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Abstract

These notes provide an introduction to the interpolation of points
and sometimes derivatives by polynomials and splines.

1 Lagrange interpolation

We sometimes want to interpolate a sequence of points Xg,Xj, ..., X, in R?
with a smooth curve. One way to do this is to fit a polynomial. If the points
are sampled from some parametric curve f in sequence, the parameter values
to,t1, ..., ty, with t; < t;41, such that x; = f(¢;) may be available. Otherwise
we have to choose suitable parameter values. In either case, once the t; are
determined, we look for the polynomial p of degree < n that satisfies the
interpolation conditions

p(ti):X,‘, 2':0,1,...,71.

In fact p is uniquely determined by these conditions. If we express p in the
form

p(H) =D at. 1

we see that there are n + 1 unknowns a; and the interpolation conditions
provide n+ 1 equations. These equations can be written as the linear system

1ty t2 -+ 7] |ag X0
1 tl t% t? ap X1
1 t, t2 - "] |a, X,



The matrix on the left is known as the Vandermonde matrix and it can be
shown that its determinant is

H (t; — i),

0<i<j<n

which is clearly positive and therefore non-zero. Thus the matrix is non-
singular and there is a unique interpolant p.

In a modelling context, we might want to find the interpolating polyno-
mial in some Bézier representation, such as

p(t) = >, Bi(1) @

We could find the c; by first finding the a; and then converting the monomial
form (1) to the Bézier form (2), or solve directly for the c;, which means
solving the linear system

By (to) Bi(te) B3(to) --- BJ(to)]| |co X0
Bg(tl) B?(tl) BS(tl) te Bﬁ(tl) C1 _ X1
Bt Bilt) Bit) - Bit)] lon]  |x

If it is not important how we represent p we can avoid solving a linear
system by representing p in the Lagrange basis. The ¢-th Lagrange function
is the polynomial

which evidently has the property that L;(t;) = 1 and L;(tx) = 0 if k& # i.
Hence the interpolating polynomial is simply

p(t) = inLi(t).



2 Hermite interpolation

It is often desirable to find an interpolating curve that also matches derivative
data. This is known as Hermite interpolation. An important special case is
to interpolate f and all its derivatives up to some order k£ at two points. If
the corresponding parameter values are a and b, this means finding p such
that

pP(a) =£fD) and pP(b) =), i=0,1,... k

These conditions determine the polynomial p uniquely if its degree is at most
n = 2k + 1. The Bézier representation,

p(t) = > ;B (), (3)

where v = (t — a)/(b — a), is in this case quite convenient and easy to find.
In Chapter 2 we saw that

, ! Alc , n!  Alc,_;
D(g) = — " 0 d p@(p) = iy 4
P = o hin—a M PO =T )
Therefore, we need to find the coefficients cq, ..., c, such that

AiCO :bi7 AiCn_Z’ :bn—i7 7 :O,l,...,k',

where

b, := (n— i) (b—a)fD(a),

n!

by = P g ).

n!

One can show that the solutions are

7 %

CE( B (e

j=0 j=0

For example, in the cubic case, with £ =1 and n = 3,

Co bo f((l)

ci| _ |botbi| _ f(a)+ (b—a)f'(a)/3 (5)
c by — by £(b) — (b—a)f'(b)/3 |

C3 b3 f(b)



3 Piecewise cubic Hermite interpolation

An alternative to using polynomials for interpolation is to use piecewise poly-
nomials, which are better suited when the number of interpolation conditions
is high. For example, we can interpolate points x; = f(¢;) and first deriva-
tives m; = f'(¢;), where ¢y < t; < --- < t,, with a piecewise cubic curve s
with parameter domain [tg,t,] and C! continuity by fitting a cubic to each
consecutive pair of data. One way of representing the individual cubics is in
Bernstein form. Thus, for t € [t;, t;11], we let s(t) = s;(t), where

si(t) = > e;B}(w) (6)

and, using (5),

Co X;

C1 _ X + h1m1/3 (7>
C2 Xit1 — himi /3|7

C3 Xi+1

If the slopes m; are not known, it is usual to estimate them from the
points x; nearby. For example, a common choice is to set
X1 — X
m; =l o -1
liv1 — i1
This is a good approximation to f'(¢;) when the ¢; are uniformly spaced.
At the endpoints, a one-sided approximation is necessary, and we could, for
example, set
X1 — Xp Xn — Xp—1
my=———, m, = ————.
tl — to tn - tnfl

4 Cubic spline interpolation

An alternative way of choosing the interior slopes my, ..., m,_; is to deter-
mine them in such a way that the piecewise cubic curve s has C? continuity
at the corresponding breakpoints. i.e.,

s'(t) =s! (t), i=1,...n—L1 (8)
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It turns out that this system of n—1 equations in the unknowns my, ..., m,_;
has a unique solution. To see this, observe that applying the derivative

formulas to the Bézier curve s; in (6) gives
6
S//(tl> = —‘A2C0, S{L'/(ti+1> = ¥A201,

with the c; given by (7). Thus equation (8) can be expressed as
himi_y + 2(hi—1 + hi)m; + hiymgy = by,

hi hi—l
bi =3 (mAXZ_l + h_iAXZ) .

This gives us the linear system of equations

where

B m m; by — himg
az fa 7 my by
c. c . . = 5
qp—2 ﬁn—Z Tn—2 my, o bn—2
L Qp—1 ﬁnfl i _mnfl_ _bnfl - hanmn_

where a; = h;, B; = 2(h;—1 + h;), and 7; = h;_1. This is a tridiagonal system
that is strictly diagonally dominant, and therefore has a unique solution.
An alternative method of finding the C? cubic spline interpolant s is to
represent it in terms of cubic B-splines. The number of B-splines we need
is 4 for the first interval [to,?;], plus 1 for each subsequent interval [t;, ;1]
giving a total of n + 3. We find that s can be expressed as
n+3

s(t) = > e

with respect to the knot vector
T = (71, Torr) = (to, tos to, tos E1s - - o s tn 1y b by by ).
Then the conditions
s(t;) = x;, i=0,1,...,n,

and
s'(to) =mg, §'(t,) =m,,

give n + 3 equations in the n + 3 unknowns cy, ..., c, 3. The equations are
again linear and form a tridiagonal system which has a unique solution.



