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Triangular meshes are often used to represent surfaces, at least initially,
one reason being that meshes are relatively easy to generate from point cloud
data. However, we often want a smoother surface representation, and hence
the need arises to fit a smooth parametric surface through the vertices of the
mesh. This requires making a suitable parameterization. Parameterizations
are also useful for texture mapping and other processes in computer graphics.
In this lecture we review some parameterization methods.

1 Parameterization of polygons

A standard approach to fitting a smooth parametric curve c(t) through a
sequence of points xi = (xi, yi, zi) ∈ R

3, i = 0, 1, . . . , n, is to start by choosing
a parameterization, a corresponding increasing sequence of parameter values
t0 < t1 < · · · < tn. Then by finding smooth functions x, y, z : [t0, tn] → R

for which x(ti) = xi, y(ti) = yi, z(ti) = zi, an interpolatory curve c(t) =
(x(t), y(t), z(t)) results, i.e., a curve c : [t0, tn] → R

3 such that c(ti) = xi for
each i.

In order to discuss different parameterization methods, we will use the
example of C2 cubic spline interpolation. There is a unique C2 cubic spline
curve s : [t0, tn] → R

d such that

s(ti) = xi, i = 0, 1, . . . , n,

and
s′(ti) = mi, i = 0, n, (1)

for some chosen vectors m0, mn. By ‘cubic spline curve’ we understand that
s is a cubic polynomial curve in each interval [ti, ti+1], and that s has C2 con-
tinuity at the break points t1, . . . , tn−1. The end conditions (1) are sometimes
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(a) uniform (b) chordal (c) centripetal

Figure 1: Choice of parameterization for cubic spline interpolation.

known as ‘clamped’ end conditions, and this kind of spline interpolation is
sometimes called ‘complete’ spline interpolation.

A typical way to choose parameter values is to set t0 = 0 and recursively
let

ti+1 := ti + Li, (2)

for some chosen interval lengths L0, L1, . . . , Ln−1 > 0. The simplest choice
is the uniform parameterization defined by Li = 1, so that the values ti are
uniformly spaced; see Figure (1). But as early as 1967, Ahlberg, Nilson, and
Walsh proposed using the chordal parameterization in which Li is taken to
be the length of the line segment (‘chord’) [xi,xi+1], i.e.,

Li := ‖xi+1 − xi‖, (3)

where ‖ · ‖ is the Euclidean norm in R
d. The motivation behind this is that

if the points xi are samples from some (typically unknown) curve and if that
curve is smooth enough and the points are relatively densely sampled, then
the chord length ‖xi+1−xi‖ is a good approximation to the arc length of the
curve between xi and xi+1.

In practice, the chordal parameterization often does a better job of avoid-
ing the cusps and self-intersections that sometimes occur with the uniform
parameterization when there is a lot of variation in the distances between
the points xi.

Later, it was observed that the uniform and chordal parameterizations
are the special cases µ = 0 and µ = 1 of the more general parameterization

Li := ‖xi+1 − xi‖
µ,

with 0 ≤ µ ≤ 1 acting as a kind of blending parameter. The choice µ = 1/2
was termed by Lee the centripetal parameterization and it has been found
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that it tends to lead to a spline curve that stays close to the polygon defined
by the xi.

Consider now how we might generalize the incremental method (2) to
points arranged in a triangular mesh, with a view to computing parameter
points for surface fitting. One approach is to reformulate (2) as a linear
system of equations, with t0 and tn acting as ‘boundary conditions’. Since

ti − ti−1 = Li−1, ti+1 − ti = Li,

for i = 1, . . . , n− 1, we have the equations

ti =

(

Li

Li−1 + Li

)

ti−1 +

(

Li−1

Li−1 + Li

)

ti+1, i = 1, . . . , n− 1.

Thus, for general Li, these equations simply force the parameter value ti to be
some convex combination of the neighbouring values ti−1 and ti+1, and there-
fore, lie between them. We also now see that the chordal parameterization
has the ‘linear precision’ property: if for any i,

xi = (1 − λ)xi−1 + λxi+1,

for some λ, 0 < λ < 1, which means that xi−1, xi, and xi+1 lie in a straight
line, then

ti = (1 − λ)ti−1 + λti+1.

This is a property that we can mimic in the surface case.

2 Parameterization of triangular meshes

We now describe a general method for constructing a parameterization of
triangular mesh in R

3. We denote by S the set of triangles in the mesh and
V its vertices and E its edges. We let ΩS ⊂ R

3 be the union of the triangles
in S. Then we define a parameterization of S as a continuous piecewise
linear mapping ψ : ΩS → R

2. Then ψ maps each vertex, edge, and triangle
of S to a corresponding vertex, edge, and triangle in R

2. Such a mapping is
completely determined by the points ψ(v), v ∈ V . Let VI denote the interior
vertices of S and VB the boundary ones. The boundary vertices of S form
a polygon ∂S in R

3 which we call the boundary polygon of S. Two distinct
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Figure 2: Triangular mesh in R
3

vertices v and w in S are neighbours if they are the end points of some edge
in S. For each v ∈ V , let

Nv = {w ∈ V : [w,v] ∈ E},

the set of neighbours of v, where E = E(S) is the set of edges in S.
The first step of the method is to choose any points ψ(v) ∈ R

2, for
v ∈ VB, such that the boundary polygon ∂S of S is mapped into a simple
polygon ψ(∂S) in the plane. In the second step, for v ∈ VI , we choose a set
of strictly positive values λvw, for w ∈ Nv, such that

∑

w∈Nv

λvw = 1. (4)

Then we let the points ψ(v) in R
2, for v ∈ VI , be the unique solutions of the

linear system of equations

ψ(v) =
∑

w∈Nv

λvwψ(w), v ∈ VI . (5)

Since these equations force each point ψ(v) to be a convex combination
of its neighbouring points ψ(w), we call ψ a convex combination mapping.
Fig. 2 shows an example of a triangular mesh in R

3. Fig. 3 shows a convex
combination mapping of S into a planar mesh T , whose boundary was chosen
to be a rectangle. Fig. 3 also shows a tensor-product spline approximation
(in fact a least square approximation) to the vertices of S based on their
parameter points, the vertices of T .
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(a)

(b)

Figure 3: Parameterization (triangular mesh in R
2) (a) and resulting tensor-

product spline approximation (b)

Let us take a closer look at the linear system. We must show that it has
a unique solution. To this end, note that it can be rewritten in the form

ψ(v) −
∑

w∈Nv∩VI

λvwψ(w) =
∑

w∈Nv∩VB

λvwψ(w), v ∈ VI . (6)

This can be written as the matrix equation

Ax = b,

where x = (ψ(w))
w∈VI

is the column vector of unknowns in some arbitrary
ordering, b is the column vector whose elements are the right hand sides
of (6), and the matrix A = (avw)

v,w∈VI
has dimension n× n, with n = |VI |,

and elements

avw =







1, w = v,
−λvw, w ∈ Nv,

0, otherwise.

The existence and uniqueness of the solution to (5) follows from the structure
of the matrix A, namely that its off diagonal elements are either zero or
negative and each row of A is diagonally dominant. Moreover every row
corresponding to a vertex v ∈ VI which has at least one neighbour in VB

is strictly diagonally dominant and every interior vertex can be connected
to the boundary by a path of vertices. A standard result in linear algebra
shows then that A is non-singular (in fact A is a so-called M-matrix, and
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Figure 4: Triangular mesh in R
3

such matrices frequently occur in numerical approximations to elliptic partial
differential equations.

An interesting question is whether ψ is one-to-one. It will not be one-to-
one in general but the following result gives a sufficient condition. The proof
is beyond the scope of this course. We say that an interior edge of S is a
dividing edge of S if both its end points are boundary vertices of S.

Theorem 1 If ψ(∂Ω) is convex and no dividing edge [v, w] is mapped by ψ
into ∂Ω then ψ is injective.

3 Choosing the Weights

A simple choice of weights λvw is to take them to be uniform, i.e., constant
for each vertex v, so that λvw = 1/d(v), w ∈ Nv where d(v) is the degree
|Nv| of v. Then every interior vertex ψ(v) of the solution to the linear system
will be the barycentre of its neighbours. However, numerical examples show
that this uniform parameterization usually leads to poor spline surfaces when
used for approximation. Look for example at Figures 4 and 5. Figure 4 shows
a mesh S and Figure 5 shows a uniform parameterization T of S together
with a spline approximation to S over the mesh T . Clearly the iso-curves
are badly behaved.

One reason for the bad behaviour of the surface approximation is that
the weights λvw are independent of the geometry of the vertices v of S. In
practice it better to choose weights that share the linear precision property
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(a) (b)

Figure 5: Uniform parameterization (a) and spline approximation (b)

of the chordal parameterization for curves. We would like weights λvw that
have the property that when v and its neighbours lie in a plane, then

v =
∑

w∈Nv

λvww. (7)

Weights that achieve this and are also positive are the mean value weights:

λvw = wvw/
∑

u∈Nv

wvu,

where

wvw =
tan(α/2) + tan(β/2)

||w − v||
,

and α and β are the angles at the vertex v of the two triangles adjacent
to the edge [v,w]. Figure 6 shows the result of interpolating S of Figure 4
with a spline approximation over the mean value parameterization of S. The
surface approximation is clearly better than that of Figure 5, using uniform
parameterization. The effect of choosing different boundary polygons ψ(∂S)
is shown in Figures 7 and 8. In Fig. 8(a) the parameter points of the
boundary vertices of the mesh in 7 were distributed by chord length on a
rectangle and in Fig. 8(b) on a circle.

The mean value parameterization has turned out to be a successful and
popular method for parameterizing triangular meshes, both for surface fitting
and for texture mapping in computer graphics.
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(a) (b)

Figure 6: Mean value parameterization (a) and spline approximation (b)

Figure 7: Triangular mesh in R
3

(a)
(b)

Figure 8: Mean value parameterizations of the mesh in Figure 7
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