HZjL > T 2 ||” 7 2 > || *
1 X+y X-—Yy S| X+y X-—Yy 2

2HZJr 2 > 2”2 T
_Z+ﬂ2+ x—y2_ _x+y2_ x—vy|?
B 2 2 2 2

2 2
= Z+x+y — z—Xer
2 2

=4s (X+y,z) ,
2

implying that s(x +y,z) = s(x,2z) + s(y, z). It follows that
(x+y,z) =s(x+y,z)+is(x+y,iz)

s(x,2z) + s(y,z) +is(x,iz) +is(y, iz)

s(x,z) +is(x,iz) + s(y,z) +is(y, iz)

x,z) + (¥, 2).

That (ax,y) = a(x,y) follows, mutatis mutandis, from the proof of Theo-
rem 7.45.

Exercise 7.48: p-norm for p=1 and p =

We need to verify the three properties that define a norm. Consider arbitrary vectors
X = [z1,...,2,)  and y = [y1,...,9,] in R™ and a scalar a € R. First we verify that
Il - |1 is a norm.

(1) Positivity. Clearly ||x||; = |21 +-- -+ |zn| > 0, with equality holding precisely
when |z1| = - -+ = |z,| = 0, which happens if and only if x is the zero vector.
(2) Homogeneity. One has

lax|[y = lazy| + -+ + [awn| = [a|([21] + - - + |zal) = |al[[x]]s.
(3) Subadditivity. Using the triangle inequality for the absolute value,
x4yl = lzityl+ A lentyn] <zt lzal+ynl = [X[+y ]l
Next we verify that || - ||« is & norm.

(1) Positivity. Clearly ||x||oc = max{|z1],...,|xs|} > 0, with equality holding
precisely when |z1| = .-+ = |z,| = 0, which happens if and only if x is the
zero vector.

(2) Homogeneity. One has

laxl[ec = max{|al|z1], ..., |al|zn]} = ol max{[z1],. .., |za]} = |a][[x]|sc.
(3) Subadditivity. Using the triangle inequality for the absolute value,
X + ¥lloo = max{lzy + 1], - 20 + ynl} < max{la] +[yil, - el + [ynl}

< max{lay], . |zal} +max{fyal, o fynl} = [Xlloo + 1Y ]l
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Exercise 7.49: The p-norm unit sphere

In the plane, unit spheres for the 1-norm, 2-norm, and oco-norm are

1
T

0.5F 0.5F 0.5

-0.51

Exercise 7.50: Sharpness of p-norm inequality

Let 1 < p < oo. The vector x; = [1,0,...,0]T € R" satisfies

il = (L + [0 + - -+ [0]") /" = 1 = max{[1[,[0],..., [0]} = [l oo
and the vector x, = [1,1,...,1]T € R" satisfies
eully = (1L + -+ + (1) = 0P = nPmax{[1],..., [1]} = n"/?|[x, -

Exercise 7.51: p-norm inequalities for arbitrary p

Let p and ¢ be integers satisfying 1 < ¢ < p, and let x = [z1,...,2,]T € C". Since
p/q > 1, the function f(z) = 2P/9 is convex on [0,00). For any z1,...,z, € [0,00) and
AL, ..oy A > 0 satisfying Ay + -+ 4+ A\, = 1, Jensen’s inequality gives

n p/q n n n
<Z Aizi) =f (Z >\¢Zi> < Z Nif(z) = Z )\@'zf/q.

In particular for z; = |z;|? and \y = --- =\, = 1/n,
n p/q " g 1
—p/q la _ Tl - p/q -1 |7

Since the function z — /P is monotone, we obtain

n 1/q n 1/p
n x|y = nt <Z ’$i|q> <n P (Z |l’z'!p> =n"P|x|l,,

i=1 i=1
from which the right inequality in the exercise follows.

The left inequality clearly holds for x = 0, so assume x # 0. Without loss of
generality we can then assume ||x||o = 1, since ||ax||, < ||ax||, if and only if ||x||, <
||x||, for any nonzero scalar a. Then, for any ¢ = 1,...,n, one has |z;| < 1, implying
that |z;[P < |x;]9. Moreover, since |z;| = 1 for some ¢, one has |z1]|9 + -+ + |z,]? > 1,
so that

n 1/p n 1/p n 1/q
uxnp:(zw) s(zw) s(Zw) _
=1 =1 =1
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Finally we consider the case p = co. The statement is obvious for ¢ = p, so assume
that ¢ is an integer. Then

n 1/q n 1/q
1xlg = <Z Wq) = (Z HX||20> = n"9|x| s,
i=1

i=1
proving the right inequality. Using that the map # — '/ is monotone, the left
inequality follows from

n
1% = (max[z;[)? < D lwl = 1x]¢.
=1
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CHAPTER 8

Least Squares

Exercise 8.10: Fitting a circle to points
We are given the (in general overdetermined) system
(ti = 1) + (i — c2)* = 12, i=1...,m.

(a) Let ¢ = 21/2, co = w2/2, and r? = x3 + ¢} + 3 as in the Exercise. Then, for
1=1,...,m,

0 — (tz — 01)2 + (yl - 62)2 - T2
T1\2 T\ 2 1) T2)?
(t-3) +(w-3) = (3 2
= t? —+ y? — ;X1 — YTy — T3,

from which Equation (8.5) follows immediately. Once z1, x5, and z3 are determined,
we can compute

1 Ta 1 1
01:5’ C2:7, T:\/Zx%+1$%+$3
(b) The linear least square problem is to minimize ||Ax — b||2, with
vy 1 i+ T
A= 1 1, b = : ) X = |Z2
b Ym 1 tr + Y 3

(¢) Whether or not A has independent columns depends on the data t;,y;. For
instance, if t; = y; = 1 for all 7, then the columns of A are clearly dependent. In
general, A has independent columns whenever we can find three points (¢;,y;) not on
a straight line.

(d) For these points the matrix A becomes

1 41
A=1(3 2 1
1 01

which clearly is invertible. We find

)

-1

o 141 17 2
x=|za| =3 2 1 13| = | 4
2 101 1 ~1

It follows that ¢; = 1, ¢ = 2, and r = 2. The points (t,y) = (1,4),(3,2),(1,0)
therefore all lie on the circle

(t=1°+(y—27°=4
as shown in the following picture.
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Exercise 8.17: The generalized inverse

We let A = U; 3, V! and B = VX, 'U}. Using that UiU; = ViV, =1 and that %,
is diagonal we get

(1) ABA =U, S, ViV, Z['U'U S, Vi = U B, 2'8, Vi =U B, Vi = A
(2) BAB =V, 'UiU, S, ViV 30 = Vi '8 30U = V31U =B
(3)
(BA)" = A'B* = V,Z{UIU (X1 1)'V] = Vi X{(2])" V] = V| V]
BA =V, 'UIU SV = ViS['S, Vi =V, V]
(4)
(AB)" = B"A" = U,(27')"V]ViZ{U; = Uy(2) 81U = U, U;
AB=U%,VIV,3;'Ui = U, 5, 2'U = U, U;

Exercise 8.18: Uniqueness of generalized inverse

Denote the Properties to the left by (15),(25), (35),(45) and the Properties to the
right by (1¢), (2¢), (3¢), (4¢). Then one uses, in order, (25), (45), (1¢), (4¢), (4B),
(23)7 (20)7 (30>7 (33)7 (13)7 (30)7 and (20)

Exercise 8.19: Verify that a matrix is a generalized inverse

Let
1 1
1(1 10
A=]|1 1], B:—[ ]
0 0 411 1 0
be as in the Exercise. One finds
11 1 10
Alellﬁig}:lllO,
0 0|4 210 0 0



11
11 10 111
SRR R
411 1 0 0 0 211 1
so that (AB)* = AB and (BA)* = BA. Moreover,

pu— A_,

O = =

LIy g 1
ABA — A(BA) = |1 1 5{ }: 1
00 0

L1t 1 0] _1[t 10]_g
1141 10 4110

e conclude that B must be the pseudoinverse of A.

1
BAB = (BA)B = 3
By Exercises 8.17 and 8.18, w

Exercise 8.20: Linearly independent columns and generalized inverse

If A € C™" has independent columns then both A and A* have rank n < m. Then,
by Exercise 6.17, A*A must have rank n as well. Since A*A is an n X n-matrix of
maximal rank, it is nonsingular and we can define B := (A*A)~'A*. We verify that
B satisfies the four axioms of Exercise 8.17.

(1) ABA = A(A*A)'A*A = A

(2) BAB = (A*A)'A*A(A*A)'A* = (A*A)"'A* =B

(3) (BA)* = ((A*A)'A*A) =T =1, = (A*A)'A*A = BA

(4) (AB)* = (A(A*A)'A") = A((A*A) 1) Ar

=A(A*A)"'A* = AB

It follows that B = AT. The second claim follows similarly.

Alternatively, one can use the fact that the unique solution of the least squares
problem is Afb and compare this with the solution of the normal equation.

Exercise 8.21: The generalized inverse of a vector

This is a special case of Exercise 8.20. In particular, if u is a nonzero vector, then
u*u = (u,u) = ||ul|? is a nonzero number and (u*u)~'u* is defined. One can again
check the axioms of Exercise 8.17 to show that this vector must be the pseudoinverse
of u*.

Exercise 8.22: The generalized inverse of an outer product

Let A = uv™* be as in the Exercise. Since u and v are nonzero,

. u v*
A=U,3,V]|= Tl [[u]l2]|v]]2] ™

is a singular value factorization of A. But then

\4 [ 1 } u* 1 . A7
- | — va = —.
vl L= fuafly — flafl3]]v(i3 a

AT =V, 31U =
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Exercise 8.23: The generalized inverse of a diagonal matrix

Let A := diag(\1,...,\,) and B := diag(Al,...,Al) as in the exercise. Note that,
by definition, A} indeed represents the pseudoinverse of the number A; for any j. It
therefore satisfies the axioms of Exercise 8.17, something we shall use below. We now
verify the axioms for B to show that B must be the pseudoinverse of A.

(1) ABA = diag(MA Ay, .., A AN = diag(A, ..., ) = A;
(2) BAB = diag A\ AL L XD = diag(A]L .. ) = B;
(3) (BA)* = (diag(AT A1, ..., A \,))* = diag(ATAr, ..., AL A,)

(4) (AB)* = (diag(MAL, ..., AAD))* = diag(M AL . AN

This proves that B is the pseudoinverse of A.

BA
AB

n )
.|.
n .

Exercise 8.24: Properties of the generalized inverse

Let A = UXV* be a singular value decomposition of A and A = U;¥;V] the cor-
responding singular value factorization. By definition of the pseudo inverse, AT :=
V,Z UL

(a) One has (A")* = (V,2;'U)* = U;3;*VZ. On the other hand, the matrix A*
has singular value factorization A* = V;231U%, so that its pseudo inverse is (A*)l :=
U, 3,*V? as well. We conclude that (AT)* = (A*)T.

(b) Since AT := V37U is a singular value factorization, it has pseudo inverse
(AN = (UH*(Z )" Vi =U 5, Vi = A,

(c) Let a # 0. Since the matrix a’A has singular value factorization U;(a3;) V7,
it has pseudo inverse

(@A) =V (aX) Ul = o 'V Z]7'UT = o 1AL

Exercise 8.25: The generalized inverse of a product

(a) From the condition that A has linearly independent columns we can deduce
that n < m. Similarly it follows that n < k, hence n < min{m, k} and both matrices
have maximal rank. As a consequence,

YAl
0

B=Up¥sVy =Us[Ze:1 0] [Ve:1 Vs =UsZE1Vh:,

A =Up3AV, = [Uag Uag] { ] Vi =Ua1¥A1 V)

where 34 1 and ¥Xg; are invertible, and Vo and Ug are unitary. This gives

ATA = V3 UL (Ua1Za1 VA = VaZ 1 Za1 Vi = VA Vi =1
BB’ = Ug¥p1V5, Ve S5 U = UsSp 135U = UgUp = L.

We know already from Exercise 8.17 that (AAT)* = AAT and (B'B)* = B'B. We
now let E := AB and F := BTAf. Hence we want to show that Ef = F. We do that
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by showing that F satisfies the properties given in Exercise 8.17.
EFE = ABB'ATAB=AB =E
FEF = BTATABB'AT = B'AT=F
(FE)* = (B'ATAB)" = (B'B)* = B'B = B'ATAB = FE
(EF)* = (ABB'A")* = (AA")* = AAT = ABB'A' = EF
(b) Let A = u* and B = v, where u and v are column vectors. From exer-
cises 8.21and 8.22 we have that AT = u/||ul|3, and BT = v*/||v||3. We have that
(AB)' = (u'v)" = 1/(u"v) BIAT = vu/(||v]3]ul).
If these are to be equal we must have that (u*v)? = ||v||3||ul|3. We must thus have
equality in the triangle inequality, and this can happen only if u and v are paral-

lel. Tt is thus enough to find u and v which are not parallel, in order to produce a
counterexample.

Exercise 8.26: The generalized inverse of the conjugate transpose

Let A have singular value factorization A = U;¥,V7, so that A* = V;37U7 and
At = V37'U%. Then A* = AT if and only if 3% = X!, which happens precisely
when all nonzero singular values of A are one.

Exercise 8.27: Linearly independent columns
By Exercise 8.20, if A has rank n, then AT = (A*A)"!A*. Then A(A*A)'A*b =
A A'b, which is the orthogonal projection of b into span(A) by Theorem 8.12.
Exercise 8.28: Analysis of the general linear system

In this exercise, we can write

2:{201 8}, S, = diag(o1,...,0,), 01> >0y >0,

(a) As U is unitary, we have U*U = I. We find the following sequence of equiva-
lences.
Ax=b < UXV'x=b «<— U'UX(V'x) =U"b < Xy =c,

which is what needed to be shown.
(b) By (a), the linear system Ax = b has a solution if and only if the system

[o191 C1
>, 0. oy | | e |
{0 o]y_ 0|~ leqa| €
| 0 ] | ¢n ]
has a solution y. Since o1,...,0, # 0, this system has a solution if and only if
Cry1 =+ = ¢, = 0. We conclude that Ax = b has a solution if and only if ¢, =
e =c, = 0.

(¢) By (a), the linear system Ax = b has a solution if and only if the system
3y = ¢ has a solution. Hence we have the following three cases.
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r=n:
Here y; = ¢;/o; for i = 1,...,n provides the only solution to the system
Yy = b, and therefore x = Vy is the only solution to Ax = b. It follows that
the system has exactly one solution.

r<m,c=0fori=r+1 ... n:
Here each solution y must satisfy y; = ¢;/o; for i = 1,...,r. The remaining
Yra1, - - - > Yn, however, can be chosen arbitrarily. Hence we have infinitely many

solutions to Xy = b as well as for Ax = b.

r<n, c¢; #0 for some i with r+1 <1 <mn:
In this case it is impossible to find a y that satisfies ¥y = b, and therefore
the system Ax = b has no solution at all.

Exercise 8.29: Fredholm’s Alternative

Suppose that the system Ax = b has a solution, i.e., b € span(A). Suppose in
addition that A*y = 0 has a solution, i.e., y € ker(A*). Since (span(A))* = ker(A*),
one has (y,b) = y*b = 0. Thus if the system Ax = b has a solution, then we can
not find a solution to A*y = 0, y*b # 0. Conversely if y € ker(A*) and y*b # 0,
then b ¢ (ker(A*))t = span(A), implying that the system Ax = b does not have a
solution.

Exercise 8.32: Condition number

Let

1
A=|1
1

— = O
(op
I
[l
[\V]

be as in the Exercise.
(a) By Exercise 8.20, the pseudoinverse of A is

Al = (ATA) AT = [_1 L 14 |
2

1
L =3

Theorem 8.12 tells us that the orthogonal projection of b into span(A) is

1 0 0] |b 1 2b,
b, := AA'b = |0 % % bo| =5 |b2+ 03],
0 5 3 b3 bQ + bg
so that the orthogonal projection of b into ker(A™) is
0 O 0 b1 1 0
by:=(I-AAb= [0 1 -—1| b =5 | bs]
0 —1 1 b3 by — by

where we used that b = by + bs.

(b) By Theorem 7.15, the 2-norms ||A ||, and ||AT||; can be found by computing the
largest singular values of the matrices A and Af. The largest singular value o; of A is
the square root of the largest eigenvalue \; of ATA, which satisfies

33—\ 4
4 6— M\
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It follows that oy = %\/5\/ 9 4+ +/73. Similarly, the largest singular value oy of AT is
the square root of the largest eigenvalue Ay of AT AT, which satisfies
1 8§ —6 —6
MﬂmM@N—&D:®tZ —6 5 5| —XI
-6 5 5
1
:—§&CM§—9&+1)

Alternatively, we could have used that the largest singular value of AT is the inverse of
the smallest singular value of A (this follows from the singular value factorization). It

follows that o9 = %\/ 9++73 = \/5/\/ 9 — +/73. We conclude

9++73 1
K(A) = [|All, - ||AT]], = = 9++/73) ~ 6.203.
(A) = Al ATl = g = 5 (9+ VD)

Exercise 8.35: Problem using normal equations

(a) Let A, b, and ¢ be as in the exercise. The normal equations ATAx = ATb are

then
3 3+¢ o N
3+e (e+1)°+2 [22]  |T+2e]
If € # 0, inverting the matrix ATA yields the unique solution
2] _ 1 [(e+1)?+2 —3—¢ 7] _ 3+
|Ta| 262 -3 —c 3 T4+ 2| ’

If ¢ = 0, on the other hand, then any vector x = [z1,z]" with z; + 25 = 7/3 is a
solution.

(b) For € = 0, we get the same solution as in (a). For ¢ # 0, however, the solution
to the system

3 3+4e|fm] [ 7T ]
3+e 342 |72] |7+ 2]

2] o 1 [342 —3—¢][ 7 ]_[2-1
h| 2 |-3—¢ 3 7+2e| L

)

18

We can compare this to the solution of (a) by comparing the residuals,

54 1
2 [7] -

T2

1
2 1

1 =
2 0 V2

2

o I

2

which shows that the solution from (a) is more accurate.
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CHAPTER 9

The Kronecker Product

Exercise 9.2: 2 x 2 Poisson matrix

For m = 2, the Poisson matrix A is the 22 x 22 matrix given by

4 -1 -1 0
-1 4 0 -1
-1 0 4 -1
0 -1 -1 4
In every row ¢, one has |a;;| =4 > 2 = [ = 1|+ [ —1[+ 0] = >_,_; |a;;|. In other words,

A is strictly diagonally dominant.

Exercise 9.5: Properties of Kronecker products

Let be given matrices A, A, Ay € RP*Y. B,B,B, € R™*, and C € R™*. Then
(M) @ (1B) = Au(A ® B) by definition of the Kronecker product and since

()\A)/,Lbn (/\A)/Lblg cee ()\A),ubls AbH Ab12 cee Abls

()\A)[,me (/\A)/lbgz tee ()\A),ubgs \ Ab21 Abgg s Abgs
. . . . = Al . . . .

()\A),U/brl ()\A),ubm ce ()\A)/,Lbrs Ab” Aber s Abm

The identity (A + Az) ® B = (A; @ B) + (A3 ® B) follows from

[(A1 + Ag)byr (A1 4+ Ag)bis -+ (A + Ag)byg
(A1 4+ Ao)byr (A1 + Ag)bee - (Ay+ Asg)bas
(A1 +Ao)by (AL +Ag)by -+ (Ay+ Ao)bys
[A1b11 + Agbiy Aybio + Agbia -+ Agbis + Asbys
B Aibyy + Agbyr Ajbay + Agbyy - Agbys + Asbos
| A1br + Agbry Aqbre + Asbrs -+ Aqbrs + Asbys
[A1b11 Aibiy -+ Agbyg Asbir Agbia - Ajbyg
B Aibyy Ajbyy - Agbyg n Agbyr Agbyy -+ Ajgby
_Albrl Albr2 et Albrs AQbrl AQbTQ e A2brs

A similar argument proves A ® (B; + By) = (A ® B1) + (A ® Bs), and therefore the
bilinearity of the Kronecker product. The associativity (A ® B) @ C = A ® (B® C)
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follows from

[Ab;; -+ Aby,
= : : ® C
_Abrl e Abrs
[ Abyicy - Abisenn Abjicry 0 Abiscry ]
Abrlcll T Abrscll Abrlclu T Abrsclu
Abyicn -+ Abisen Abiicy, -+ Abiscy
L Abrlctl T Abrsctl Abrlctu e Abrsctu |
[ biicii -+ bisen biiciy -+ bisciy ]
brlcll T b'rscll brlclu T brsclu
=A®
biicn -+ bisca biicr -+ biscu,
| brlctl e brsctl brlctu e brsctu |
_BCH s BClu
=A®| :
| Bein -+ By,

Exercise 9.9: 2nd derivative matrix is positive definite

Applying Lemma 1.31 to the case that a = —1 and d = 2, one finds that the eigenvalues
A; of the matrix tridiag(—1,2,—1) € R™™ are

Aj = d + 2acos I =2(1-—cos I ,
m—+ 1 m+1

for j =1,...,m. Moreover, as |cos(z)| < 1 for any x € (0, ), it follows that A\; > 0 for
j =1,...,m. Since, in addition, tridiag(—1,2, —1) is symmetric, Lemma 3.16 implies
that the matrix tridiag(—1,2, —1) is symmetric positive definite.

Exercise 9.10: 1D test matrix is positive definite?

The statement of this exercise is a generalization of the statement of Exercise 9.9.
Consider a matrix M = tridiag(a,d,a) € R™™ for which d > 0 and d > 2|a|. By

Lemma 1.31, the eigenvalues \;, with j = 1,...,m, of the matrix M are
Aj = d + 2acos <L> .
m+ 1

If a = 0, then all these eigenvalues are equal to d and therefore positive. If a # 0, write
sgn(a) for the sign of a. Then

Aj > 2|al {1 + |%|cos (mj—:zl>] = 2lal [1 + sgn(a) cos (m]—il)} > 0,
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again because |cos(z)| < 1 for any = € (0,7). Since, in addition, M is symmetric,
Lemma 3.16 again implies that M is symmetric positive definite.

Exercise 9.11: Eigenvalues for 2D test matrix of order 4

One has
2d a a O 1 2d + 2a 1
a 2d 0 a 1 2d + 2a 1
AX=10 0 24 al 1] T |2ds 2| = @d+20) 1] =A%,
0 a a 2d| |1 2d + 2a 1

which means that (\,x) is an eigenpair of A. For j = k = 1 and m = 2, Property 1.
of Theorem 9.8 implies that

3/4

Vv3/2] _ [V3/2] _ |3/4

X1,1 =81 ®s; = [\/5/2 ® \/5/2 = |3/4

3/4

Equation (9.15), on the other hand, implies that

X

—
I
»

A1 = 2d + 4acos <g> = 2d + 2a = .
We conclude that the eigenpair (A, x) agrees with the eigenpair (A11,%11).

Exercise 9.12: Nine point scheme for Poisson problem

(a) If m = 2, the boundary condition yields

Voo Vor Vo2 Vo3 0000
V10 V13| 0 0
V20 V23 N 0 0]’
V3o V31 U3z Uss 0O 00O

leaving four equations to determine the interior points vi1, Vi, Vo1, U2e. As 6h%/12 =
1/(2(m +1)%) = 1/18 for m = 2, we obtain

20011 — 4vgr — 4vig — 4var — 4vig — Voo — V20 — Vo2 — Va2

= 1—18(8f11 + for + fio + for + fi2),

20091 — 4v11 — 4vgg — 4vsy — 4vgg — V19 — V39 — V12 — V32

= %8<8f21 + fi1 + fao + fa1 + f22)7

20012 — 4vga — 4v11 — 4vag — 4viz — Vo1 — V21 — Vo3 — Va3

:%@m+ﬁﬁﬁh+m+ﬁ%

20099 — 4v1g — 4vgy — 4vsy — 4v3 — V11 — V31 — V13 — Us3
1
= 1_8(8f22 + fi2 + fo1 + fa2 + fo3),

Using the values known from the boundary condition, these equations can be simplified
to

! 8f11 + for + fio + for + fi2),

20 —4 —4 — = —
V11 V21 V12 — V22 18(
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1

20v91 — 4v1y — 4vgy — V12 = 1—8(8f21 + fi1 + fao + fa1 + fo2),
1

20012 — 4v1 — 4vgy — vy = 1—8(8f12 + foo + fi1 + foo + fi3),
1

20099 — 4v1g — 4V — V11 = E

(8f22 + fra + far + fao + fo3).
(b) For f(z,y) = 272 sin(nx) sin(ry), one finds

[ foo for fo2 Jfos 0 0 0 0
fio fu e fis| _ |0 37%/2 3m%/2 0
fa0 for fo2 fas 0 37%/2 3m%/2 0
| fa0 fa1 fs2 fas 0 0 0 0
Substituting these values in our linear system, we obtain
(20 —4 —4 —1] [vy 1 572 /6
-4 20 -1 —4| |v| _ 8+14137% |1]| _ |57%/6
—4 -1 20 —4| |vi2| 18 2 1| — |57?/6
_—1 -4 —4 20 V29 1 57T2/6

Solving this system we find that vy; = viy = vo; = v9y = 572 /66.

Exercise 9.13: Matrix equation for nine point scheme

(a) Let

Vi1 - Uim

-1 ) -1 Um1 * Umm
0 -1 2|

be of equal dimensions. Implicitly assuming the boundary condition

(*) Vo.k = Um+1,k = V5,0 = Vjm+1 = 0, for g, k=0,....m+1,
the (4, k)-th entry of TV + VT can be written as
AVj g — Vj—1k = Vjt1k = Vjk—1 — Ujk1-

(Compare Equations (9.4) — (9.5).) Similarly, writing out two matrix products, the
(7, k)-th entry of TVT = T(VT) is found to be

—1(=1vj1 41 2051 —1vj_1 k1) +Uj_1 k-1 —20j_1k tUj_1 k41
+2(=1vjp-1 +205  —lvjkr) = 20010 v —20540
—1(—1vjp16-1 205016 —1Vj41k41) tUjp1k-1 —2Vj4016  TU1LR4

Together, these observations yield that the System (9.17) is equivalent to (x) and
1
TV + VT — 6TVT = h?uF.

(b) It is a direct consequence of properties 7 and 8 of Theorem 9.7 that this equation
can be rewritten to one of the form Ax = b, where

1
A:T®I+I®T—6T®T, x =vec(V), b= h?vec(uF).
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Exercise 9.14: Biharmonic equation
(a) Writing v = —Vu, the second line in Equation (9.19) is equivalent to
u(s,t) =wv(s,t) =0, for (s,t) € 01,
while the first line is equivalent to
f(s,t) = V?u(s,t) = V*(Vu(s, 1)) = —Vu(s, ), for (s,t) € S
(b) By property 8 of Theorem 9.7,
(A®I+1®B)vec(V) =vec(F) <= AV + VB! = F,
whenever A € R”", B € R** F,V € R"* (the identity matrices are assumed to be of
the appropriate dimensions). Using T = TT, this equation implies
TV + VT = I’F <= (T @I+ 1® T)vec(V) = h’vec(F),
TU 4+ UT = h*V <= (T @I+ 1® T)vec(U) = h?vec(V).

Substituting the equation for vec(V) into the equation for vec(F), one obtains the
equation

Avec(U) = h'vec(F), where A .= (T®I+1® T)?

which is a linear system of m? equations.
(c) The equations h*V = (TU + UT) and TV + VT = h2F together yield the
normal form

T(TU + UT) + (TU + UT)T = T?U + 2TUT + UT? = r'F.

The vector form is given in (b). Using the distributive property of matrix multiplication
and the mixed product rule of Lemma 9.6, the matrix A = (T® I+ I® T)? can be
rewritten as

A=(TRI)TRD)+(TRDI®T)+ (I T)(TeI) + 1 T)IxT)

=T?’QRI+2TT+1I® T

Writing x := vec(U) and b := h'vec(F), the linear system of (b) can be written as
Ax =b.

(d) Since T and I are symmetric positive definite, property 6 of Theorem 9.7 implies
that M .= T® I+ I® T is symmetric positive definite as well. The square of any
symmetric positive definite matrix is symmetric positive definite as well, implying
that A = M? is symmetric positive definite. Let us now show this more directly by
calculating the eigenvalues of A.

By Lemma 1.31, we know the eigenpairs ()\;,s;), where i = 1,...,m, of the matrix
T. By property 5 of Theorem 9.7, it follows that the eigenpairs of M are (\;+);, s;®s;),
fori,5 =1,...,m. If B is any matrix with eigenpairs (y;, v;), where i = 1,... m, then
B? has eigenpairs (u?,v;), as

B%v; = B(Bv;) = B(p:vi) = mi(Bvi) = piv, fori=1,....m.

It follows that A = M? has eigenpairs ((A; + A;)?,s; ® s;), for i,5 = 1,...,m. (Note
that we can verify this directly by multiplying A by s;®s; and using the mixed product
rule.) Since the \; are positive, the eigenvalues of A are positive. We conclude that A
is symmetric positive definite.
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Writing A = T? @I+ 2T ® T + I ® T? and computing the block structure of each
of these terms, one finds that A has bandwidth 2m, in the sense that any row has at
most 4m + 1 nonzero elements.

(e) One can expect to solve the system of (b) faster, as it is typically quicker to
solve two simple systems instead of one complex system.
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CHAPTER 10

Fast Direct Solution of a Large Linear System

Exercise 10.5: Fourier matrix

The Fourier matrix F has entries

1) (k— _2m; 2m .. (27
(Fn)jp = W](\jf D=, wy =€ N'=cos <N) — ¢sin (W) .

In particular for N = 4, this implies that w, = —¢ and
11 1 1
1 —i =1 1
Fo=ly o1 1 4
1 ¢ =1 —i

Computing the transpose and Hermitian transpose gives
11 1 1 11 1 1
1 —i =1 1 1 7« =1 —
T _ _ H _
Fo=11 1 1 g =F Fi=p oy | 7P
1 ¢ =1 — 1 —i =1 1

which is what needed to be shown.

Exercise 10.6: Sine transform as Fourier transform

According to Lemma 10.2, the Discrete Sine Transform can be computed from the
Discrete Fourier Transform by (S,,x)r = 5(F2m422)r+1, where

T
z=100,21,. ., Cm, 0, =Ty, ..., — 21| .

For m = 1 this means that
Z — [0, x1, 0, —Il]T and <81X)1 = %(F4Z)2.

Since h = m;—l-l = % for m = 1, computing the DST directly gives

(S1x); = sin(wh)z; = sin (g) T = 11,

while computing the Fourier transform gives

1 1 1 1 0 0 0
{1 = =1 Ty | | =21y | o | )
¥,z = 1 -1 1 -1 0 = 0 = - 0 = —2iz.
1 ) -1 — —X1 2@1’1 —T1

Multiplying the Fourier transform with %, one finds %F4z = z, so that %(F4z)2 =1 =
(S1x)1, which is what we needed to show.
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Exercise 10.7: Explicit solution of the discrete Poisson equation
For any integer m > 1, let h = 1/(m +1). For j = 1,...,m, let \; = 4sin® (j7rh/2),
D = diag(Ay,..., A\n), and S = (s;)jk = (sin(jkmh))jk. By Section 10.2, the solution

to the discrete Poisson equation is V = SXS, where X is found by solving DX+ XD =
4h*SFS. Since D is diagonal, one has (DX + XD),, = (A, + A;)Zpr, so that

SFS),, T = Spk friSir
.= 4h4<—” = 4h* SELUS
Ty M+ A ;; A+ A

so that

p=1 r=1 p=1 r=1 k=1 [=1 P T
m m m m ipT pkm_ lrm rjm
g Z Z Z Z sin <m+1) SN ( +1) sSin (m—i—l) S (m+1) fu
= 9
-2 pT 12 s
p=1 r=1 k=1 I=1 Si 2(m+1)> + sin (2(m+1)>

which is what needed to be shown.

Exercise 10.8: Improved version of Algorithm 10.1
Given is that
(%) TV + VT = h*F.

Let T = SDS™! be the orthogonal diagonalization of T from Equation (10.4), and
write X = VS and C = h*FS.

(a) Multiplying Equation (x) from the right by S, one obtains
TX + XD =TVS +VSD =TVS + VTS = i’FS = C.

(b) Writing C = [cy,...,Cp), X = [X1,...,X,,] and applying the rules of block
multiplication, we find

[c1,...,¢n] = C
= TX+ XD
= T[xy,...,Xn] + X[Ner, ..., \nen)
= [Tx;+ M Xey,...,Tx,, + A\, Xe,]
= [Tx;+ Mx1,. .., TXp + AnXon]
= [(T+MDxq,....(T+ A\ I)xy),

which is equivalent to System (10.9). To find X, we therefore need to solve the m
tridiagonal linear systems of (10.9). Since the eigenvalues \i,..., )\, are positive,
each matrix T + M\;I is diagonally dominant. By Theorem 1.24, every such matrix
is nonsingular and has a unique LU factorization. Algorithms 1.8 and 1.9 then solve
the corresponding system (T + A\;I)x; = ¢; in O(dm) operations for some constant d.
Doing this for all m columns xy, . . ., X,,, one finds the matrix X in O(dm?) operations.

(c) To find V, we first find C = h*FS by performing O(2m?) operations. Next we
find X as in step b) by performing O(dm?) operations. Finally we compute V = 2hXS
by performing O(2m?) operations. In total, this amounts to O(4m?®) operations.
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(d) As explained in Section 10.3, multiplying by the matrix S can be done in
O(2m? log, m) operations by using the Fourier transform. The two matrix multiplica-
tions in ¢) can therefore be carried out in

O(4ym?log, m) = O(4ynlog, n'/?) = O(2ynlog, n)

operations.

Exercise 10.9: Fast solution of 9 point scheme

Analogously to Section 10.2, we use the relations between the matrices T, S, X, D to
rewrite Equation (9.18).

TV +VT — %TVT = h*uF
TSXS + SXST — éTSXST = h*uF

STSXS? 4+ S*XSTS — %STSXSTS = h*uSFS

[N

S?DXS? 4+ S*XS’D — éSzDXSQD = h*uSFS

1
= DX + XD — 6DXD = 4h*uSFS = 4h*G

Writing D = diag(Aq, ..., A\m), the (4, k)-th entry of DX + XD — %DXD is equal to
ATk + TjpAp — %/\jxjk/\k- Isolating zj; and writing \; = 40, = 4sin®*(jwh/2) then

yields
J /\j—f—)\k—%/\j)\k O'j—i-O'k—%O'jO'k’ J 2 '

Defining « := jwh/2 and § = kwh/2, one has 0 < «, 8 < 7/2. Note that

2
0j+ 0 — 500 >0+ 0 — 00

’ =2 —cos’a — cos® B — (1 — cos® a)(1 — cos® B)
=1 —cos?acos’ 8
>1— Cos26
> 0.

Let A=T®I+I®T— T ®T be as in Exercise 9.13.(b) and s; as in Section
10.2. Applying the mixed-product rule, one obtains

1
Alsi®s;) = (TRL+I®T)(si ®s;) — (TRT)(s: ®sy) =
1 1
()\z + )\j)<si ® Sj) — 6 6)‘@)‘]>(Sz &® Sj)-

The matrix A therefore has eigenvectors s; ® s;, and counting them shows that these
must be all of them. As shown above, the corresponding eigen values \; + \; — é)\Mj
are positive, implying that the matrix A is positive definite. It follows that the System
(9.17) always has a (unique) solution.

)\1’)\]’<Si X Sj) = <)\z + )‘j —
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Exercise 10.10: Algorithm for fast solution of 9 point scheme

The following describes an algorithm for solving System (9.17).

Algorithm 1 A method for solving the discrete Poisson problem (9.17)

Require: An integer m denoting the grid size, a matrix pF € R™™ of function values.
Ensure: The solution V to the discrete Poisson problem (9.17).
Rt
: S« (sin(jk7h))7,
: ith\\ ™
DO (51112 (]T))j:1
: G < SpFS
X (—h4“”’j )

2
0'1'+0'j7§0'1'0'j

: V + SXS

3

jk=1

For the individual steps in this algorithm, the time complexities are shown in the
following table.

step 1 2 3 4 5) 6
complexity — O(1) O(m?) O(m) O(m?) O(m?) O(m?)

Hence the overall complexity is determined by the four matrix multiplications and
given by O(m?).

Exercise 10.11: Fast solution of biharmonic equation

From Exercise 9.14 we know that T € R™*™ is the second derivative matrix. According
to Lemma 1.31, the eigenpairs (\;,s;), with j =1,...,m, of T are given by
s; = [sin(j7h),sin(2j7h), ..., sin(mjrh)]",
Aj =2 —2cos(jrh) = 4sin®*(jrh/2),
and satisfy sis, = d;,/(2h) for all j, k, where h := 1/(m + 1). Using, in order, that
U = SXS, TS = SD, and S? =1/(2h), one finds that
h'F = T*U + 2TUT + UT?
h'F = T?SXS + 2TSXST + SXST*
h'SFS = ST?’SXS? + 2STSXSTS + S*°XST*S
h'SFS = S*’D*XS? + 28°DXS’D + S°XS°D?
h*SFS = ID*X1/(4h?) + 2IDXID/(4h*) 4+ IXID?/(4h*)
4h°G = D*X + 2DXD + XD?,
where G := SFS. The (j, k)-th entry of the latter matrix equation is
Ah g = Nwji, + 22Xz, + T Ah = (N + M)

rerue

Writing o := sin®(jwh/2) = \;/4, one obtains
4h°gin 4h°gji _ hg
(A + Ak)? (4sin®(jmwh/2) + 4sin2(k7rh/2))2 Aoj + on)?

ZL’jk =
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Exercise 10.12: Algorithm for fast solution of biharmonic equation

In order to derive an algorithm that computes U in Problem 9.14, we can adjust
Algorithm 10.1 by replacing the computation of the matrix X by the formula from
Exercise 10.11. This adjustment does not change the complexity of Algorithm 10.1,
which therefore remains O(én*?). The new algorithm can be implemented in Matlab as
in Listing 10.1.

function U = sinplefastbiharmonic(F)
m = length(F);
h =1/@1);
hv = pixhx (1:m)’;
sigma = sinhv/2) ."2;
S = sin(w (1:m));
G = S*F%S;
X = (h"6)+G./ (4* (sigmaxones(1,m) tones (m, 1) xsigmd ) . "2);
U = zeros (m+-2,m+2) ;
U(2:mtl, 2:mtl) = SxX4S;
end

Listing 10.1. A simple fast solution to the biharmonic equation

Exercise 10.13: Check algorithm for fast solution of biharmonic equation

The Matlab function from Listing 10.2 directly solves the standard form Ax = b
of Equation (9.21), making sure to return a matrix of the same dimension as the
implementation from Listing 10.1.

function V = standardoiharmonic(F)
m = length(F) ;
h=1/@1);
T = gallery('tridiad, m, -1, 2, -1);
A =kron(T"2, eye(m)) + 2+kron(T,T) + kron(eye(m),T"2);
b =h."4+(:);
x = A\b;
V = zeros (mt+2, m+2);
V(2:mtl, 2:mtl) = reshape(x,m,m) ;
end

Listing 10.2. A direct solution to the biharmonic equation

After specifying m = 4 by issuing the command F = ones (4,4), the com-
mands simplefastbiharmonic (F) and standardbiharmonic (F) both return
the matrix

0 0 0 0 0 07

0.0015 0.0024 0.0024 0.0015

0.0024 0.0037 0.0037 0.0024

0.0024 0.0037 0.0037 0.0024

0.0015 0.0024 0.0024 0.0015
0 0 0 0
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For large m, it is more insightful to plot the data returned by our Matlab functions.
For m = 50, we solve and plot our system with the commands in Listing 10.3.

F = ones(50, 50);

U = simplefastbiharmonic(F) ;
V = standardbiharmmonic(F) ;
surf U) ;

surf (V) ;

Listing 10.3. Solving the biharmonic equation and plotting the result

simplefastbiharmonic standardbiharmonic
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On the face of it, these plots seem to be virtually identical. But exactly how close are
they? We investigate this by plotting the difference with the command surf (U-V),
which gives

simplefastbiharmonic minus standardbiharmonic

x 10

g \
AT
s
,.tﬂ"/lﬂmml lll) %% 0‘ 0’ “
i

I“HH{""““""

We conclude that their maximal difference is of the order of 10~'*, which makes them
indeed very similar.
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CHAPTER 11

The Classical Iterative Methods

Exercise 11.12: Richardson and Jacobi

If aj3 = -+ = apy, = d # 0 and o = 1/d, Richardson’s method (11.18) yields, for
1=1,...,n,
. L1 - .
Xp1 (i) = Xp(2) + p (bi - “ijxk(J))
j=1
1 o .
= a ka(Z) - jzl(lijxk(]> + bz

= ai (aiixk<i> - Z ai;xp(j) + bz‘)
= ai” (—Zaz-ij(j) — ) apx(l) + bz’) ;

j=1 j=i+1
which is identical to Jacobi’s method (11.2).

Exercise 11.13: Convergence of the R-method when eigenvalues have
positive real part

We can write Richardson’s method as x;y1 = Gx; + ¢, with G =1 — aA, c = ab.
We know from Theorem 11.9 that the method converges if and only if p(G) < 1. The
eigenvalues of I — aA are 1 — a);, and we have that

|1 — Oé)\j|2 =1 + 062|/\j|2 — 204%()‘]) =1 + CY2|>\j|2 — 206Uj.

This is less than 1 if and only if a?|)\;|> < 2cu;. This can only hold if a > 0, since
u; > 0. Dividing with @ we get that a|\;|* < 2u;, so that a < 2u;/|\;|* (since |\;] > 0
since u; # 0). We thus have that p(G) < 1 if and only if o < min;(2u;/|);|?), and the
result follows.

Exercise 11.16: Example: GS converges, J diverges

The eigenvalues of A are the zeros of det(A — AI) = (=A+2a + 1)(A +a — 1)%. We
find eigenvalues \; := 2a + 1 and Ay := 1 — a, the latter having algebraic multiplicity
two. Whenever 1/2 < a < 1 these eigenvalues are positive, implying that A is positive
definite for such a.
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Let’s compute the spectral radius of G; = I—D™'A, where D is the diagonal part
of A. The eigenvalues of G are the zeros of the characteristic polynomial

A —a —a
det(G; — M) = |—a —X\ —a|=(=)\—2a)(a—\)?
—a —a —A

and we find spectral radius p(G ;) = max{|al, |2a|}. It follows that p(G ;) > 1 whenever
1/2 < a < 1, in which case Theorem 11.9 implies that the Jacobi method does not
converge (even though A is symmetric positive definite).

Exercise 11.17: Divergence example for J and GS

We compute the matrices G; and Gy from A and show that that the spectral radii
p(Gj), p(G1) > 1. Once this is shown, Theorem 11.9 implies that the Jacobi method
and Gauss-Seidel’s method diverge.

Write A =D — A, — Ay as in the book. From Equation (11.12), we find

1 0] [1 o]t 2 0 -2
Sl 1 A | R K
! J 0 1] [0 1|3 4 -3 0

G =I-M;'A=T-(D-A;)'A= [1 0} _[1 0
4

0 1
o -2
=lo 3|

From this, we find p(G;) = 1/3/2 and p(G;) = 3/2, both of which are bigger than 1.

Exercise 11.18: Strictly diagonally dominance; The J method

If A = (aj;)i; is strictly diagonally dominant, then it is nonsingular and a1, .. ., Gpy 7#
0. For the Jacobi method, one finds

[0 _G12  _ a3 ., __Gin]

arl aili ail

__ 21 0 _G23 ., __Q2n

a2 a22 a2

_ . 1A _ | @1 __as 0 ... __G3n
G =1-diag(aii,...,an) A= a3 33 a3

_ 81 __Gn2 __ 4n3 0

L Qann ann Ann .

By Theorem 7.15, the oo-norm can be expressed as the maximum, over all rows, of
the sum of absolute values of the entries in a row. Using that A is strictly diagonally
dominant, one finds

|Gl = max >

J#i

= max —Z#J il < 1.
1<i<n |ag]

CLZ']‘
Qg

As by Lemma 7.14 the co-norm is consistent, Corollary 11.8 implies that the Jacobi
method converges for any strictly diagonally dominant matrix A.

67



Exercise 11.19: Strictly diagonally dominance; The GS method

Let A= —A; +D — Agr be decomposed as a sum of a lower triangular, a diagonal,
and an upper triangular part. By Equation (11.3), the approximate solutions x; are
related by

DXk+1 = ALXk+1 + ARXk- +b

in the Gauss Seidel method. Let x be the exact solution of Ax = b. It follows that
the errors ¢, := x; — x are related by

Depiy = Apegp1 + Ageg.
Let r and r; be as in the exercise. Let k > 0 be arbitrary. We show by induction that
(%) lexc1 ()] < 7ll€k]] oo for j =1,2...,n.
For 5 =1, the relation between the errors translates to

lerr1 ()] = lan| ™ [—a2ex(2) = - = arner(n)| < rilexlloo < 7léx]|oo-

Assume that Equation (%) holds for 1,...,7 — 1. The relation between the residuals
then bounds |ex11(j)] as

laj;| ™ —ajins1 (1) — - — a1 — 1) — ajjmen(i + 1) — -+ — ajnen(n)]

< rymax{rlex|loo, lerlloc} = ll€xlloc < 7ll€rlloo-

Equation (x) then follows by induction, and it also follows that ||€xi1]lc0 < 7]|€k] o0
If A is strictly diagonally dominant, then » < 1 and

lim |lexlloe < [l€0]/oe lim 7% = 0.

k—o00 k—o0
We conclude that the Gauss Seidel method converges for strictly diagonally dominant
matrices.

Exercise 11.23: Convergence example for fix point iteration

We show by induction that x;(1) = xx(2) = 1 —a* for every k > 0. Clearly the formula
holds for k = 0. Assume the formula holds for some fixed k. Then

 Gxptc— 0 a][1—aF n 1—al [1—a*!
Xp41 = GXp T C = a 0l 11 =gk 1—al = |1=gr|>

It follows that the formula holds for any & > 0. When |a| < 1 we can evaluate the limit

lim x;(i) = lim 1 —a* =1 — lim " =1, fori=1,2.
k—ro0 k—o0 k—o0
When |a| > 1, however, |xx(1)| = |x1(2)| = |1 — a*| becomes arbitrary large with & and

limy, 00 Xg(7) diverges.

The eigenvalues of G are the zeros of the characteristic polynomial A2 — a? =
(A—a)(A+a), and we find that G has spectral radius p(G) = 1 —n, where n := 1 —|a|.
Equation (11.31) yields an estimate k& = log(10)s/(1 — |a|) for the smallest number
of iterations k so that p(G)* < 107%. In particular, taking a = 0.9 and s = 16, one
expects at least k = 1601og(10) ~ 368 iterations before p(G)* < 107'6. On the other
hand, 0.9* = |a|* = 107° = 10716 when k = 350, so in this case the estimate is fairly
accurate.
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Exercise 11.24: Estimate in Lemma 11.22 can be exact

As the eigenvalues of the matrix G are the zeros of A2 —1/4 = (A—1/2)(A+1/2) = 0,
one finds the spectral radius p(G ) = 1/2. In this example, the Jacobi iteration process

is described by
2017 :
’ c= 0 2 1 5 )

O

Xp+1 = Gyxy +c, G;= [

= O

The initial guess

=

satisfies the formula x;,(1) = x,(2) = 1 —27% for k = 0. Moreover, if this formula holds
for some k > 0, one finds

0 if[1—-27k z 1 —2-(k+D)
Xpt1 = Gyxp +c = [% (2)} L _ 2_4 + [%] = L _9—(k+1) |

which means that it must then hold for £ 4+ 1 as well. By induction we can conclude
that the formula holds for all £ > 0.

At iteration k, each entry of the approximation x; differs by 27* from the fixed
point, implying that ||ex[l.c = 27%. Therefore, for given s, the error |lex]|ec < 107¢
for the first time at k& ~ slog(10)/log(2). The bound —slog(10)/log(p(G)) gives the

salne.

Exercise 11.25: Slow spectral radius convergence

In this exercise we show that the convergence of
lim || A*|Y*
k—o00

can be quite slow. This makes it an impractical method for computing the spectral
radius of A.
(a) The Matlab code

n=2>5
a=10
1=0.9

for k = n—1:200
L(k) = nchoosek(k,n—1)*a" (1) *1~ (k-n+1) ;
end

stairs(L)

yields the following stairstep graph of f:
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The command max (L) returns a maximum of ~ 2.0589 - 10" of f on the interval
n —1 <k <200. Moreover, the code

k=n1;
while nchoosek (k, n=1) xa” (n—=1) x1” (k=+1) >= 10" (-8)
k=k+1;

end

k

finds that f(k) dives for the first time below 107® at k& = 470. We conclude that the
matrix A* is close to zero only for a very high power k.
(b) Let E = E; := (A — MI)/a be the n x n matrix in the exercise, and write

Ek — |:g InO—k:| c RV,

Clearly E* = E;, for k = 1. Suppose that EF = E;, for some & satisfying 1 < k <n—1.
Using the rules of block multiplication,
IEk-Fl — Iaklal

_ [ On—tke | Tni } { 0p,1 5 I | O }

| PP
Ok | Okt 0n—k k+1 \ Orm k1

- Onfk,kJrl‘ Lk
Ok kt1 ‘Ok,nfkfl
=Epq.

Alternatively, since

(1 ifj=i+1, o 1 itj=i+k,
(E)i; = { 0 otherwise, (E%)i; = { 0 otherwise,

70



one has

(EFY);; = (B*E);; = Z(Ek)w(E)éj = (E"iirk(E)isny =1+ (B)isn,

1 ifj=i+k+1,
0 otherwise,

By induction we conclude that E¥ = E; for any k satisfying 1 < k < n, with the
convention that E" = E, = 0,,,,. We summarize that the matrix E is nilpotent of
degree n.

(c) Since the matrices E and I commute, the binomial theorem and (b) yield

min{k,n—1}

AP =(@E+ M) = ) (E)AkﬁﬂEW

J=0 J
Since (E?);,, =0for 1 <j <n—2and (E" ')y, =1, it follows that
min{k,n—1}

W= > (S, = (5 et = s,

= J n—1
which is what needed to be shown.

Exercise 11.31: A special norm

We show that || - ||; inherits the three properties that define a norm from the operator
norm || - ||;. For arbitrary matrices A, B and scalar a, we have
(1) Positivity. One has ||B]|; = |D;U*BUD;"|; > 0, with equality holding
precisely when D,U*BUD; " is the zero matrix, which happens if and only if
B is the zero matrix.
(2) Homogeneity. For any scalar a € C,

laB|l; = [|aD;U"BUD; *[|, = |a| - [D;U"BUD; " || = |a| - |[B]}:.
(3) Subadditivity. One has
IA + B, = [|D,U*(A + B)UD; '
< |D,U*AUD;|; + |D,U*BUD; |
= [[Alle + 1Bl

Since || - ||1 is an operator norm, it is consistent. For any matrices A, B for which the
product AB is defined, therefore,

|ABJ|, = |[D,U*ABUD; ||,
— |ID,U*AUD; 'D,U*BUD. ||,
< ||D,U*AUD; | ||D,U*BUD; ||,
= [|A[|:|B]:,

proving that || - ||; is consistent.

Exercise 11.33: When is A + E nonsingular?

Suppose p(A™'E) = p(A7'(—=E)) < 1. By part 2 of Theorem 11.32, I + A~'E is
nonsingular and therefore so is the product A(I+ A7'E) = A + E.
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CHAPTER 12

The Conjugate Gradient Method

Exercise 12.1: A-norm

Let A = LL* be a Cholesky factorization of A, i.e. L is lower triangular with positive
diagonal elements. The A-norm then takes the form [|x|]|a = VXTLL xx = ||L*x||.
Let us verify the three properties of a vector norm:

(1) Positivity: Clearly ||x||a = |[|L*x|| > 0. Since L* in nonsingular, ||x|a =
|L*x|| = 0 if and only if L*x = 0 if and only if x = 0.
(2) Homogeneity: [lax|4 = [[L*(ax)[| = [[aL"x[| = |a[[|L*(x)]] = |al||x[|a-

(3) Subadditivity:
Ix+ylla =L (x+y)l = [Lx+ L]
< x|+ Ly [F = lixlla + llylla-

Exercise 12.2: Paraboloid

Given is a quadratic function Q(y) = 3y"Ay — b'y, a decomposition A = UDU™

with UTU =T and D = diag(\y, ..., \,), new variables v = [vy, ..., v,]" := UTy, and
a vector ¢ = [cy, ..., c,|T := Ub. Then

1 1 1 < a
Qly) = 2yTUDUTy —bly = §VTDV —clv= 5 Z Ajus — Z cjv;,
=1

j=1
which is what needed to be shown.

Exercise 12.5: Steepest descent iteration

In the method of Steepest Descent we choose, at the kth iteration, the search direction
Pr = rr = b — Ax; and optimal step length

I‘Erk
riAry

Given is a quadratic function

Qe =yl dalrl vl a2 ] e=])),

and an initial guess xo = [—1, —1/2]" of its minimum. The corresponding residual is

v ][4 ][5

Performing the steps in Equation (12.7) twice yields

U R 70 B Crfre 9/4 1
RS [ RN St

72

ap =



= e+ [0 =[] m =[5 0] - o
i E AR P e ot

o T e P R e e P A R K |

Moreover, assume that for some &k > 1 one has

a1 i [1] [0
(*) t2k—2 =3- 41 F [_1/2:| ) Xok—1 = —4 F |:2- ) Top—1 = 3-4 F [1:| )

R It 2
(**) t?k—l_3'4 |:2 ) X2k’__4 1/2 ) er—3'4 0 .

Then
o k| 2 =1 L/2) o gy | 1
emsa [3 2] P oo [ 1]

ro o, 9472 (32

1
rQTthk n 9 * 4_2k N % B 5’

x| 1 1 x| 1/2 _ 1
e e [ .

1
Foper =3 47" {1/21 R { ! } — 3.4+ [O] 7

Qo =

0 9 ~1/2 1
~ 2 —1] 70 ~ ~1
t2k+1=3‘4(k+1){_1 2]{1]:3-4@*”{2],
o . r2Tk+1r2k+1 R 42(k+1) 1
T T b 9-4720FD 2 T 2
_ 1~ (k+D) 1 l —(k+1) 0 —(k+1) 1
~rn |0 _ L g g | (k41 |1/2
r2k+2:3-4 1 —534 2 =3-4 0 5

Using the method of induction, we conclude that (%), (%), and oy = 1/2 hold for any
k> 1.

Exercise 12.8: Conjugate gradient iteration, 11
Using x¢ = 0, one finds
(b — Axo)T(b — Axq) b’b

_ b— Axg) = ——b.
X1 = X0+ T A TA (b = Alxg) P T AX0)
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Exercise 12.9: Conjugate gradient iteration, III

By Exercise 12.8,

_ b 970) _To
LT RTAL D 18 |3 T |3/2]

We find, in order,

o N
Po =To = 37 CYO_§7I.1_ 07
1 3 2 1
5021, Plz{é], @1=§,X2=[2]-

Since the residual vectors rg, ri, ro must be orthogonal, it follows that ro = 0 and x5
must be an exact solution. This can be verified directly by hand.

Exercise 12.10: The cg step length is optimal

For any fixed search direction py, the step length «ay is optimal if Q(xy1) is as small
as possible, that is

Q(Xr11) = Q(Xk + pr) = glelﬂg f(a),
where, by (12.4),

(@) = Q(xu +apy) = Qx) — apiri + Sapf Apy

is a quadratic polynomial in . Since A is assumed to be positive definite, necessarily
pLAp;, > 0. Therefore f has a minimum, which it attains at

. pErk

B p;prk'
Applying (12.16) repeatedly, one finds that the search direction py for the conjugate
gradient method satisfies

T T T
P.=Tr+ 5 ———Pr1=Trpr+ 7 ——— |\Th-1 T+ 7 - Pr2|="""
T 1Tk-1 T 1Tk-1 T —olk—2
As pg = rg, the difference py — r; is a linear combination of the vectors ry_q,...,ro,

each of which is orthogonal to ry. It follows that p{ry = r{r; and that the step length
« is optimal for

I'EI‘k

= = k.
P Apy

Exercise 12.11: Starting value in cg

As in the exercise, we consider the conjugate gradient method for Ay = ry, with
ro = b — Axy. Starting with
Yo=0, so = ro — Ayo = ro, qo = So = To,
one computes, for any k£ > 0,
Sisp

Tk = A Yi+1 = Yk + Vel Sk+1 = Sk — YAy,
q; Aqy
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Shy1Ski1
) +1

e Qk+1 = Skt1 + Ok
How are the iterates y, and x;, related? As remarked above, sy = ry and qg = r¢ = po.

Suppose s, = rp and qi = px for some £ > 0. Then

T
| P %
Sk+1 = Sk — Yk AQr =Ty — Tk Apy =1} — aApy = Tp,
Pi Ap;
T Tl
Qk+1 = Skt1 + 0kQr = Tht1 + ——5—— Pk = Pkt1-
r, T
It follows by induction that sp = r; and q; = py for all £ > 0. In addition,
Tk f k>0
Yi+1 — YE = Ve = Pr = Xg4+1 — Xi, or any v = U,
P Apy

so that y, = x — Xg.

Exercise 12.17: Program code for testing steepest descent

Replacing the steps in (12.17) by those in (12.7), Algorithm 12.14 changes into the
following algorithm for testing the method of Steepest Descent.

function [V,K] = sdtest(m, a, d, tol, itmax)
R = ones(m) / (m+1l) "2; rho = sum(sum(R. *R) ) ; rho0 = rho;
V = zeros(m,m) ;
Tl=sparse(toeplitz([d, a, zeros(l,m2)]));
for k=1 :itmax
if sgrt(rho/rho0) <= tol
K = k; return
end
T = T1xR + R«T1;
a = rho/sum(sun(R.*T)); V=V + axR; R =R — axT;
rhos = rho; rho = sum(sum(R. *R) ) ;
end
K =itmax + 1;

Listing 12.1. Testing the method of Steepest Descent

To check that this program is correct, we compare its output with that of cgtest.
[V1, K] = sdtest(50, -1, 2, 10" (=8), 1000000) ;

[V2, K] = cgtest(50, -1, 2, 10" (=8), 1000000) ;
surf (V2 — V1) ;

Running these commands yields Figure 1, which shows that the difference between
both tests is of the order of 107, well within the specified tolerance.

As in Tables 12.13 and 12.15, we let the tolerance be tol = 10~® and run sdtest
for the m x m grid for various m, to find the number of iterations Ky required before
vk, |2 < tol-||ro|]2. Choosing a = 1/9 and d = 5/18 yields the averaging matrix, and
we find the following table.

n 2500 10000 40000 1000000 4000000
Kqa 37 35 32 26 24

75



x 10

47
V. iy
Y./

7

7/

4

,,,«;////’I//I;;I" S

e et
XX

%

0

0 00 0SSN

KON XSS
Sy

W“““ 2

TLTTRN

50

FIGURE 1. For a 50 x 50 Poisson matrix and a tolerance of 1078, the
figure shows the difference of the outputs of cgtest and sdtest.

Choosing a = —1 and d = 2 yields the Poisson matrix, and we find the following

table.
n 100 400 1600 2500 10000 40000
Ka/n 4.1900 4.0325 3.9112 3.8832 3.8235 3.7863
Ky 419 1613 6258 9708 38235 151451
Kj 385 8 386
Kgs 194 4194
Ksor 35 164 324 645
Kg 16 37 75 94 188 370

Here the number of iterations Kj, Kgs, and Kgor of the Jacobi, Gauss-Seidel and
SOR methods are taken from Table 11.1, and K., is the number of iterations in the
Conjugate Gradient method.

Since Kyq/n seems to tend towards a constant, it seems that the method of Steepest
Descent requires O(n) iterations for solving the Poisson problem for some given accu-
racy, as opposed to the O(y/n) iterations required by the Conjugate Gradient method.
The number of iterations in the method of Steepest Descent is comparable to the num-
ber of iterations in the Jacobi method, while the number of iterations in the Conjugate

Gradient method is of the same order as in the SOR method.

The spectral condition number of the mxm Poisson matrix is k = (14-cos(mh)) /(1—

cos (Wh)) Theorem 12.16 therefore states that

k—1

(*) HX_XkHA_
||x — xo|a

k—+1

k ™
) = COSk (

m—+1
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function [x,K]=cg leastSquares (A, b, x,tol,itmax)
=02 *A*X; =r;
rho=r’ xr; rhoO=rho;
for k=0:itmax
if sqrt (rho/rho0)<= tol
K=k;
return
end
t=Ap; a=rho / (t/ *t);
x=xtasp; r=r-axA’ «t;
rhos=rho; rho=r’ xr;
p=r+ (rho/rhos) +p;
end
K=itmaxt+]l;

Listing 12.2. Conjugate gradient method for least squares

How can we relate this to the tolerance in the algorithm, which is specified in terms
of the Euclidean norm? Since

Ixla2 _ x"Ax

Ix[3 — x"x
is the Rayleigh quotient of x, Lemma 5.44 implies the bound
Aumin [X[12 < I%[[3 < Ammax[Ix]2,

with A\, = 4(1—005(7Th)) the smallest and \yax = 4(1—|—cos(7rh)) the largest eigenvalue
of A. Combining these bounds with Equation (x) yields

k
||X_Xk||2§\/E F—1\" 1+co( ) os T .
l|x — xo]2 Kk+1 1—cos(m+1) m+1
Replacing k& by the number of iterations Ky for the various values of m shows that
this estimate holds for the tolerance of 107%.

Exercise 12.18: Using cg to solve normal equations

We need to perform Algorithm 12.12 with AT A replacing A and A"b replacing b. For
the system ATAx = ATb, Equations (12.14), (12.15), and (12.16) become

rir,  rirg
PiATAp:  (Apip)"Apy’

X141 = Xk + o Pk, Qg =
=1, — a,ATA
i1 =T, — Oy Pk,

T
ﬁkz _ Thr1Tr+1

Prt1 = Try1 + BkPr, T
r,. Tk

with pg = ro = b — ATAx,. Hence we only need to change the computation of ry, ay,
and ryy; in Algorithm 12.12, which yields the implementation in Listing 12.2.
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Exercise 12.23: Krylov space and cg iterations
(a) The Krylov spaces Wy are defined as
W, := span {ro, Arg, ... ,Akilro} .

Taking A,b,x = 0, and rp = b — Ax = b as in the Exercise, these vectors can be
expressed as

4 8 20
|:I'07 AI'(), A2I'0] = |:b, Ab, A2b:| = 0 y —4 y —16
0 0 4

(b) As xg = 0 we have py = ro = b. We have for £ =0,1,2,... Equations (12.14),
(12.15), and (12.16),

T
X1 = Xk + 0Pk, Qg = pl Apy’
k k
Ip+1 = Iy — apApy,
T
ri .r
- T Trh
Prk+1 = Tky1 + BkPrs Br = T
klk

which determine the approximations x;. For &£ = 0, 1,2 these give

1 2 0 1 1
Qo = 3 x; = |0, ry = |2|, 50217 p1= |2],
0 0 0
2 1|8 1|0 1 1|4
041257 X2:§ 41, 1‘225 01, 51257 P2=§ 8|,
0 4 12
3 3 0 0
az =7, x3= |2, r3= (0], B2 =0, ps = |0
1 0 0

(c) By definition we have W, = {0}. From the solution of part (a) we know
that W, = span(bg, Aby, ..., A¥"1by), where the vectors b, Ab and A?b are linearly
independent. Hence we have dimW, =k for £ =0, 1, 2, 3.

From (b) we know that the residual r® = b — Ax®) = 0. Hence x® is the exact
solution to Ax = b.

We observe that ro = 4e;, r| = 2e5 and ry = (4/3)es and hence the ry, for £ =0, 1,2
are linear independent and orthogonal to each other. Thus we are only left to show
that W, is the span of ry,...,ry,_;. We observe that b = ry, Ab = 2ry — 2r; and
A%b = 5ry — 8r; + 3ry. Hence span(b, Ab, ..., Ab*!) = span(rg,...,r,_;) for k =
1,2,3. We conclude that, for £ = 1,2, 3, the vectors rg,...,r;,_; form an orthogonal
basis for W,,.

One can verify directly that pg, p1, and ps are A-orthogonal. Moreover, observing
that b = pg, Ab = (5/2)py — 2p1, and A?b = 7py — (28/3)p; + 3ps, it follows that

span(b, Ab, ..., Ab*™) = span(py,...,pr_1), fork=1,23.

We conclude that, for £ = 1,2, 3, the vectors po, ..., pr_1 form an A-orthogonal basis
for Wk
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By computing the Euclidean norms of rg, ry, o, r3, we get
ol = 4, el = 2, ]l = 4/3, sl = 0.
It follows that the sequence (||rg||)x is monotonically decreasing. Similarly, one finds
(et = x]],) . = (V10,6 v/14/9,0),

which is clearly monotonically decreasing.

Exercise 12.26: Another explicit formula for the Chebyshev polynomial

It is well known, and easily verified, that cosh(z+y) = cosh(z) cosh(y)+sinh(x) sinh(y).
Write P,(t) = cosh (n - arccosh(t)) for any integer n > 0. Writing ¢ = arccosh(¢), and
using that cosh is even and sinh is odd, one finds

Poia(t) + Poi(t)

= cosh ((n + 1)¢) + cosh ((n — 1)¢)

= cosh(ng) cosh(¢) + sinh(ng) sinh(¢) + cosh(ng) cosh(¢) — sinh(ng) sinh(¢)

= 2 cosh(¢) cosh(ng)

= 2tP,(t).
It follows that P, (t) satisfies the same recurrence relation as 7,,(t). Since in addition
Py(t) =1 = To(t), necessarily P, (t) = T,(t) for any n > 0.

Exercise 12.28: Maximum of a convex function

This is a special case of the maximum principle in convex analysis, which states that
a convex function, defined on a compact convex set €2, attains its maximum on the
boundary of €.

Let f : [a,b] — R be a convex function. Consider an arbitrary point x = (1 —\)a +
Ab € [a,b], with 0 < A < 1. Since f is convex,

fl@) = f((L=Na+xb) < (1=X)f(a) +Af(D)
< (1= N max{f(a), f(5)} + Amax{f(a), F(b)} = max{f(a), f()}.

It follows that f(z) < max{f(a), f(b)} and that f attains its maximum on the bound-
ary of its domain of definition.
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CHAPTER 13

Numerical Eigenvalue Problems

Exercise 13.5: Nonsingularity using Gerschgorin
We compute the Gerschgorin disks
Ri=R=C1=Cy={2€C:|z—4| <1},
Ry=R3=Cy=C3={2€C:|z—4| <2}
Then, by Gerschgorin’s Circle Theorem, each eigenvalue of A lies in
(RiU---UR)N(C1U---UCy) ={2€C:|z—-4| <2}

In particular A has only nonzero eigenvalues, implying that A must be nonsingular.

Exercise 13.6: Gerschgorin, strictly diagonally dominant matrix

Suppose A is a strictly diagonally dominant matrix. For such a matrix, one finds
Gerschgorin disks

Ri: {ZECI’Z—G,M‘ SZ’CL@]‘}
J#i
Since [a;| > >, i la;;| for all ¢, the origin is not an element of any of the R;, and
therefore neither of the union |J R;, nor of the intersection (|J R;) N (U C;) (which is

smaller). Then, by Gerschgorin’s Circle Theorem, A only has nonzero eigenvalues,
implying that det(A) = det(A —0-1I) # 0 and A is nonsingular.

Exercise 13.8: Continuity of eigenvalues
For a given matrix A = (a;;);; € R™*", write
A(t) =D+ t(A - D), D := diag(ai1,- - -, @nn), teR,

for the affine combinations of A and its diagonal part D. Let t1,t2 € [0, 1], with
t1 < t9, so that A(t1), A(ty) are convexr combinations of A and D. For any eigenvalue
w of A(ty), we are asked to show that A(¢;) has an eigenvalue A such that

() A —pl <Clta =), C<2(|D2+ [|A ~Dll2).

In particular, every eigenvalue of A(t) is a continuous function of t.
Applying Theorem 13.7 with A(¢;) and E = A(ty) — A(t;), one finds that A(t)
has an eigenvalue A such that

A= < (JAG) 2+ JAG)]12) " Al) — At 5™

Applying the triangle inequality to the definition of A(¢;) and A(ts), and using that
the function & — z'~%/" is monotone increasing,

1-1/n n .
A= ul < (2IDlla + (1 + &) |A=DJ2) (A= D)IY" (k2 — 1)
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Finally, using that ¢; + t, < 2, that the function  — x'/" is monotone increasing,
and that ||[(A — D)||s < 2||D||2 + 2||(A — D)||2, one obtains (*).

Exercise 13.12: co-norm of a diagonal matrix

Let A = diag(Aq, ..., \,) be adiagonal matrix. The spectral radius p(A) is the absolute
value of the biggest eigenvalue, say A;, of A. One has

Al = max Al = max max{Pul . aral} < p(A)
as Aq, ..., Ay, < \; = p(A) and since the components of any vector x satisfy z1,...,x, <

|x|lco- Moreover, this bound is attained for the standard basis vector x = e;, since
[Aeifloc = Ai = p(A).

Exercise 13.15: Number of arithmetic operations

An arithmetic operation is a floating point operation, so we need not bother with
any integer operations, like the computation of k£ 4+ 1 in the indices. As we are only
interested in the overall complexity, we count only terms that can contribute to this.

For the first line involving C, the multiplication v’ *C involves (n — k)? floating
point multiplications and about (n—k)? floating point sums. Next, computing the outer
product v (v’ *C) involves (n — k)? floating point multiplications, and subtracting
C — v* (v’ *C) needs (n — k)? substractions. This line therefore involves 4(n — k)?
arithmetic operations. Similarly we find 4n(n — k) arithmetic operations for the line
after that.

These 4(n — k)? + 4n(n — k) arithmetic operations need to be carried out for k =
1,...,n — 2, meaning that the algorithm requires of the order

[\

N = (4(n — k)* + 4n(n — k))

1

3

i

arithmetic operations. This sum can be computed by either using the formulae for
Z;f k and ZZ;? k2, or using that the highest order term can be found by evaluating
an associated integral. One finds that the algorithm requires of the order

N ~ /0” (4(n —k)* +4n(n— k)) dk = %n?’

arithmetic operations.

Exercise 13.17: Number of arithmetic operations

The multiplication v’ «C involves (n — k)? floating point multiplications and about
(n — k)? floating point sums. Next, computing the outer product v (v’ *C) involves

(n—k)? floating point multiplications, and subtracting C — v« (v’ *C) needs (n—k)?
substractions. In total we find 4(n—k)? arithmetic operations, which have to be carried
out for k =1,...,n — 2, meaning that the algorithm requires of the order
n—2
N:=)Y 4(n—k)?
k=1
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arithmetic operations. This sum can be computed by either using the formulae for
Z;f k and ZZ;% k2, or using that the highest order term can be found by evaluating
an associated integral. One finds that the algorithm requires of the order

" 4
N ~ / 4(n — k)*dk = -n?
0 3

arithmetic operations.

Exercise 13.18: Tridiagonalize a symmetric matrix
From w = Ev, § = %VTW andZ:W—BVWGgetZZW—Vﬁ:EV—%VVTEV and
z' =vIE — %VTEVVT. Using this yields

G=I-vwhHEI-vv")=E—-vw'E - Evv' + v Evv"
1 1
—E—-v(V'E - §VTEVVT) — (Ev — §VVTEV)VT

=E—vz' —zv'.

Exercise 13.22: Counting eigenvalues

Let

O O o
O s
— s = O

Applying the recursive procedure described in Corollary 13.21, we find the diagonal
elements d; (), dy(a), d3(), ds(a) of the matrix D in the factorization A—al = LDLT,

di(a) =4—9/2=—1/2,
do(a) =4 —9/2 —1%2/(=1/2) = +3/2,
ds(a) =4 —9/2 —12/(4+3/2) = —7/6,

dy(a) =4—-9/2—1*/(=7/6) = +5/14.
As precisely two of these are negative, Corollary 13.21 implies that there are precisely
two eigenvalues of A strictly smaller than ov = 4.5. As

det(A — 4.51) = det(LDL") = d;(a)dy(a)ds(a)dy(ax) # 0,

the matrix A does not have an eigenvalue equal to 4.5. We conclude that the remaining
two eigenvalues must be bigger than 4.5.
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Exercise 13.23: Overflow in LDLT factorization

Since A, is tridiagonal and strictly diagonally dominant, it has a unique LU factoriza-
tion by Theorem 1.10. From Equations (1.16), one can determine the corresponding
LDL* factorization. For n = 1,2,..., let d,, with k& = 1,...,n, be the diagonal
elements of the diagonal matrix D,, in a symmetric factorization of A,,.

(a) We proceed by induction. Let n > 1 be any positive integer. For the first
diagonal element, corresponding to k& = 1, Equations (1.16) immediately yield 5 +
V24 < dn,; = 10 < 10. Next, assume that 5 + V24 < dpr < 10 for some 1 <
k < n. We show that this implies that 5 + V24 < dpr+1 < 10. First observe that
(5+v24)" = 25 + 10v/24 + 24 = 49 + 10v/24. From Equations (1.16) we know that
dnk+1 = 10 —1/d, s, which yields d,, j+1 < 10 since d,, > 0. Moreover, 5+ V24 < dy o
implies

1 1 50 +10v24 — 1
d, =10——>10— = =5+ v24.
o o i 5+ /24 5+ /24
Hence 5++v/24 < d,, 41 < 10, and we conclude that 5++v/24 < d,,, < 10 for any n > 1
and 1 < k <n.
(b) We have A = LDL" with L triangular and with ones on the diagonal. As a
consequence,

det(A) = det(L) det(D) det(L) = det(D) = f[ d; > (5+v24)".

In Matlab an overflow is indicated by Matlab returning Inf as result. At my computer
this happens at n = 310.

Exercise 13.24: Simultaneous diagonalization

Let A,B,U,D, A, and D™'/2 be as in the Exercise.
(a) Since D_%, like any diagonal matrix, and A are symmetric, one has

A T T .
AT=D7: UA"U'D: =D :UAU'D:=A
(b) Since A is symmetric, it admits an orthogonal diagonalization A =UTDU. Let

E := UTD:UT". Then E, as the product of three nonsingular matrices, is nonsingular.
. . . .. . 1 .
Its inverse is given explicitly by F := UD2U, since

FE = UD:UU™D 20T = UD:D 20T = U0 T =1

and similar EF = 1. Hence E~! = F and E is nonsingular. Moreover, from A =UTDU
follows that UAU™ = D, which gives

ETAE = UD s UAUT™D:UT = UAUT = D.
Similarly B = UTDU implies UBU?T = D, which yields
ETBE = UD :UBU'™D:UT = UD:D:D:D:UT =1

We conclude that for a symmetric matrix A and symmetric positive definite matrix B,
the congruence transformation X — ETXE simultaneously diagonalizes the matrices
A and B, and even maps B to the identity matrix.

83



Exercise 13.25: Program code for one eigenvalue

(a) Let A = tridiag(c,d, c) and x be as in the Exercise. The following Matlab pro-
gram counts the number of eigenvalues k of A strictly less than x.

function k=count (c, d, X)
n = length(d) ;
k=0; u=d(l)=x;
ifu<o0
k = kt+1;
end
for i =2:n
umin = abs(c(i~1) ) *»eps;
1f abs(u) < umin
ifu<o0
u = —umirny;
else
u = umin;
end
end
u=d{ld)—x—c@{-1) "2/;
ifu<o0
k = kt+1;
end
end

(b) Let A = tridiag(c, d, c) and m be as in the Exercise. The following Matlab pro-
gram computes a small interval [a, b] around the mth eigenvalue A, of A and returns
the point A in the middle of this interval.

function lambda = findeigv(c, d, m)
n = length(d) ;
a=d(l)=abs(c(l)); b =d(1)+bs(c(l));
fori=2:n"1
a =min(a, d(i)-abs(c(i-1))-abs(c(i)));

b =max(, d(i)+abs(c(i-1))+abs(c(i)));
end
a =min(a, d(n)-abs(c(r1)));
b =max(, dn) +tabs(c(n-1)));
h =ba;
while abs(b-a) > epsxh
c0 = (ath) /2;
k = count (c,d,c0) ;
ifk<m
a=c0;
else
b = c0;
end
end

lanbda = (atb) /2;
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(c) The following table shows a comparison between the values and errors obtained
by the different methods.

method value error
exact 0.02413912051848666 0
findeigv 0.02413912051848621 4.44 10716
Matlab eig 0.0241391205184K8647 1.84-1016

Exercise 13.26: Determinant of upper Hessenberg matrix (TODO)
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CHAPTER 14

The QR Algorithm

Exercise 14.4: Orthogonal vectors

In the Exercise it is implicitly assumed that u*u # 0 and therefore u # 0. If u and
Au — \u are orthogonal, then

0= (u,Au— Au) = u*(Au— \u) = u"Au — \u'u.
Dividing by u*u yields
N u*Au

u*u
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