
Spline subdivision

Michael S. Floater

October 1, 2013

Abstract

These notes provide an introduction to the subdivision rules for

uniform splines, including the Chaikin algorithm. We also explain the

Lane-Reisenfeld algorithm.

1 Introduction

One way of defining uniform B-splines is recursively as follows. The B-spline
N0 is the function

N0(x) =

{

1 0 ≤ x < 1;

0 otherwise,
(1)

and for d ≥ 1, the B-spline Nd is defined as

Nd(x) =

∫ 1

0

Nd−1(x − t) dt. (2)

We see that N0 is non-negative, piecewise-constant, with support [0, 1]. For
general d, one can show by induction on d that Nd is a non-negative, piecewise
polynomial of degree d, of smoothness Cd−1 at the breakpoints (‘knots’)
0, 1, . . . , d + 1, and has support [0, d + 1]. One can also show by induction
that ∫

∞

−∞

Nd(x) dx = 1,

and ∑

i∈Z

Nd(x − i) = 1.

1



The B-splines of degree 1 and 2 are

N1(x) =







x 0 ≤ x < 1;

2 − x 1 ≤ x < 2;

0 otherwise,

(3)

and

N2(x) =







x2

2
0 ≤ x < 1;

−
3
2

+ 3x − x2 1 ≤ x < 2;
1
2
(−3 + x)2 2 ≤ x < 3;

0 otherwise.

(4)

Another way of expressing (2) is clearly as

Nd(x) =

∫
∞

−∞

N0(t)Nd−1(x − t) dt.

Thus, if we recall that the convolution p⊗q of two functions p and q is defined
as

(p ⊗ q)(x) =

∫
∞

∞

p(t)q(x − t) dt,

we can express (2) simply as

Nd = N0
⊗ Nd−1. (5)

Thus Nd is the d-fold convolution of N0 with itself:

Nd = N0
⊗ N0

⊗ · · · ⊗ N0

︸ ︷︷ ︸

d+1

.

2 Subdivision

A uniform spline is any linear combination of integer translates of a B-spline
of a certain degree. Thus,

s(x) =
∑

i∈Z

ciN
d(x − i) (6)

is a spline, which is clearly a piecewise polynomial of degree d, with smooth-
ness Cd−1. The breakpoints, or knots, of s are the integers because the trans-
lated B-spline Nd(x− i) has knots at the integers in its support, [i, i+d+1].

2



Notice that for a fixed degree d, the spline s is completely determined by
its coefficient vector

c = (. . . , c−1, c0, c1, . . .)
T .

The idea of subdivision is to represent the spline s in terms of the scaled
B-splines Nd(2x − i) whose knots are at the half-integers. The support of
Nd(2x− i) is [i/2, (i+d+1)/2]. We would like to find the coefficients bi such
that

s(x) =
∑

i∈Z

biN
d(2x − i). (7)

To do this we will establish the refinement relation

Nd(x) =
∑

i∈Z

sd
i N

d(2x − i). (8)

In fact, by considering the supports of the B-splines in this equation it is
clear that we must have sd

i = 0 for i < 0 and i > d + 1, and so if (8) holds
we must have

Nd(x) =
d+1∑

i=0

sd
i N

d(2x − i).

Assuming for the time being that (8) holds, let us see how we can use it
to find the coefficients bi from the coefficients ci. Starting from (6) we have

s(x) =
∑

j

cjN
d(x − j) =

∑

j

cj

∑

i

sd
i N

d(2(x − j) − i)

=
∑

j

cj

∑

i

sd
i−2jN

d(2x − i)

=
∑

i

∑

j

sd
i−2jcjN

d(2x − i)

and equating this with (7), and using the fact that the B-splines N(2x − i)
are linearly independent, we can equate coefficients, giving

bi =
∑

j

sd
i−2jcj. (9)

This formula tells us how to convert the coarse representation of s in (6) to
the finer representation in (7). If, like the coarse coefficients we arrange the
fine coefficients in a column vector

b = (. . . , b−1, b0, b1, . . .)
T ,

3



we can express (9) in vector and matrix notation as

b = Sdc.

The matrix
Sd = (sd

i−2j)ij,

which is infinite in both dimensions, is known as the subdivision matrix. The
subdivision scheme (9) can be split into two parts, for coefficients bi with
even and odd indices. We find

b2i =
∑

j

sd
2(i−j)cj =

∑

j

sd
−2jcj+i =

∑

j

sd
2jci−j, (10)

and
b2i+1 =

∑

j

sd
2(i−j)+1cj =

∑

j

sd
−2j+1cj+i =

∑

j

sd
2j+1ci−j. (11)

So

b2i = sd
0ci + sd

2ci−1 + · · · , (12)

b2i+1 = sd
1ci + sd

3ci−1 + · · · . (13)

3 The refinement relation

It is easy to see from (1) that

N0(x) = N0(2x) + N0(2x − 1), (14)

and using (3) a simple calculation shows that

N1(x) =
1

2
N1(2x) + N1(2x − 1) +

1

2
N1(2x − 2). (15)

Thus s0
0 = s0

1 = 1 and s1
0 = 1/2, s1

1 = 1, and s1
2 = 1/2. We will derive the

general formula for sd
i using the recurrence relation (2). We do this by first

showing how the coefficients of degree d relate to those of degree d − 1.

Lemma 1 If the refinement relation (8) holds for degree d − 1 with coeffi-
cients sd−1

i then it also holds for degree d and the coefficients are

sd
i =

1

2
(sd−1

i + sd−1
i−1 ).

4



Proof. Using (8), we have

Nd(x) =

∫ 1

0

∑

i

sd−1
i Nd−1(2(x − t) − i) dt

=
∑

i

sd−1
i

∫ 1

0

Nd−1(2(x − t) − i) dt.

But
∫ 1

0

Nd−1(2(x − t) − i) dt

=
1

2

∫ 2

0

Nd−1(2x − u − i) du

=
1

2

(∫ 1

0

Nd−1(2x − u − i) du +

∫ 2

1

Nd−1(2x − u − i) du

)

=
1

2

∫ 1

0

(
Nd−1(2x − u − i) + Nd−1(2x − u − i − 1)

)
du

=
1

2

(
Nd(2x − i) + Nd(2x − i − 1)

)
,

and so

Nd(x) =
1

2

∑

i

sd−1
i

(
Nd(2x − i) + Nd(2x − i − 1)

)

=
1

2

∑

i

(sd−1
i + sd−1

i−1 )Nd(2x − i).

2

Iterating the formula of Lemma 1 from s0
0 = s0

1 = 1 immediately gives

Theorem 1 The refinement relation (8) holds with coefficients

sd
i =

1

2d

(
d + 1

i

)

, 0 ≤ i ≤ d + 1.

5



The first few examples, with sd = (sd
i )i are

s0 = (1, 1),

s1 =
1

2
(1, 2, 1),

s2 =
1

4
(1, 3, 3, 1),

s3 =
1

8
(1, 4, 6, 4, 1).

Corresponding to these, the first few subdivision matrices are

S0 =















· · · · · ·

· 1 0 0 0 ·

· 1 0 0 0 ·

· 0 1 0 0 ·

· 0 1 0 0 ·

· 0 0 1 0 ·

· 0 0 1 0 ·

· · · · · ·















, S1 =
1

2













· · · · · ·

· 1 1 0 0 ·

· 0 2 0 0 ·

· 0 1 1 0 ·

· 0 0 2 0 ·

· 0 0 1 1 ·

· · · · · ·













,

S2 =
1

4















· · · · · ·

· 3 1 0 0 ·

· 1 3 0 0 ·

· 0 3 1 0 ·

· 0 1 3 0 ·

· 0 0 3 1 ·

· 0 0 1 3 ·

· · · · · ·















, S3 =
1

8











· · · · · ·

· 1 6 1 0 ·

· 0 4 4 0 ·

· 0 1 6 1 ·

· 0 0 4 4 ·

· · · · · ·











The Lane-Riesenfeld algorithm is an elegant way of implementing the
subdivision scheme and follows from Lemma 1. In this algorithm we initially
set

b0
2i = b0

2i+1 = ci,

and then, for k = 1, . . . , d, we let

bk
i = (bk−1

i + bk−1
i−1 )/2.

Then bi = bd
i is the required coefficient.

6



We can also view this algorithm in terms of matrices. The subdivision
matrix can be expressed as

Sd = AA · · ·A
︸ ︷︷ ︸

d

S0,

where A is the ‘averaging’ matrix

A =
1

2









· · · · · ·

· 1 1 0 0 ·

· 0 1 1 0 ·

· 0 0 1 1 ·

· · · · · ·









,

and we can view S0 as a ‘doubling’ matrix. Thus to compute the new co-
efficients b from the old, c, one first applies S0 to c, which has the effect
of ‘doubling’ the coefficients in c, and one then applies the matrix A, which
replaces all points by their mid-points, d times.

4 Convergence

Suppose now that starting from a spline

s(x) =
∑

i

c0
i N

d(x − i),

we apply several steps of subdivision. If we subdivide s once, we obtain the
finer representation

s(x) =
∑

i

c1
i N

d(2x − i),

where
c1
i =

∑

j

sd
i−2jc

0
j ,

with sd
i given by Theorem 1. We can continue in this way, subdividing again

and again, so that in general

s(x) =
∑

i

ck
i N

d(2kx − i),

7



where
ck
i =

∑

j

sd
i−2jc

k−1
j .

At each level of subdivision, k, we can form a polygon pk, a piecewise
linear function with the value ck

i at the point 2−ki. It can be shown that the
sequence of polygons (pk)k converges to s, i.e.,

s(x) = lim
k→∞

pk(x), x ∈ R.

This provides a way of plotting the spline s. After a few steps of subdivision,
we simply plot the polygon pk. If k is large enough, pk will appear to be a
smooth function.

8


