Assignment 1 for MAT-INF4160, 2013 Bezier curves

Michael S. Floater

To be completed by Tuesday 24 September. Solutions can be handed to me in the lecture or sent electronically to michaelf@ifi.uio.no.

1. Show that the Bernstein polynomial $B_{i}^{n}(x)$ has only one maximum in $[0,1]$, namely at $x=i / n$.
2. The Bernstein approximation to a function $f:[0,1] \rightarrow \mathbb{R}$ of order n is the polynomial $g:[0,1] \rightarrow \mathbb{R}$ defined by

$$
g(x)=\sum_{i=0}^{n} f(i / n) B_{i}^{n}(x) .
$$

Show that if f is a polynomial of degree $m \leq n$ then g has degree m.
3. Show that

$$
\Delta^{i} \mathbf{c}_{0}=\sum_{k=0}^{i}(-1)^{i-k}\binom{i}{k} \mathbf{c}_{k}
$$

4. Show that

$$
n(n-1) \cdots(n-k) x^{k+1}=\sum_{i=0}^{n} i(i-1) \cdots(i-k) B_{i}^{n}(x) .
$$

