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In this lecture we introduce spline curves and study some of their basic
properties.

1 Spline curves

For any integers d ≥ 0 and n ≥ 1, we call a sequence t = (t1, t2, . . . , tn+d+1),
ti ∈ R, a knot vector if ti ≤ ti+1 and ti < ti+d+1. Such a sequence of knots
together with a sequence of control points ci ∈ R

m, i = 1, . . . , n, define a
spline curve

s(t) =
n∑

i=1

ciN
d
i (t), t ∈ R, (1)

where the functions Nd
i are B-splines. These B-splines can be defined recur-

sively:

N0
i (t) =

{

1 t ∈ [ti, ti+1);

0 otherwise,
(2)

and for d ≥ 1,

Nd
i (t) =

t − ti

ti+d − ti
Nd−1

i (t) +
ti+d+1 − t

ti+d+1 − ti+1

Nd−1
i+1 (t). (3)

We use the convention here that

N r−1
i =

N r−1
i

ti+r − ti
= 0, if ti+r = ti.

From this recursion it follows that Nd
i is a piecewise polynomial of degree

d, which is positive in (ti, ti+d+1) and zero outside [ti, ti+d+1]. In practice we
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restrict s to being the parametric curve s : [td+1, tn+1) → R
m. The parameter

domain [td+1, tn+1) consists of the knot intervals [tk, tk+1), k = d + 1, . . . , n.
In the knot interval [tk, tk+1), the spline s depends on, and only on, the d+1
control points ck−d, . . . , ck.

2 Evaluation

Similar to Bézier curves, there are two ways of evaluating a spline curve. One
way is to use the recursion (3) and then the formula (1). Suppose t ∈ [tk, tk+1)
for some k ∈ {d + 1, . . . , n}. Then,

s(t) =
k∑

i=k−d

ciN
d
i (t),

and we only need to compute Nd
k−d(t), . . . , N

d
k (t), for all the other B-splines

are zero in [tk, tk+1). The recursion (3) can then be carried out in a triangular
scheme,

1 = N0
k N1

k−1 N2
k−2 · · · Nd

k−d

N1
k N2

k−1 · · · Nd
k−d+1

N2
k · · · Nd

k−d+2
. . .

...
Nd

k

Alternatively, one can use a more direct recursion algorithm. Let c0
i = ci,

i = k − d, . . . , k. Then for r = 1, . . . , d, and i = k − d + r, . . . , k, let

cr
i =

ti+d+1−r − t

ti+d+1−r − ti
cr−1

i−1 +
t − ti

ti+d+1−r − ti
cr−1

i . (4)

One can show that the last point computed is cd
k = s(t). Similar to the

de Casteljau algorithm, this can be shown by showing, more generally, by
induction on r, that

s(t) =
k∑

i=k−d+r

cr
i N

d−r
i (t). (5)
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This algorithm can also be arranged in a triangular scheme, here row-wise,

c0
k−d c0

k−d+1 c0
k−d+2 · · · c0

k

c1
k−d+1 c1

k−d+2 · · · c1
k

. . . . . .

cd−1
k−1 cd−1

k

cd
k

3 Polar forms

In analogy to Bézier curves we can express the control points of a spline curve
in terms of polar forms. There is a polar form for each polynomial piece of s.
Recall that the d-variate polar form P [p](x1, . . . , xd) of the polynomial

p(x) =
d∑

i=0

aix
i, ai ∈ R, (6)

is

P [p](x1, . . . , xd) =
d∑

i=0

aiSi(x1, . . . , xd),

where Si is the symmetric polynomial

Si(x1, . . . , xd) =
∑

1≤k1<k2<···<ki≤d

xk1
xk2

· · ·xki

/(
d

i

)

. (7)

Consider again the spline curve s restricted to some non-empty interval
[tk, tk+1), d + 1 ≤ k ≤ n. In this interval s is a polynomial which we can
denote by sk,

sk(t) =
k∑

i=k−d

ciN
d
i (t), t ∈ [tk, tk+1). (8)

Theorem 1 For i = k − d, . . . , k,

ci = P [sk](ti+1, . . . , ti+d).
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Proof. To prove this let

cr
i = P [sk](ti+1, . . . , ti+d−r, t, . . . , t

︸ ︷︷ ︸

r

).

Since P [sk] is multi-affine and symmetric, and since

t = (1 − α)ti + αti+d−r+1,

where

α =
t − ti

ti+d−r+1 − ti
,

it follows that cr
i satisfies the recursion (4). Therefore,

cd
k =

k∑

i=k−d

c0
i N

d
i (t),

and so, by the diagonal property of P [sk],

sk(t) =
k∑

i=k−d

c0
i N

d
i (t) =

k∑

i=k−d

P [sk](ti+1, . . . , ti+d)N
d
i (t). (9)

This equation shows that any polynomial of degree ≤ d in the interval
[tk, tk+1) can be expressed as a linear combination of Nd

k−d, . . . , N
d
k , and since

there are d + 1 of these, they must be linearly independent. Thus we can
equate the coefficients ci in (8) with those in (9). 2

4 Continuity

Consider now the continuity of the spline s. If a knot z in the knot vector t

occurs r times we say that z is an r-fold knot, or that z has multiplicity r.

Lemma 1 The spline s, of degree d ≥ 1, is continuous at a knot of multi-
plicity d.

Proof. We may assume that for some i,

z = ti+1 = · · · = ti+d,
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and
ti < z < ti+d+1.

Then s|[ti,z) = si and s|[z,ti+d+1) = si+d and so the two polynomial pieces si

and si+d are adjacent and the task is to show that they are equal at z. Using
the polar forms of si and si+d we find

si(z) = P [si](z, . . . , z
︸ ︷︷ ︸

d

) = P [si](ti+1, . . . , ti+d) = ci,

and
si+d(z) = P [si+d](z, . . . , z

︸ ︷︷ ︸

d

) = P [si+d](ti+1, . . . , ti+d) = ci,

and so both pieces are equal to ci at z. 2

Lemma 2 A spline s of degree d is continuous at a knot z of multiplicity r

for any r ≤ d.

Proof. Since any spline of degree r, on the same knot vector as s, is continuous
at z, the B-splines N r

i (on the same knot vector) are also continuous at z.
So, by the recursion formula for B-splines (3), the B-splines N r+1

i are also
continuous at z, and similarly for N r+2

i , and so on. Thus the B-splines Nd
i

are also continuous at z and so too is s. 2

5 Derivatives

Using polar forms, we next find a formula for the first derivative of the spline
s as a spline of degree d − 1.

Lemma 3 Let p be the polynomial of degree ≤ d in (6) and P [p] its polar
form (7). For any a, b ∈ R with a 6= b,

P [p′](x1, . . . , xd−1) = d
P [p](x1, . . . , xd−1, b) − P[p](x1, . . . , xd−1, a)

b − a
. (10)

Proof. By the definition of Si,

Si(x1, . . . , xd) =
d − i

d
Si(x1, . . . , xd−1) +

i

d
xdSi−1(x1, . . . , xd−1),
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and therefore, for any a, b,

Si(x1, . . . , xd−1, b) − Si(x1, . . . , xd−1, a) =
i

d
(b − a)Si−1(x1, . . . , xd−1).

Since the derivative of p is

p′(x) =
d∑

i=1

iaix
i−1, (11)

this implies that if a 6= b,

P [p′](x1, . . . , xd−1) =
d∑

i=1

iaiSi−1(x1, . . . , xd−1)

=
d

b − a

d∑

i=1

ai

(
Si(x1, . . . , xd−1, b) − Si(x1, . . . , xd−1, b)

)
.

Since S0 = 1 this sum can be extended to include i = 0, and then we obtain
(10). 2

Lemma 4

s′(t) =
n∑

i=2

diN
d−1
i (t),

where

di =
d

ti+d − ti
(ci − ci−1).

Proof. Consider again one of the spline segments sk. Since its deriavtive is a
polynomial of degree ≤ d− 1, there must be coefficients dk−d+1, . . . ,dk such
that

s′k(t) =
k∑

i=k−d+1

diN
d−1
i (t).

From the polar form of s′k,

di = P [s′k](ti+1, . . . , ti+d−1).

Using the formula of the previous lemma with a = ti and b = ti+d, it follows
that

di =
d

ti+d − ti
(ci − ci−1).

Since these coefficients are independent of k, the result follows. 2
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Thus s′ is a spline of degree d − 1 on the same knot vector as s. We can
continue to differentiate in this way, and thus express the k-th derivative s(k)

as a spline of degree d − k on the same knot vector.

6 Smoothness

We can now establish the smoothness of a spline.

Theorem 2 A spline s of degree d has order of continuity Cd−r at a knot z

of multiplicity r for any r ≤ d.

Proof. Let k ∈ {0, 1, . . . , d− r} and consider the k-th derivative s(k). By the
differentiation formula of the previous section, s(k) is itself a spline, of degree
d− k, on the same knot vector as s. Thus, since d− k ≥ r, Lemma 2 implies
that s(k) is continuous at z. Thus the derivatives of s of orders 0, 1, . . . , d− r

are continuous at z. 2

In particular, at a simple knot, i.e., a knot with multiplicity 1, s has
smoothness Cd−1.
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