Oblig 3 - exercise 4.5

April 24, 2014
4.5 Prove Lemma 4.2 in the general case where $\boldsymbol{\tau}$ and \boldsymbol{t} are not $\mathrm{p}+1$-regular. Hint: Augment both $\boldsymbol{\tau}$ and \boldsymbol{t} by inserting $\mathrm{p}+1$ identical knots at the beginning and end.

Proof. Let $\boldsymbol{\tau}=\left(\tau_{i}\right)_{i=1}^{n+p+1}$ and $\boldsymbol{t}=\left(t_{i}\right)_{i=1}^{m+p+1}$ with $\boldsymbol{\tau} \subseteq \boldsymbol{t}$. We follow the hint and insert $\mathrm{p}+1$ knots into $\boldsymbol{\tau}$ at a position $a<t_{1}$ and $\mathrm{p}+1$ knots at a position $b>t_{m+p+1}$. Denote this knot vector $\boldsymbol{\tau}^{\prime}$. We also insert the same knots into \boldsymbol{t} to form \boldsymbol{t}^{\prime}.

Adding p+1 knots at both ends extends the corresponding splinespaces by adding $\mathrm{p}+1$ B-splines at both ends. It is easy to see that $\mathbb{S}_{\boldsymbol{\tau}} \subseteq \mathbb{S}_{\boldsymbol{\tau}^{\prime}}$ since a $f \in \mathbb{S}_{\boldsymbol{\tau}}$ can be represented in $\mathbb{S}_{\boldsymbol{\tau}^{\prime}}$ by adding $\mathrm{p}+1$ zero-coefficients in both ends. We also know that $\mathbb{S}_{\boldsymbol{\tau}^{\prime}} \subseteq \mathbb{S}_{\boldsymbol{t}^{\prime}}$ by Lemma 4.2 (since $\boldsymbol{\tau}^{\prime}$ and \boldsymbol{t}^{\prime} are $\mathrm{p}+1$-regular) and hence $\mathbb{S}_{\boldsymbol{\tau}} \subseteq \mathbb{S}_{\boldsymbol{\tau}^{\prime}} \subseteq \mathbb{S}_{t^{\prime}}$. Moreover we know that \mathbb{S}_{t} is the subspace of $\mathbb{S}_{t^{\prime}}$ consisting of splines with $\mathrm{p}+1$ zero-coefficients at both ends.

Let us now take $f \in \mathbb{S}_{\boldsymbol{\tau}}$ and show that $f \in \mathbb{S}_{\boldsymbol{t}}$. It is easy to see that $f \in \mathbb{S}_{\boldsymbol{t}^{\prime}}$. Since $f(x)=0$ in the intervals $\left[a, \tau_{1}\right]$ and $\left[\tau_{n+p+1}, b\right]$, the coefficients of f wrt $\mathbb{S}_{t^{\prime}}$ must have at least $p+1$ zeros at either end. Therefore $f \in \mathbb{S}_{t}$. Since a, b and f was arbitrary we conclude that $\mathbb{S}_{\boldsymbol{\tau}} \subseteq \mathbb{S}_{\boldsymbol{t}}$.

