
Interpolation by polynomials and splines

Michael S. Floater

October 16, 2012

Abstract

These notes provide an introduction to the interpolation of points

and sometimes derivatives by polynomials and splines.

1 Lagrange interpolation

We sometimes want to interpolate a sequence of points x0,x1, . . . ,xn in R
d

with a smooth curve. One way to do this is to fit a polynomial. If the points
are sampled from some parametric curve f in sequence, the parameter values

t0, t1, . . . , tn, with ti < ti+1, such that xi = f(ti) may be available. Otherwise
we have to choose suitable parameter values. In either case, once the ti are
determined, we look for the polynomial p of degree ≤ n that satisfies the
interpolation conditions

p(ti) = xi, i = 0, 1, . . . , n.

In fact p is uniquely determined by these conditions. If we express p in the
form

p(t) =
n

∑

j=0

ajt
j, (1)

we see that there are n + 1 unknowns aj and the interpolation conditions
provide n+1 equations. These equations can be written as the linear system











1 t0 t20 · · · tn0
1 t1 t21 · · · tn1
...

...
1 tn t2n · · · tnn





















a0

a1
...
an











=











x0

x1
...

xn











.

1

The matrix on the left is known as the Vandermonde matrix and it can be
shown that its determinant is

∏

0≤i<j≤n

(tj − ti),

which is clearly positive and therefore non-zero. Thus the matrix is non-
singular and there is a unique interpolant p.

In a modelling context, we might want to find the interpolating polyno-
mial in some Bézier representation, such as

p(t) =
n

∑

j=0

cjB
n
i (t). (2)

We could find the cj by first finding the aj and then converting the monomial
form (1) to the Bézier form (2), or solve directly for the cj, which means
solving the linear system











Bn
0 (t0) Bn

1 (t0) Bn
2 (t0) · · · Bn

n(t0)
Bn

0 (t1) Bn
1 (t1) Bn

2 (t1) · · · Bn
n(t1)

...
...

Bn
0 (tn) Bn

1 (tn) Bn
2 (tn) · · · Bn

n(tn)





















c0

c1
...
cn











=











x0

x1
...

xn











.

If it is not important how we represent p we can avoid solving a linear
system by representing p in the Lagrange basis. The i-th Lagrange function
is the polynomial

Li(t) =
n

∏

j=0
j 6=i

t − tj
ti − tj

, i = 0, 1, . . . , n,

which evidently has the property that Li(ti) = 1 and Li(tk) = 0 if k 6= i.
Hence the interpolating polynomial is simply

p(t) =
n

∑

i=0

xiLi(t).

2

2 Hermite interpolation

It is often desirable to find an interpolating curve that also matches derivative
data. This is known as Hermite interpolation. An important special case is
to interpolate f and all its derivatives up to some order k at two points. If
the corresponding parameter values are a and b, this means finding p such
that

p(i)(a) = f (i)(a) and p(i)(b) = f (i)(b), i = 0, 1, . . . , k.

These conditions determine the polynomial p uniquely if its degree is at most
n = 2k + 1. The Bézier representation,

p(t) =
n

∑

j=0

cjB
n
j (u), (3)

where u = (t − a)/(b − a), is in this case quite convenient and easy to find.
In Chapter 2 we saw that

p(i)(a) =
n!

(n − i)!

∆ic0

(b − a)i
and p(i)(b) =

n!

(n − i)!

∆icn−i

(b − a)i
. (4)

Therefore, we need to find the coefficients c0, . . . , cn such that

∆ic0 = bi, ∆icn−i = bn−i, i = 0, 1, . . . , k,

where

bi :=
(n − i)!

n!
(b − a)if (i)(a),

bn−i :=
(n − i)!

n!
(b − a)if (i)(b).

One can show that the solutions are

ci =
i

∑

j=0

(

i

j

)

bj, cn−i =
i

∑

j=0

(−1)j

(

i

j

)

bn−j.

For example, in the cubic case, with k = 1 and n = 3,








c0

c1

c2

c3









=









b0

b0 + b1

b3 − b2

b3









=









f(a)
f(a) + (b − a)f ′(a)/3
f(b) − (b − a)f ′(b)/3

f(b)









. (5)

3

3 Piecewise cubic Hermite interpolation

An alternative to using polynomials for interpolation is to use piecewise poly-
nomials, which are better suited when the number of interpolation conditions
is high. For example, we can interpolate points xi = f(ti) and first deriva-
tives mi = f ′(ti), where t0 < t1 < · · · < tn, with a piecewise cubic curve s

with parameter domain [t0, tn] and C1 continuity by fitting a cubic to each
consecutive pair of data. One way of representing the individual cubics is in
Bernstein form. Thus, for t ∈ [ti, ti+1], we let s(t) = si(t), where

si(t) =
3

∑

j=0

cjB
3
j (u), (6)

and, using (5),








c0

c1

c2

c3









=









xi

xi + himi/3
xi+1 − himi+1/3

xi+1









, (7)

with hi = ti+1 − ti and u = (t − ti)/hi.
If the slopes mi are not known, it is usual to estimate them from the

points xj nearby. For example, a common choice is to set

mi =
xi+1 − xi−1

ti+1 − ti−1

, i = 1, . . . , n − 1.

This is a good approximation to f ′(ti) when the ti are uniformly spaced.
At the endpoints, a one-sided approximation is necessary, and we could, for
example, set

m0 =
x1 − x0

t1 − t0
, mn =

xn − xn−1

tn − tn−1

.

4 Cubic spline interpolation

An alternative way of choosing the interior slopes m1, . . . ,mn−1 is to deter-
mine them in such a way that the piecewise cubic curve s has C2 continuity
at the corresponding breakpoints. i.e.,

s′′i (ti) = s′′i−1(ti), i = 1, . . . , n − 1. (8)

4

It turns out that this system of n−1 equations in the unknowns m1, . . . ,mn−1

has a unique solution. To see this, observe that applying the derivative
formulas to the Bézier curve si in (6) gives

s′′i (ti) =
6

h2
i

∆2c0, s′′i (ti+1) =
6

h2
i

∆2c1,

with the cj given by (7). Thus equation (8) can be expressed as

himi−1 + 2(hi−1 + hi)mi + hi−1mi+1 = bi,

where

bi = 3

(

hi

hi−1

∆xi−1 +
hi−1

hi

∆xi

)

.

This gives us the linear system of equations














β1 γ1

α2 β2 γ2

.

αn−2 βn−2 γn−2

αn−1 βn−1





























m1

m2
...

mn−2

mn−1















=















b1 − h1m0

b2
...

bn−2

bn−1 − hn−2mn















,

where αi = hi, βi = 2(hi−1 + hi), and γi = hi−1. This is a tridiagonal system
that is strictly diagonally dominant, and therefore has a unique solution.

An alternative method of finding the C2 cubic spline interpolant s is to
represent it in terms of cubic B-splines. The number of B-splines we need
is 4 for the first interval [t0, t1], plus 1 for each subsequent interval [ti, ti+1],
giving a total of n + 3. We find that s can be expressed as

s(t) =
n+3
∑

i=1

ciN
3
i (t),

with respect to the knot vector

τ = (τ1, . . . , τn+7) = (t0, t0, t0, t0, t1, . . . , tn−1, tn, tn, tn, tn).

Then the conditions

s(ti) = xi, i = 0, 1, . . . , n,

and
s′(t0) = m0, s′(tn) = mn,

give n + 3 equations in the n + 3 unknowns c1, . . . , cn+3. The equations are
again linear and form a tridiagonal system which has a unique solution.

5

