UNIVERSITETET I OSLO
 Det matematisk-naturvitenskapelige fakultet

Examination in: MAT-INF3300/4300 - Partial differential equations and Sobolev spaces 1

Day of examination: Wednesday, December 13, 2006.
Examination hours: 15.30-18.30.
This examination set consists of 2 pages.
Appendices: None
Permitted aids: Approved calculator.

Make sure that your copy of the examination set is complete before you start solving the problems.

Problem 1.

Let $U=B(0,1) \backslash\{0\} \subset \mathbb{R}^{2}$, and consider the differential equation

$$
\left\{\begin{array}{l}
-\Delta u=0 \quad x \in U \tag{1}\\
\left.u\right|_{|x|=1}=1, \quad u(0)=0
\end{array}\right.
$$

a) Show that if $u \in C^{2}(U) \cap C(\bar{U})$ is a solution of (1), then

$$
v(r)=\frac{1}{2 \pi r} \int_{0}^{2 \pi} u(r, \theta) d \theta
$$

is another solution. Here $r=\sqrt{x_{1}^{2}+x_{2}^{2}}$ and θ are polar coordinates in \mathbb{R}^{2}. Note that v is radially symmetric.
b) Show that there is no radially symmetric solution of (1). Why does this imply that (1) has no solution?

Problem 2.

Let $U=B(0,1) \subset \mathbb{R}^{2}$. Show that $H_{0}^{1}(U) \not \subset C(U)$. (Hint: Consider the function $u(x)=\ln (|x|)$.)

Problem 3.

Let $U \subset \mathbb{R}^{n}$ be a bounded and simply connected domain such that ∂U is C^{∞}.
a) Let $f \in L^{2}(U)$, and let u be a weak solution of Laplace's equation

$$
\begin{cases}-\Delta u=f & \text { in } U \tag{2}\\ u=0 & \text { on } \partial U\end{cases}
$$

Let λ denote the smallest eigenvalue of $-\Delta$ in U, i.e., λ is the smallest number such that $-\Delta u=\lambda u$ has a nonzero solution $u \in H_{0}^{1}(U)$. We can write the solution u of (2) as $u=L(f)$. Show that

$$
\begin{equation*}
\sup _{f \in L^{2}(U)} \frac{\|L(f)\|_{L^{2}(U)}}{\|f\|_{L^{2}(U)}} \leq \frac{1}{\lambda} \tag{3}
\end{equation*}
$$

b) Now consider the nonlinear equation

$$
\begin{cases}-\Delta u=\mu|u|+1 & \text { in } U \tag{4}\\ u=0 & \text { on } \partial U\end{cases}
$$

where μ is a positive constant such that $\mu<\lambda$. In order to solve this we propose the following iterative scheme: $u^{0}=0$, and for $k>0$ we let u^{k} be a weak solution of

$$
\begin{cases}-\Delta u^{k}=\mu\left|u^{k-1}\right|+1 & \text { in } U \\ u^{k}=0 & \text { on } \partial U .\end{cases}
$$

Show that $\left\{u^{k}\right\}$ is a Cauchy sequence in $L^{2}(U)$, and thus convergent. Show that the limit is a weak solution of (4). You may find the following theorem useful.

Contraction mapping theorem. Let B be a Banach space, and let $K: B \rightarrow B$ be a mapping such that for all x and y in B, we have

$$
\|K(x)-K(y)\| \leq \mu\|x-y\|, \text { where } \mu<1
$$

Define $\left\{x_{n}\right\}_{n>0}$ by $x_{n+1}=K\left(x_{n}\right)$, where x_{0} is any element in B. Then $x_{n} \rightarrow \bar{x} \in B$, where \bar{x} is the unique solution of $\bar{x}=K(\bar{x})$.
You do not have to prove this theorem.
c) If u is the weak solution of (4), show that $u \in C^{\infty}(U)$.

END

