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In this lecture we introduce spline curves and study some of their basic
properties.

1 Spline curves

For any integers d > 0 and n > 1, we call a sequence t = (t1,t9, ..., thiar1),
t; € R, a knot vector if t; < t;y; and t; < t;1441. Such a sequence of knots
together with a sequence of control points c¢; € R™, i« = 1,...,n, define a

spline curve
s(t) =Y _eN{(t), teR, (1)
i=1

where the functions N? are B-splines. These B-splines can be defined recur-

sively:
1 te ti, tz ;
NO(t) = o tinr) @)
0 otherwise,
and for d > 1,
t—1t; _ t; —1 _
N{(t) = NI (8) + T —— N (1), (3)
tz+d tz tz—i—d—l—l tz—l—l

We use the convention here that
N7t
N,Zﬂ_l = tz—t = 0, lf ti—‘rr‘ - tz
+r = U

From this recursion it follows that N¢ is a piecewise polynomial of degree
d, which is positive in (¢;,t;1411) and zero outside [t;, t;1441]. In practice we
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restrict s to being the parametric curve s : [tgi1, 1) — R™. The parameter
domain [ty,1,t,+1) consists of the knot intervals [ty tx11), k =d+1,...,n.
In the knot interval [ty,tx11), the spline s depends on, and only on, the d+ 1
control points cx_g4, ..., Cg.

2 Evaluation

Similar to Bézier curves, there are two ways of evaluating a spline curve. One
way is to use the recursion (3) and then the formula (1). Supposet € [ty, txi1)
for some k € {d+1,...,n}. Then,

s() = 3 N,

i=k—d

and we only need to compute N{ ,(t),..., Ni(t), for all the other B-splines
are zero in [tg, tx+1). The recursion (3) can then be carried out in a triangular
scheme,

I = ng Nl%l ngfz ]\ggfd
Nk Nk51 le—dﬂ

Nk Nk—d+2

N}

Alternatively, one can use a more direct recursion algorithm. Let ¢ = ¢;,
t=k—d,...,k. Thenforr=1,...,d,andi =k —d+r,...,k, let
t; =1 t—1;
o = e e ()
Livar1—r — i bivdr1—r — &
One can show that the last point computed is ¢{ = s(¢). Similar to the

de Casteljau algorithm, this can be shown by showing, more generally, by
induction on r, that

s(t)y= Y, eINIT(1), ()

i=k—d+r



This algorithm can also be arranged in a triangular scheme, here row-wise,

0 0 0 0
Ck—d ) Cr—d+1 ) Ch—d+2 . Ck
Ckdr1 Ch—d+2 T Ck
d—1 d—1
Cr—1 . Ck
Ck

3 Polar forms

In analogy to Bézier curves we can express the control points of a spline curve
in terms of polar forms. There is a polar form for each polynomial piece of s.
Recall that the d-variate polar form P[p|(x1,...,x4) of the polynomial

p(z) = Z a;z’, a; € R, (6)
Plpl(x1,...,xq) = Z a;Si(r1, ..., 24q),

where S; is the symmetric polynomial

CACTE S S xkxkxk/(‘b (7)

1<k <ko<-<k;<d

Consider again the spline curve s restricted to some non-empty interval
[tk,ter1), d+1 < k < n. In this interval s is a polynomial which we can
denote by sy,

se(t) = > N, t € [trtra). (8)

) d

Theorem 1 Fori=k—d,... k,

ci = Plsi)(tiz1,- - tiva)-



Proof. To prove this let
C: = P[Sk](ti+17 .. 7ti+d—r; t, Ce ,t).
N——

Since P[si] is multi-affine and symmetric, and since
t=(1—-a)t;+ativa—ri1,
where
t—1;

o=—"—
tivda—r+1 — i

it follows that ¢ satisfies the recursion (4). Therefore,

k
ONd

i=k—d

and so, by the diagonal property of P[sy],

k k
Sk(t) = Z ONd Z 7) z+1> s 7tl+d>NZd(t) (9>
i=k—d i=k—d
This equation shows that any polynomial of degree < d in the interval
[tr, tri1) can be expressed as a linear combination of N& ,, ..., N{, and since
there are d + 1 of these, they must be linearly independent. Thus we can
equate the coefficients c; in (8) with those in (9). O

4 Continuity

Consider now the continuity of the spline s. If a knot 2z in the knot vector t
occurs r times we say that z is an r-fold knot, or that z has multiplicity .

Lemma 1 The spline s, of degree d > 1, is continuous at a knot of multi-
plicity d.

Proof. We may assume that for some i,

z2=1tit1 =+ = litd,



and
li <2z <tliyd+1-

Then s|y, .y = s; and s[4, ,,,) = Si+a and so the two polynomial pieces s;
and s; 4 are adjacent and the task is to show that they are equal at z. Using
the polar forms of s; and s;, 4 we find

si(z) = Plsil(z, ..., 2) = Plsi](tit1, -, tiva) = ¢,
d
and
siva(2) = Plsirdl(2, - -, 2) = Plsiral(tir1, - - -, tiva) = ¢,
d
and so both pieces are equal to c; at z. O

Lemma 2 A spline s of degree d is continuous at a knot z of multiplicity r
for any r < d.

Proof. Since any spline of degree r, on the same knot vector as s, is continuous
at z, the B-splines N/ (on the same knot vector) are also continuous at z.
So, by the recursion formula for B-splines (3), the B-splines N/ are also
continuous at z, and similarly for N/*? and so on. Thus the B-splines N¢
are also continuous at z and so too is s. O

5 Derivatives

Using polar forms, we next find a formula for the first derivative of the spline
s as a spline of degree d — 1.

Lemma 3 Let p be the polynomial of degree < d in (6) and P|p| its polar
form (7). For any a,b € R with a # b,

P[p](l’l, . ,.’ﬂdfl,b) — P[p](a:l, . ,:L’d,l,a)
b—a ’

Pz, ... xq-1) =d (10)

Proof. By the definition of S;,

d—1 )
Si(x1,...,2q) = ] Si<$1a'-->xd—1)‘I’Exdsi—l(xl»-'wxd—l)a




and therefore, for any a, b,

Si(l‘l, ce ,ZL‘d_l,b) - Si(l'l, ce ,Id_l,a) = —(b - G)Si_l(fl'l, ce ,I’d_l).

d
Since the derivative of p is
d
p(x) =Y iaa", (11)
i=1
this implies that if a # b,
d
Pl (z1,...,2a1) = Z ia;Si—1 (1, ..., Tq-1)
i=1
d
= b - Z CLi(Si(ZUl, ey Ld—1, b) — Si(l'l, ey Ld—1, b))

=1
Since Sy = 1 this sum can be extended to include ¢ = 0, and then we obtain
(10). O

Lemma 4

s'(t) = Zn: d; NL(1),

where
d=—1 )
=——(c;, —C;_1).
7 ti-t,-d — tz 7 i—1
Proof. Consider again one of the spline segments s;. Since its deriavtive is a
polynomial of degree < d — 1, there must be coefficients dy_4.1,...,dy such
that

()= 3 dNI).

i=k—d-+1
From the polar form of s},
d; = Plsp)(tivr, - - tiva)-

Using the formula of the previous lemma with a = t; and b = t; 4, it follows
that

d
di = —(Ci — Ci—l)-
tiva — L
Since these coefficients are independent of &, the result follows. O
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Thus s’ is a spline of degree d — 1 on the same knot vector as s. We can
continue to differentiate in this way, and thus express the k-th derivative s(*)
as a spline of degree d — k on the same knot vector.

6 Smoothness

We can now establish the smoothness of a spline.

Theorem 2 A spline s of degree d has order of continuity C~" at a knot z
of multiplicity r for any r < d.

Proof. Let k € {0,1,...,d—r} and consider the k-th derivative s*). By the
differentiation formula of the previous section, s*) is itself a spline, of degree
d — k, on the same knot vector as s. Thus, since d — k > r, Lemma 2 implies
that s is continuous at z. Thus the derivatives of s of orders 0,1,...,d—7r
are continuous at z. O

In particular, at a simple knot, i.e., a knot with multiplicity 1, s has
smoothness C471,



