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We study Bézier surfaces defined over triangular domains.

1 Polynomial spaces

We have seen how spaces of bivariate polynomials can be constructed as
tensor-products of the univariate ones. An alternative choice of polynomial
space is, for each n ≥ 0, the space of polynomials of the form

p(x, y) =
∑

0≤i+j≤n

ai,jx
iyj,

where we understand that i ≥ 0 and j ≥ 0 in the summation. As in the
univariate case, we denote this space by πn. Such a polynomial has degree
≤ n, its degree (sometimes called the total degree) being the largest value of
i+ j over all non-zero ai,j in the summation. The monomials xiyj in the sum
are linearly independent and therefore form a basis of πn. Since the number
of such polynomials is

(n + 1) + n + · · · + 1 =

(

n + 2

2

)

,

this is also the dimension of πn. For example, the monomial basis of π2 is

{1, x, y, x2, xy, y2},

which has six elements.
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If we use such polynomials for modelling surfaces it turns out that there
is again an alternative basis that makes the modelling easier. This is the
basis of bivariate Bernstein polynomials

Bn
i,j(x, y) =

n!

i!j!(n − i − j)!
xiyj(1 − x − y)n−i−j, 0 ≤ i + j ≤ n,

To show that these polynomials are linearly independent, suppose that
∑

0≤i+j≤n

ci,jx
iyj(1 − x − y)n−i−j = 0 for x, y > 0 and x + y < 1.

Then, setting u = x/(1 − x − y) and v = y/(1 − x − y) it follows that
∑

0≤i+j≤n

ci,ju
ivj = 0 for u, v > 0,

which implies that the coefficients ci,j are all zero. We usually only consider
points (x, y) in the triangular domain

D := {(x, y) ∈ R
2 : x, y ≥ 0, x + y ≤ 1}.

The polynomials Bn
i,j are non-negative in D and positive in the interior of D.

By the binomial theorem they also sum to one,
∑

0≤i+j≤n

Bn
i,j(x, y) =

(

x + y + (1 − x − y)
)n

= 1.

The form of the Bernstein polynomial Bn
i,j clearly suggests another way

of viewing it, as a function of the three variables x, y, and 1 − x − y, rather
than just x and y. If we make the definition

Bn
i,j,k(u, v, w) =

n!

i!j!k!
uivjwk, i + j + k = n, (1)

then we see that

Bn
i,j(x, y) = Bn

i,j,n−i−j(x, y, 1 − x − y).

For example, with n = 3 there are 10 polynomials,

B3
003

B3
102 B3

012

B3
201 B3

111 B3
021

B3
300 B3

210 B3
120 B3

030
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given by the formulas

w3

3uw2 3vw2

3u2w 6uvw 3v2w
u3 3u2v 3uv2 v3

We can also simplify notation in (1) by defining i = (i, j, k) and u = (u, v, w),
so that we can write

Bn
i,j,k(u, v, w) = Bn

i
(u).

2 Triangular Bézier surfaces

We define a triangular Bézier surface in R
d as a parametric polynomial surface

whose parameter domain is some triangle T ⊂ R
2. Suppose this triangle T

has vertices a1, a2, a3 ∈ R
2. Then, for a given point t ∈ T , we let

p(t) =
∑

|i|=n

ciB
n
i
(u), ci ∈ R

d, (2)

where i = (i, j, k), |i| = i + j + k, u = (u, v, w), and the values u, v, w ∈ R

are the barycentric coordinates of the point t with respect to the triangle T ,
i.e., the three values such that

u + v + w = 1, (3)

ua1 + va2 + wa3 = t. (4)

The points ci are the control points of p, which, together with all line seg-
ments that connect neighbouring points, form the control net of p. Figure 1
shows a quadratic surface, where n = 2, with its control net.

How do we find u, v, w? If t = (s, t) and ak = (ak, bk), we can express
(3–4) in matrix form as





1 1 1
a1 a2 a3

b1 b2 b3









u
v
w



 =





1
s
t



 ,

and Cramer’s rule gives the solution

u = D1/D, v = D2/D, w = D3/D,
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Figure 1: A quadratic Bézier surface
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Triangular Bézier surfaces have some properties analogous to tensor-
product ones. For example, on each of the three sides of the triangle T ,
the surface p is a Bézier curve whose control polygon is the corresponding
boundary polygon of the control net of p. For example, if the point t is a
point on the edge [a1, a2] then its barycentric coordinates have the property
that u + v = 1 and w = 0, and so

p(t) = p(ua1 + va2) =
∑

i+j=n

ci,j,0

n!

i!j!
uivj.

At the corners of the triangle T , the surface equals one of the corner control
points. For example if t = a1 then u = 1 and v = w = 0 and so

p(t) = p(a1) = cn,0,0.
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Like tensor-product Bézier surfaces, triangular Bézier surfaces are affinely
invariant and have the convex hull and bounding box properties.

3 The de Casteljau algorithm

If we replace (u, v, w) in (1) by (u1, u2, u3) and we define

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1),

it is easy to write down a recursion formula for the Bn
i
, analogous to the

univariate case,

Bn
i
(u) =

3
∑

k=1

ukB
n−1

i−ek
(u). (5)

This leads to a de Casteljau algorithm for computing the point p(t). We set
c0
i

= ci for |i| = n, and then for each r = 1, . . . , n, let

cr
i

=
3

∑

k=1

ukc
r−1

i+ek
, |i| = n − r. (6)

The last point computed in this algorithm is the point on the surface:

p(t) = cn
0,0,0.

Similarly to the univariate case, this follows by induction on r. We show
more generally that

p(t) =
∑

|i|=n−r

cr
i
Bn−r

i
(t), r = 0, 1, . . . , n. (7)

Applying (5) to (7) gives

p(t) =
∑

|i|=n−r

cr
i

(

3
∑

k=1

ukB
n−r−1

i−ek
(u)

)

=
3

∑

k=1

uk

∑

|i|=n−r−1

cr
i+ek

Bn−r−1

i
(u),
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which, by (6), is (7) with r replaced by r + 1. The de Casteljau algorithm
can be viewed as a tetrahedral scheme. The flow of computations in the case
n = 2 is as follows,

c0
002

c0
101 c0

011

c0
200 c0

110 c0
020

→
c1

001

c1
100 c1

010

→ c2
000

4 Derivatives

We would like to find the directional derivative of p in some vector direction
v ∈ R

2, i.e.,
Dvp(t) = v · ∇p(t).

To do this we apply the chain rule. Observe that

DvB
n
i
(u) =

3
∑

k=1

∂

∂uk

Bn
i
(u)Dvuk,

and by the definition of Bn
i
(u), we easily see that

∂

∂uk

Bn
i
(u) = nBn−1

i−ek
(u).

Therefore

Dvp(t) = n
∑

|i|=n

ci

3
∑

k=1

Bn−1

i−ek
(u)Dvuk

= n
∑

|i|=n−1

diB
n−1

i
(u),

where

di =
3

∑

k=1

Dvukci+ek
.

One way of finding the directional derivatives Dvuk is to take the directional
derivative of equations (3–4) in the direction v, which gives

Dvu1 + Dvu2 + Dvu3 = 0,

Dvu1a1 + Dvu2a2 + Dvu3a3 = v,

6



which, like previously, can be solved using Cramer’s rule. Notice that the
three derivatives Dvuk, k = 1, 2, 3, are independent of t, and depend only
on v as well as the triangle vertices ak. We can therefore view them as
coordinates of v. They are similar to barycentric coordinates but they sum
to zero instead of one. In conclusion, we have shown that

Dvp(t) = n
∑

|i|=n−1

∆vciB
n−1

i
(u), (8)

where

∆vci =
3

∑

k=1

vkci+ek
,

and v1, v2, v3 are the unique solutions to the equations

v1 + v2 + v3 = 0, (9)

v1a1 + v2a2 + v3a3 = v. (10)

Continuing in this way we can also find higher order directional derivatives.
For vectors v1, . . . ,vr ∈ R

2,

Dv1
· · ·Dvr

p(t) =
n!

(n − r)!

∑

|i|=n−r

∆v1
· · ·∆vr

ciB
n−r
i

(u).

5 Joining surfaces smoothly

Consider now how we might build a piecewise polynomial surface from tri-
angular Bézier surfaces. The main issue is how to fit together two triangular
surfaces whose parameter domains share a common edge. Suppose then that
p is the surface in (2) whose parameter domain is the triangle T = [a1, a2, a3]
and that we denote by u1, u2, u3 the barycentric coordinates of the point t

with respect to T . Then, if a4 ∈ R
2 is any point on the side of the edge

[a1, a2] opposite to a3, let p̃ be a Bézier surface of the same degree n, defined
on the triangle U = [a1, a2, a4],

p̃(t) =
∑

|i|=n

c̃iB
n
i
(ũ), (11)

where ũ = (ũ1, ũ2, ũ4) and the values ũ1, ũ2, ũ4 are the barycentric coordinates
of t with respect to U .
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Suppose that the point t belongs to the common edge [a1, a2]. Then
uk = ũk, k = 1, 2, and u3 = ũ4 = 0, and

p(t) =
∑

i+j=n

ci,j,0

n!

i!j!
ui

1u
j
2,

and

p̃(t) =
∑

i+j=n

c̃i,j,0

n!

i!j!
ui

1u
j
2.

It follows that p and p̃ join continuously on the common edge [a1, a2] if and
only if

c̃i,j,0 = ci,j,0, i + j = n. (12)

This is equivalent to saying that the control nets of p and p̃ have the same
boundary polygon on [a1, a2]. Under this condition we can define the con-
tinuous composite surface

s(t) :=

{

p(t), t ∈ T ;

p̃(t), t ∈ U.

Under what condition is s also C1? Well, s is C1 if its directional derivative
Dvs is continuous on [a1, a2] for any vector v transversal to the vector a2−a1,
i.e., for any non-zero vector v that is not parallel to a2−a1. Thus we compare
the derivative formula for p in (8) with the corresponding formula for p̃,
namely,

Dvp̃(t) = n
∑

|i|=n−1

∆̃vc̃iB
n−1

i
(ũ),

where
∆̃vc̃i = ṽ1c̃i+e1

+ ṽ2c̃i+e2
+ ṽ4c̃i+e3

,

and

ṽ1 + ṽ2 + ṽ4 = 0, (13)

ṽ1a1 + ṽ2a2 + ṽ4a4 = v. (14)

In the case that t ∈ [a1, a2] these formulas reduce to

Dvp(t) = n
∑

i+j=n−1

∆vci,j,0

n!

i!j!
ui

1u
j
2
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and

Dvp̃(t) = n
∑

i+j=n−1

∆̃vc̃i,j,0

n!

i!j!
ui

1u
j
2.

The condition for C1 continuity is therefore

∆̃vc̃i,j,0 = ∆vci,j,0, i + j = n − 1,

which, due to (12), reduces to

ṽ4c̃i,j,1 = (v1 − ṽ1)ci+1,j,0 + (v2 − ṽ2)ci,j+1,0 + v3ci,j,1, i + j = n − 1.

This can be rewritten in a form that is easy to remember:

c̃i,j,1 = µ1ci+1,j,0 + µ2ci,j+1,0 + µ3ci,j,1, i + j = n − 1,

where µ1, µ2, µ3 are the barycentric coordinates of the point a4 with respect
to T ,

µ1 + µ2 + µ3 = 1,

µ1a1 + µ2a2 + µ3a3 = a4.

This follows from subtracting (14) from (10). The coordinates µ1 and µ2 are
positive but µ3 is negative.
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