UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Examination in:	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Day of examination:	Wednesday, December 13, 2006.
Examination hours:	15.30 - 18.30.
This examination set consists of 2 pages.	
Appendices:	None
Permitted aids:	Approved calculator.

Make sure that your copy of the examination set is complete before you start solving the problems.

Problem 1.

Let $U = B(0,1) \setminus \{0\} \subset \mathbb{R}^2$, and consider the differential equation

$$\begin{cases} -\Delta u = 0 \quad x \in U \\ u|_{|x|=1} = 1, \quad u(0) = 0. \end{cases}$$
(1)

a) Show that if $u \in C^2(U) \cap C(\overline{U})$ is a solution of (1), then

$$v(r) = \frac{1}{2\pi r} \int_0^{2\pi} u(r,\theta) \, d\theta,$$

is another solution. Here $r = \sqrt{x_1^2 + x_2^2}$ and θ are polar coordinates in \mathbb{R}^2 . Note that v is radially symmetric.

b) Show that there is *no* radially symmetric solution of (1). Why does this imply that (1) has no solution?

(Continued on page 2.)

Problem 2.

Let $U = B(0,1) \subset \mathbb{R}^2$. Show that $H_0^1(U) \not\subset C(U)$. (Hint: Consider the function $u(x) = \ln(|x|)$.)

Problem 3.

Let $U \subset \mathbb{R}^n$ be a bounded and simply connected domain such that ∂U is C^{∞} .

a) Let $f \in L^2(U)$, and let u be a weak solution of Laplace's equation

$$\begin{cases} -\Delta u = f & \text{in } U, \\ u = 0 & \text{on } \partial U. \end{cases}$$
(2)

Let λ denote the *smallest* eigenvalue of $-\Delta$ in U, i.e., λ is the smallest number such that $-\Delta u = \lambda u$ has a nonzero solution $u \in H_0^1(U)$. We can write the solution u of (2) as u = L(f). Show that

$$\sup_{f \in L^{2}(U)} \frac{\|L(f)\|_{L^{2}(U)}}{\|f\|_{L^{2}(U)}} \le \frac{1}{\lambda}.$$
(3)

b) Now consider the *nonlinear* equation

$$\begin{cases} -\Delta u = \mu |u| + 1 & \text{ in } U, \\ u = 0 & \text{ on } \partial U, \end{cases}$$
(4)

where μ is a positive constant such that $\mu < \lambda$. In order to solve this we propose the following iterative scheme: $u^0 = 0$, and for k > 0 we let u^k be a weak solution of

$$\begin{cases} -\Delta u^{k} = \mu \left| u^{k-1} \right| + 1 & \text{ in } U, \\ u^{k} = 0 & \text{ on } \partial U \end{cases}$$

Show that $\{u^k\}$ is a Cauchy sequence in $L^2(U)$, and thus convergent. Show that the limit is a weak solution of (4). You may find the following theorem useful.

Contraction mapping theorem. Let B be a Banach space, and let $K: B \rightarrow B$ be a mapping such that for all x and y in B, we have

$$||K(x) - K(y)|| \le \mu ||x - y||$$
, where $\mu < 1$.

Define $\{x_n\}_{n\geq 0}$ by $x_{n+1} = K(x_n)$, where x_0 is any element in B. Then $x_n \to \bar{x} \in B$, where \bar{x} is the unique solution of $\bar{x} = K(\bar{x})$.

You do *not* have to prove this theorem.

c) If u is the weak solution of (4), show that $u \in C^{\infty}(U)$.