Spline curves

Michael S. Floater

September 18, 2013

In this lecture we introduce spline curves and study some of their basic properties.

1 Spline curves

For any integers $d \geq 0$ and $n \geq 1$, we call a sequence $\mathbf{t}=\left(t_{1}, t_{2}, \ldots, t_{n+d+1}\right)$, $t_{i} \in \mathbb{R}$, a knot vector if $t_{i} \leq t_{i+1}$ and $t_{i}<t_{i+d+1}$. Such a sequence of knots together with a sequence of control points $\mathbf{c}_{i} \in \mathbb{R}^{m}, i=1, \ldots, n$, define a spline curve

$$
\begin{equation*}
\mathbf{s}(t)=\sum_{i=1}^{n} \mathbf{c}_{i} N_{i}^{d}(t), \quad t \in \mathbb{R} \tag{1}
\end{equation*}
$$

where the functions N_{i}^{d} are B-splines. These B-splines can be defined recursively:

$$
N_{i}^{0}(t)= \begin{cases}1 & t \in\left[t_{i}, t_{i+1}\right) \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

and for $d \geq 1$,

$$
\begin{equation*}
N_{i}^{d}(t)=\frac{t-t_{i}}{t_{i+d}-t_{i}} N_{i}^{d-1}(t)+\frac{t_{i+d+1}-t}{t_{i+d+1}-t_{i+1}} N_{i+1}^{d-1}(t) \tag{3}
\end{equation*}
$$

We use the convention here that

$$
N_{i}^{r-1}=\frac{N_{i}^{r-1}}{t_{i+r}-t_{i}}=0, \quad \text { if } t_{i+r}=t_{i}
$$

From this recursion it follows that N_{i}^{d} is a piecewise polynomial of degree d, which is positive in $\left(t_{i}, t_{i+d+1}\right)$ and zero outside $\left[t_{i}, t_{i+d+1}\right]$. In practice we
restrict \mathbf{s} to being the parametric curve $\mathbf{s}:\left[t_{d+1}, t_{n+1}\right) \rightarrow \mathbb{R}^{m}$. The parameter domain $\left[t_{d+1}, t_{n+1}\right)$ consists of the knot intervals $\left[t_{k}, t_{k+1}\right), k=d+1, \ldots, n$. In the knot interval $\left[t_{k}, t_{k+1}\right)$, the spline \mathbf{s} depends on, and only on, the $d+1$ control points $\mathbf{c}_{k-d}, \ldots, \mathbf{c}_{k}$.

2 Evaluation

Similar to Bézier curves, there are two ways of evaluating a spline curve. One way is to use the recursion (3) and then the formula (1). Suppose $t \in\left[t_{k}, t_{k+1}\right)$ for some $k \in\{d+1, \ldots, n\}$. Then,

$$
\mathbf{s}(t)=\sum_{i=k-d}^{k} \mathbf{c}_{i} N_{i}^{d}(t)
$$

and we only need to compute $N_{k-d}^{d}(t), \ldots, N_{k}^{d}(t)$, for all the other B-splines are zero in $\left[t_{k}, t_{k+1}\right)$. The recursion (3) can then be carried out in a triangular scheme,

$$
\begin{array}{ccccc}
1=N_{k}^{0} & N_{k-1}^{1} & N_{k-2}^{2} & \cdots & N_{k-d}^{d} \\
& N_{k}^{1} & N_{k-1}^{2} & \cdots & N_{k-d+1}^{d} \\
& & N_{k}^{2} & \cdots & N_{k-d+2}^{d} \\
& & & \ddots & \vdots \\
& & & & N_{k}^{d}
\end{array}
$$

Alternatively, one can use a more direct recursion algorithm. Let $\mathbf{c}_{i}^{0}=\mathbf{c}_{i}$, $i=k-d, \ldots, k$. Then for $r=1, \ldots, d$, and $i=k-d+r, \ldots, k$, let

$$
\begin{equation*}
\mathbf{c}_{i}^{r}=\frac{t_{i+d+1-r}-t}{t_{i+d+1-r}-t_{i}} \mathbf{c}_{i-1}^{r-1}+\frac{t-t_{i}}{t_{i+d+1-r}-t_{i}} \mathbf{c}_{i}^{r-1} . \tag{4}
\end{equation*}
$$

One can show that the last point computed is $\mathbf{c}_{k}^{d}=\mathbf{s}(t)$. Similar to the de Casteljau algorithm, this can be shown by showing, more generally, by induction on r, that

$$
\begin{equation*}
\mathbf{s}(t)=\sum_{i=k-d+r}^{k} \mathbf{c}_{i}^{r} N_{i}^{d-r}(t) . \tag{5}
\end{equation*}
$$

This algorithm can also be arranged in a triangular scheme, here row-wise,

$$
\begin{array}{ccccccc}
\mathbf{c}_{k-d}^{0} & & \mathbf{c}_{k-d+1}^{0} & & \mathbf{c}_{k-d+2}^{0} & & \cdots \\
\mathbf{c}_{k-d+1}^{1} & & \mathbf{c}_{k-d+2}^{1} & & \cdots & & \mathbf{c}_{k}^{1}
\end{array} \mathbf{c}_{k}^{0}
$$

3 Polar forms

In analogy to Bézier curves we can express the control points of a spline curve in terms of polar forms. There is a polar form for each polynomial piece of \mathbf{s}. Recall that the d-variate polar form $\mathcal{P}[p]\left(x_{1}, \ldots, x_{d}\right)$ of the polynomial

$$
\begin{equation*}
p(x)=\sum_{i=0}^{d} a_{i} x^{i}, \quad a_{i} \in \mathbb{R} \tag{6}
\end{equation*}
$$

is

$$
\mathcal{P}[p]\left(x_{1}, \ldots, x_{d}\right)=\sum_{i=0}^{d} a_{i} S_{i}\left(x_{1}, \ldots, x_{d}\right),
$$

where S_{i} is the symmetric polynomial

$$
\begin{equation*}
S_{i}\left(x_{1}, \ldots, x_{d}\right)=\sum_{1 \leq k_{1}<k_{2}<\cdots<k_{i} \leq d} x_{k_{1}} x_{k_{2}} \cdots x_{k_{i}} /\binom{d}{i} . \tag{7}
\end{equation*}
$$

Consider again the spline curve s restricted to some non-empty interval $\left[t_{k}, t_{k+1}\right), d+1 \leq k \leq n$. In this interval \mathbf{s} is a polynomial which we can denote by \mathbf{s}_{k},

$$
\begin{equation*}
\mathbf{s}_{k}(t)=\sum_{i=k-d}^{k} \mathbf{c}_{i} N_{i}^{d}(t), \quad t \in\left[t_{k}, t_{k+1}\right) \tag{8}
\end{equation*}
$$

Theorem 1 For $i=k-d, \ldots, k$,

$$
\mathbf{c}_{i}=\mathcal{P}\left[\mathbf{s}_{k}\right]\left(t_{i+1}, \ldots, t_{i+d}\right) .
$$

Proof. To prove this let

$$
\mathbf{c}_{i}^{r}=\mathcal{P}\left[\mathbf{s}_{k}\right](t_{i+1}, \ldots, t_{i+d-r}, \underbrace{t, \ldots, t}_{r}) .
$$

Since $\mathcal{P}\left[\mathbf{s}_{k}\right]$ is multi-affine and symmetric, and since

$$
t=(1-\alpha) t_{i}+\alpha t_{i+d-r+1},
$$

where

$$
\alpha=\frac{t-t_{i}}{t_{i+d-r+1}-t_{i}},
$$

it follows that \mathbf{c}_{i}^{r} satisfies the recursion (4). Therefore,

$$
\mathbf{c}_{k}^{d}=\sum_{i=k-d}^{k} \mathbf{c}_{i}^{0} N_{i}^{d}(t)
$$

and so, by the diagonal property of $\mathcal{P}\left[\mathbf{s}_{k}\right]$,

$$
\begin{equation*}
\mathbf{s}_{k}(t)=\sum_{i=k-d}^{k} \mathbf{c}_{i}^{0} N_{i}^{d}(t)=\sum_{i=k-d}^{k} \mathcal{P}\left[\mathbf{s}_{k}\right]\left(t_{i+1}, \ldots, t_{i+d}\right) N_{i}^{d}(t) \tag{9}
\end{equation*}
$$

This equation shows that any polynomial of degree $\leq d$ in the interval $\left[t_{k}, t_{k+1}\right)$ can be expressed as a linear combination of $N_{k-d}^{d}, \ldots, N_{k}^{d}$, and since there are $d+1$ of these, they must be linearly independent. Thus we can equate the coefficients \mathbf{c}_{i} in (8) with those in (9).

4 Continuity

Consider now the continuity of the spline s. If a knot z in the knot vector \mathbf{t} occurs r times we say that z is an r-fold knot, or that z has multiplicity r.

Lemma 1 The spline \mathbf{s}, of degree $d \geq 1$, is continuous at a knot of multiplicity d.

Proof. We may assume that for some i,

$$
z=t_{i+1}=\cdots=t_{i+d}
$$

and

$$
t_{i}<z<t_{i+d+1} .
$$

Then $\left.\mathbf{s}\right|_{\left[t_{i}, z\right)}=\mathbf{s}_{i}$ and $\left.\mathbf{s}\right|_{\left[z, t_{i+d+1}\right)}=\mathbf{s}_{i+d}$ and so the two polynomial pieces \mathbf{s}_{i} and \mathbf{s}_{i+d} are adjacent and the task is to show that they are equal at z. Using the polar forms of \mathbf{s}_{i} and \mathbf{s}_{i+d} we find

$$
\mathbf{s}_{i}(z)=\mathcal{P}\left[\mathbf{s}_{i}\right](\underbrace{z, \ldots, z}_{d})=\mathcal{P}\left[\mathbf{s}_{i}\right]\left(t_{i+1}, \ldots, t_{i+d}\right)=\mathbf{c}_{i},
$$

and

$$
\mathbf{s}_{i+d}(z)=\mathcal{P}\left[\mathbf{s}_{i+d}\right](\underbrace{z, \ldots, z}_{d})=\mathcal{P}\left[\mathbf{s}_{i+d}\right]\left(t_{i+1}, \ldots, t_{i+d}\right)=\mathbf{c}_{i}
$$

and so both pieces are equal to \mathbf{c}_{i} at z.
Lemma $2 A$ spline \mathbf{s} of degree d is continuous at a knot z of multiplicity r for any $r \leq d$.

Proof. Since any spline of degree r, on the same knot vector as \mathbf{s}, is continuous at z, the B-splines N_{i}^{r} (on the same knot vector) are also continuous at z. So, by the recursion formula for B-splines (3), the B-splines N_{i}^{r+1} are also continuous at z, and similarly for N_{i}^{r+2}, and so on. Thus the B-splines N_{i}^{d} are also continuous at z and so too is \mathbf{s}.

5 Derivatives

Using polar forms, we next find a formula for the first derivative of the spline s as a spline of degree $d-1$.

Lemma 3 Let p be the polynomial of degree $\leq d$ in (6) and $\mathcal{P}[p]$ its polar form (7). For any $a, b \in \mathbb{R}$ with $a \neq b$,

$$
\begin{equation*}
\mathcal{P}\left[p^{\prime}\right]\left(x_{1}, \ldots, x_{d-1}\right)=d \frac{\mathcal{P}[p]\left(x_{1}, \ldots, x_{d-1}, b\right)-\mathcal{P}[p]\left(x_{1}, \ldots, x_{d-1}, a\right)}{b-a} \tag{10}
\end{equation*}
$$

Proof. By the definition of S_{i},

$$
S_{i}\left(x_{1}, \ldots, x_{d}\right)=\frac{d-i}{d} S_{i}\left(x_{1}, \ldots, x_{d-1}\right)+\frac{i}{d} x_{d} S_{i-1}\left(x_{1}, \ldots, x_{d-1}\right)
$$

and therefore, for any a, b,

$$
S_{i}\left(x_{1}, \ldots, x_{d-1}, b\right)-S_{i}\left(x_{1}, \ldots, x_{d-1}, a\right)=\frac{i}{d}(b-a) S_{i-1}\left(x_{1}, \ldots, x_{d-1}\right)
$$

Since the derivative of p is

$$
\begin{equation*}
p^{\prime}(x)=\sum_{i=1}^{d} i a_{i} x^{i-1} \tag{11}
\end{equation*}
$$

this implies that if $a \neq b$,

$$
\begin{aligned}
\mathcal{P}\left[p^{\prime}\right]\left(x_{1}, \ldots, x_{d-1}\right) & =\sum_{i=1}^{d} i a_{i} S_{i-1}\left(x_{1}, \ldots, x_{d-1}\right) \\
& =\frac{d}{b-a} \sum_{i=1}^{d} a_{i}\left(S_{i}\left(x_{1}, \ldots, x_{d-1}, b\right)-S_{i}\left(x_{1}, \ldots, x_{d-1}, b\right)\right)
\end{aligned}
$$

Since $S_{0}=1$ this sum can be extended to include $i=0$, and then we obtain (10).

Lemma 4

$$
\mathbf{s}^{\prime}(t)=\sum_{i=2}^{n} \mathbf{d}_{i} N_{i}^{d-1}(t)
$$

where

$$
\mathbf{d}_{i}=\frac{d}{t_{i+d}-t_{i}}\left(\mathbf{c}_{i}-\mathbf{c}_{i-1}\right)
$$

Proof. Consider again one of the spline segments \mathbf{s}_{k}. Since its deriavtive is a polynomial of degree $\leq d-1$, there must be coefficients $\mathbf{d}_{k-d+1}, \ldots, \mathbf{d}_{k}$ such that

$$
\mathbf{s}_{k}^{\prime}(t)=\sum_{i=k-d+1}^{k} \mathbf{d}_{i} N_{i}^{d-1}(t)
$$

From the polar form of \mathbf{s}_{k}^{\prime},

$$
\mathbf{d}_{i}=\mathcal{P}\left[\mathbf{s}_{k}^{\prime}\right]\left(t_{i+1}, \ldots, t_{i+d-1}\right)
$$

Using the formula of the previous lemma with $a=t_{i}$ and $b=t_{i+d}$, it follows that

$$
\mathbf{d}_{i}=\frac{d}{t_{i+d}-t_{i}}\left(\mathbf{c}_{i}-\mathbf{c}_{i-1}\right)
$$

Since these coefficients are independent of k, the result follows.

Thus \mathbf{s}^{\prime} is a spline of degree $d-1$ on the same knot vector as \mathbf{s}. We can continue to differentiate in this way, and thus express the k-th derivative $\mathbf{s}^{(k)}$ as a spline of degree $d-k$ on the same knot vector.

6 Smoothness

We can now establish the smoothness of a spline.
Theorem 2 A spline \mathbf{s} of degree d has order of continuity C^{d-r} at a knot z of multiplicity r for any $r \leq d$.

Proof. Let $k \in\{0,1, \ldots, d-r\}$ and consider the k-th derivative $\mathbf{s}^{(k)}$. By the differentiation formula of the previous section, $\mathbf{s}^{(k)}$ is itself a spline, of degree $d-k$, on the same knot vector as \mathbf{s}. Thus, since $d-k \geq r$, Lemma 2 implies that $\mathbf{s}^{(k)}$ is continuous at z. Thus the derivatives of \mathbf{s} of orders $0,1, \ldots, d-r$ are continuous at z.

In particular, at a simple knot, i.e., a knot with multiplicity 1 , s has smoothness C^{d-1}.

