Assignment 3 for MAT-INF4160, 2014

Martin Reimers

To be completed by Tuesday 28 October. Solutions can be handed to me in the lecture or sent electronically to martinre@ifi.uio.no.

1. Hermite interpolation: find the Bezier control points \mathbf{c}_{i} in the quintic representation

$$
\mathbf{p}(t)=\sum_{j=0}^{5} \mathbf{c}_{j} B_{j}^{5}(u),
$$

where $u=(t-a) /(b-a)$, such that $\mathbf{p}^{(i)}(a)=\mathbf{f}^{(i)}(a)$ and $\mathbf{p}^{(i)}(b)=\mathbf{f}^{(i)}(b)$, $i=0,1,2$.
2. Implement C^{2} cubic spline curve interpolation. Given points $\mathbf{x}_{i} \in \mathbb{R}^{2}$, $0 \leq i \leq n$, choose some parameter values $t_{0}<t_{1}<\cdots<t_{n}$ and find the unique C^{2} cubic spline curve $\mathbf{s}:\left[t_{0}, t_{n}\right] \rightarrow \mathbb{R}^{2}$ such that $\mathbf{s}\left(t_{i}\right)=\mathbf{x}_{i}$, $0 \leq i \leq n$, and $\mathbf{s}^{\prime}\left(t_{0}\right)=\mathbf{s}^{\prime}\left(t_{n}\right)=\mathbf{0}$. Make plots of the curve \mathbf{s} for the three choices of parameterization

$$
t_{i+1}-t_{i}=\left\|\mathbf{x}_{i+1}-\mathbf{x}_{i}\right\|^{\mu}
$$

with $\mu=0,1 / 2,1$, and for the following two data sets. The first data set is $\mathbf{x}_{i}=\left(x_{i}, y_{i}\right)$, where

$$
\begin{aligned}
\left(x_{0}, \ldots, x_{9}\right) & =(261,261,283,287,280,281,302,319,335,277), \\
\left(y_{0}, \ldots, y_{9}\right) & =(703,738,718,723,735,736,731,748,737,682) .
\end{aligned}
$$

The second data set is $\mathbf{x}_{i}=\left(\cos \left(s_{i}\right), \sin \left(s_{i}\right)\right)$, where

$$
\begin{aligned}
& \left(s_{0}, s_{1}, \ldots, s_{12}\right)= \\
& \quad(0,0.24,0.39,0.78,1.03,1.18,1.56,1.81,1.96,2.34,2.59,2.74,3.12)
\end{aligned}
$$

What effects of the three parameterizations do you observe?

